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INTRODUCTION

My topic is the interface between statistics and the
philosophy of science; that is, the influence that each
has had or might have on the other. Many people have
contributed to this topic but I shall mainly review the
writings of I. J. Good because I have read them all
carefully. These influences are related to the semi-
quantitative ideas that emerge from an informal Baye-
sian approach, jestingly called Doogian. I don’t want
to repeat too much of what I have said in my books
(Good, 1950, 1965, 1983f) and longer articles, but some
overlap is necessary for the sake of intelligibility. I am
less reticent about repeating what I have published in
recent years in numerous short notes.

Among the topics that I shall touch upon are prob-
ability, surprise, rationality, corroboration or weight
of evidence, explanation, induction, probabilistic caus-
ality and a Bayes/non-Bayes compromise.

Philosophy goes beyond the dictionary in giving
clearer meanings to the abstract words and phrases
that have been found useful in ordinary language over
the centuries. Sometimes more than one meaning is
found and then the relations between them become of
interest. The expressions “probability” and “weight of
evidence” are two examples that have interested phi-
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losophers for two thousand years. “Probability” has
several interpretations whereas “weight of evidence”
has one that is clearly best in my opinion, once the
interpretation of probability is chosen. Some philoso-
phers are still using other definitions of weight of
evidence without mentioning the best one.

My discussions belong to a field that can be called
the mathematics of philosophy or probabilistic philos-
ophy. The approach is often only semiquantitative
because of the difficulty or impossibility of assigning
precise numbers to the probabilities. Some people will
argue that it is misleading to use precise-looking for-
mulae for concepts that are not precise, but I think it
is more leading than misleading because a formula
encapsulates many words and provides a goal that one
can strive toward by sharpening one’s judgments. Also
it is easier to make applications to statistics if one has
a formula. A semiquantitative theory should be con-
sistent with a good qualitative theory. For example, I
think this applies basically to my theory of probabilis-
tic causality (Good, 1961/62, 1985d, 1987a) in relation
to the more qualitative theory of Suppes (1970).
A reader who holds in mind the present paragraph
will not be misled by the apparent precision of the
formulae.

PROBABILITY

Poisson (1837, page 2) made a clear distinction
between two kinds of probability which may be called
epistemic and physical (see Good, 1986a, for further
discussion). Epistemic probability can be either sub-
jective (= personal) or logical and finer classifications
have been given (Kemble, 1942; Good, 1959, 1966;
Fine, 1973). Poisson assumes that the probability of
an event is different for different people only because

ok

Statistical Science. IIK@IN ®

www.jstor.org



STATISTICS AND PHILOSOPHY OF SCIENCE 387

1. J. Good

they have different information. This seems to imply
that P(A | B) is the same for everybody so Poisson
must have had credibility (= logical probability) in
mind. Subjective probability was regarded as the most
basic kind by Ramsey (1926/64) and de Finetti (1937/
64) and in books by Good (1950) and Savage (1954).
Early modern books on credibility were written by
Keynes (1921), Jeffreys (1939) and Carnap (1950),
although all three of these authors later became more
sympathetic to the use of subjective probability than
they were when they wrote those books.

I doubt whether credibility can ever be given a
convincing precise numerical meaning unless the in-
formation has symmetry properties, or if the sample
is very large, but I believe it is a- useful fiction to
assume that credibility has sharp values even when
there is no sample, and I think it is mentally healthy
for you to think of your subjective probabilities as
estimates of credibilities. (The concept of useful fic-
tions was developed by Jeremy Bentham in the early
nineteenth century: see Ogden, 1959.) Physical prob-
ability too is a useful fiction even if the world is
deterministic, just as pseudorandom numbers are reg-
ularly used by statisticians as if they were strictly
random. (See both indexes of Good, 1983f, under
“determinism.”) de Finetti proved a theorem that can
be interpreted as saying that a person who has sharp

subjective probabilities that are consistent with the
axioms behaves as if physical probabilities exist (al-
though de Finetti believed they do not exist) and these
physical probabilities have unique subjective proba-
bility distributions. The theorem can also be inter-
preted as saying that solipsism cannot be strictly
disproved. (Solipsism is the theory that the only real-
ity is one’s own mind. There might be card-carrying
solipsists but no sane sincere ones.) de Finetti did not
express the theorem in either of these ways. It is
an excellent example of a theorem at the interface
between philosophy and statistics. For a simple ex-
position of de Finetti’s theorem see Good (1965,
pages 12-14, 22-23). For its relationship to the nondis-
provability of solipsism see Good (1983f, pages 93
and 154), where further references are mentioned.

Keynes (1921) argued that credibilities should be
regarded as interval valued, that is, partially ordered.
Good (1950) adopted the same view for subjective
probabilities, but sometimes it is a good enough ap-
proximation to think of a probability as having a sharp
numerical value. The upper and lower subjective prob-
abilities, which are the ends of the intervals, are also
not strictly sharp, but again I believe it is often good
enough to assume that they are sharp. I think the
simplest satisfactory theory of partially-ordered sub-
jective probability, or any other well-rounded scien-
tific theory, is one based on axioms, rules of
application and suggestions. I listed 27 suggestions in
Good (1971, pages 124-127) and called them the Prig-
gish Principles. But it would be too repetitive of what
I've previously published to give the details here. See
Good (1950, mostly written in 1947, 1962, 1982a, c,
1987¢). In these works, I did not make quite explicit
the fact that an exact additive measure cannot be
ascribed to nonmeasurable sets. This was because I
had in mind sets and propositions that correspond
reasonably closely to definable events in the real
world. No single nonmeasurable set is effectively con-
structible, but only by using the metaphysical axiom
of choice.

In most circumstances your estimate of a probability
should not be changed if you imagine that you are
going to live forever (although the relevant utilities
would change). Therefore it is legitimate to justify the
axioms of subjective probability by reference to long-
run frequencies. But there are more convincing justi-
fications. The concept of the probability of a law of
nature leads to difficulties for all approaches. In the
frequency approach it requires us either to abandon
the attempt or to imagine a large number of conceiv-
able universes.

The use of partially-ordered probabilities can be
regarded as a kind of “formalization of vagueness.” It
differs from the theory of fuzzy sets that deals with
“degrees of belonging” to a set or, as it might be
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expressed, with “degrees of meaning” (Good, 1950,
page 1n). For example, it is more meaningful to say
that a man has a beard if he resembles a religious
leader, such as Christ, the Ayatollah, R. A. Fisher,
Santa Claus or Karl Marx, than if his chin is merely
fuzzy like one of the characters in Miami Vice. There
might, however, be a correlation between the degree
to which an entity x belongs to a specific set s and the
probability that a person chosen at random would say
that x belongs to s.

When all your prior probabilities are sharp you are
a strict Bayesian, whereas, when all upper and lower
point probabilities are 1 and 0, respectively, you are a
strict non-Bayesian. Because I believe that subjective
probabilities are only partially ordered I am forced
into a Doogian intermediate position. I am forced to
look for compromises between Bayesian and non-
Bayesian methods and especially ways in which a
somewhat Bayesian outlook can shed light on and
improve so-called non-Bayesian methods. This point
of view has been much developed in terms of main-
stream statistics by Berger (1984).

I regard it as acceptable to use seemingly non-
Bayesian methods except when they are seen to con-
tradict your own judgments of probabilities etc. in a
given application, the axioms of subjective probability
being assumed. Whether you arrive at a contradiction
will depend partly on how much thought you give to
the matter. The type II principle of rationality rec-
ommends that you should allow for the cost of think-
ing and calculation when trying to apply the type I
principle, namely the maximization of expected util-
ity. Thinking will often cause you to change your
mind; that is why dynamic probabilities are relevant:
see, for example, Good (1977a).

There is a weak analogy between the concept of
dynamic probability and the use made by Jeffrey
(1965, pages 154 and 155) of two different notations
for probabilities before and after some experience, but
I am not convinced that two notations are required.
The context of the problem is that of estimating a

probability conditional on an uncertain event. My °

analysis of this problem is given in Good (1981c) where
the connection with the logic of-medical diagnosis is
mentioned.

You can make probability judgments about the ac-
curacy of your own judgments, and this leads to a
hierarchical Bayesian approach in statistics, not nec-
essarily restricted to only two levels. This approach is
at least an aid to the judgment. It was exemplified by
a so-called type II minimax procedure in a summer
conference in Cambridge in 1951 (Good, 1952). Later
it led to an adequate Bayesian significance test for
multinomials (Good, .1965, 1967; Good and Crook,
1974; Leonard, 1977), and for contingency tables

(Good, 1965, 1976a; Leonard, 1975; Crook and Good,
1980; Good and Crook, 1987). The basic idea is to use
prior distributions that contain parameters known as
hyperparameters, and these can be assigned hyper-
priors. A history of much of the hierarchical Bayesian
approach for categorical data, up to 1979, is given by
Good (1980a). This work had nonhierarchical roots
dating back to Bayes and Laplace, and, in this century
to Johnson (1932) who anticipated some of the
work of Carnap (1952). Johnson showed that, under
certain assumptions, if one has a multinomial sample
(n1, ng, ..., n,), then the physical probabilities of the
t categories can be best estimated by adding a flatten-
ing constant k& to all ¢ observed frequencies. (His proof
was incorrect for ¢ = 2; see Good, 1965, page 26.) In
Laplace’s writings k& was equal to 1. The flattening
constant is a hyperparameter and I maintain that it
should be assigned a hyperprior in order to improve
the usefulness of the model.

The hierarchical Bayesian approach has also
been applied to linear models especially by Lindley
(1971) and Lindley and Smith (1972). A conference
on hierarchical Bayesian statistics was held in 1986
in Bowling Green, Ohio, in which Smith was the
principal speaker, and his lectures will be published.

My guess about the future of statistics is that it
will be a compromise between hierarchical Bayesian
methods and methods that seem superficially to be
non-Bayesian.

INDUCTION

By scientific induction I mean changing the proba-
bility of hypotheses in the light of evidence or obser-
vations and thereby also changing the probabilities of
future observations. The problem is partly solved by
means of Bayes’s theorem. Some people call the for-
mulation of hypotheses “induction,” but I prefer the
obvious name hypothesis formulation for that activity.
(Peirce called it “abduction.”) Sometimes hypotheses
can be formulated automatically by maximizing en-
tropy: see Good (1963).

The estimation of physical probabilities of multi-
nomial (or binomial) categories is of course a contri-
bution to the problem of scientific induction. In
particular the hierarchical Bayesian method was used
explicitly for this purpose by Good (1983a,b). A qual-
itative consequence of the hierarchical approach, and
of the calculations, was that “induction to the next
trial” is much more reliable than “universal induction”
or “induction to all future trials,” and I think most
people would agree with this conclusion without
detailed analysis. I shall not give the details here be-
cause they are too mathematical and involve much
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numerical computation. Instead I'd like to say some-
thing about another aspect of scientific induction.

The first quantitative contribution to scientific in-
duction was Laplace’s Law of Succession. For exam-
ple, if you have seen n swans in England and they
have all been white, and if you assume no other
knowledge, then the ddds are n + 1 to 1 that the next
one chosen at random will be white according to
Laplace’s law, or 2n + 1 to 1 on the basis of an
“invariant” prior for the binomial parameter that was
proposed by Jeffreys and independently by Perks
(equivalent to using k& = % for binomials). If the
conditions change in a substantial manner, for exam-
ple, if the next observation is made in Australia, you
cannot be so sure, and in fact there are black swans
there. Similarly, after 24 successful launchings of the
space shuttle Challenger, the odds that the next one
would be successful would be 25 to 1 on or 49 to 1 on
according to the two inductive procedures mentioned
(but « to 1 by maximum likelihood estimation). One
engineer had estimated the chance of disaster as 1/35
for each of the previous launchings. But when the
temperature on the next trial was 28° Fahrenheit
whereas it had never been below 51° before, and when,
for that reason, the engineers advised against launch-
ing (Hickey, 1987), the odds of a successful launching
could hardly have been rationally estimated by those
responsible as more than about 3 or 5 to 1 on, in my
opinion, because the extra information seems to me
to be worth a Bayes factor of about 10 against suc-
cess. Of course this personal judgment might be de-
scribed as “back-jobbing.” I intend to compare it
with judgments elicited from other people including
“anti-Bayesians.”

A special case of a hypothesis is that a specific word
has a specific meaning or class of meanings, and this
hypothesis is made more probable if you look the word
up in a dictionary and also observe how the word is
used. This applies to every word in the language
including “induction” itself, so if some one tells me he
doesn’t believe at all in probabilistic induction, for all
I know he is asserting that the moon is made of
gorgonzola or that pigs eat purple people (Black, 1967;
Good, 1981b). It is like a nondreaming solipsist trying
to convince other people he is right. Popper and Miller
(1983) produced a new argument against probabilistic
induction, and because I was sure their conclusion was
wrong, if I understood what they meant by probabilis-
tic induction, I seized on what I thought was the
weakest link of their argument in my first response.
But it turned out that that was not a necessary link
in their argument, so I'm forced to the opinion that
their argument was a kind of ingenious sleight of hand
or a non sequitor. (See Good, 1985a, for more details.)
Their argument was attacked by Redhead (1985) and

then Redhead was seemingly refuted by Gillies (1986).
I reinstated Redhead’s argument, at least temporarily,
by replacing his implicit definition of support or
weight of evidence by the best definition (Good,
1987b). (But, at the time of writing, Popper and Miller
(1987) have had the last word.) I shall discuss weight
of evidence next.

WEIGHT OF EVIDENCE

The earliest use of the expression “weight of evi-
dence” quoted by the Oxford English Dictionary (1971)
is a remark made by T. H. Huxley in 1878. In that
same year Peirce (1878) published a formal definition,
so either the expression was already in common use
or perhaps it is simply self-explanatory in a qualitative
sense. Clearly the concept was familiar to the ancient
Greeks because Themis, the goddess of justice, is said
to be represented as holding a pair of scales in which
she weighs opposing arguments. I shall now outline
an argument that leads to a unique explicatum. I have
discussed the topic of weight of evidence in over forty
publications beginning with Good (1950) and there
are surveys (Good, 1985¢, 1988c). The desideratum-
explicatum argument outlined in the present text was
given in Good (1968b) and much more lucidly in Good
(1984f).

Let H denote a hypothesis, such as that an accused
person is guilty, and let E denote some evidence, such
as that presented by a specific witness. We ask how
should we define W (H: E | G), the weight of evidence
in favor of H provided by E when background knowl-
edge G is regarded as given or previously taken into
account. It is natural to assume that the new evidence
converts the prior probability into its posterior prob-
ability, that is, that P(H | E&G) is a mathematical
function of P(H|G) and of the weight of evidence.
Moreover, W(H: E | G) should depend only on (i) the
probability of E given that the accused is guilty, and
(ii) the probability of E given that he is innocent, that
is on P(E|H&G) and P(E|H&G) where the bar
denotes negation. These desiderata lead to the conclu-
sion that W(H: E | G) must be a monotonic function
of the Bayes factor P(E | H&G)/P(E | H&G) and we
may as well take the logarithm of the Bayes factor as
our explicatum because this leads to desirable additive
properties of the kind assumed by the goddess Themis.
In fact,

(1) WI[H: (E&F)]= W(H:E) + W(H: F|E).

I have taken G for granted to simplify the appearance
of the formula. When E and F are independent given
H and also given H, this formula reduces to

W(H: E&F) = W(H: E) + W(H: F).
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It was pointed out by Wrinch and Jeffreys (1921),
in a slightly different notation, that

P(E|H&G) O(H|E&G)
P(E|A&G) OHI|G) °

2

the ratio of the final (posterior) to the initial (prior)
odds. Thus, W is the additive change in the log odds
of H by virtue of E. It would be a misuse of terminol-
ogy, and also historically misleading, to call the left
side of (2) a likelihood ratio although it is a likelihood
ratio when H and H are what are called simple statis-
tical hypotheses. It would be acceptable to call it a
Bayesian likelihood ratio, but there is then a risk that
the qualification “Bayesian” would ultimately be
dropped, thus leading back to the misleading termi-
nology. Furthermore, “likelihood ratio” is often used
to mean the ratio of maximum likelihoods. Equation
(2) has been mentioned several times in the literature
without citing Wrinch and Jeffreys. Because it is so
important I think proper credit should be given al-
though it is an easy deduction from Bayes’s theorem.
Bayes’s theorem is an easy deduction from the axioms
of epistemic probability, but authors don’t write it
down as if they had just discovered it for the first
time.

It is best to think of the Bayes factor as defined by
the right side of equation (2), that is, as the factor by
which the initial odds of H are multiplied to obtain
the final odds. It is convenient that this factor is equal
to the left side because this can be evaluated inde-
pendently of the initial probability of H which can be
especially difficult to judge. I conjecture that most
juries are able to judge final probabilities of guilt better
than initial probabilities, because in ordinary affairs
final probabilities are more important than initial ones
so we think about them more.

Because the left side of (2) sometimes reduces to a
simple likelihood ratio we can regard a Bayes factor
as part of the interface between Bayesian and less
philosophical non-Bayesian statistics. Ordinary (non-
Bayesian) likelihood is also part of this interface.

The technical concept of weight of evidence, because
it captures the intuitive concept so well, should be of
interest in legal matters (Good, 1986¢), and is already
of interest for medical diagnosis, especially differential
diagnosis (between two diseases): see, for example,
Good and Card (1971), Card and Good (1974) and
Spiegelhalter and Knill-Jones (1984).

The concept of a unit of weight of evidence is due
to Turing (1941). He talked of bans, decibans and
natural bans, the latter when natural logarithms are
used. The deciban resembles the decibel in acoustics,
being about the smallest weight of evidence percepti-
ble to the human mind. Turing’s name for a weight of
evidence was “score” or “decibannage.”

Peirce (1878) (long before Fisher introduced the
technical meaning of “likelihood,” indeed twelve years
before Fisher was born) almost anticipated the best
formal concept of weight of evidence but his definition
applies only if the initial odds of H are 1 or “evens,”
that is, if P(H | G) = Y%. In this special case, the weight
of evidence is equal to the posterior log odds. Jeffreys
(1939) also nearly always assumes that O(H) = 1 in
spite of his earlier work. This was because in his book
he was trying to be a credibilist, especially in the 1939
edition. Poisson (1837, Chapter V) also came close to
the formal concept: see Good (1986a, page 167).

Weight of evidence can be regarded as a quasi-utility
or epistemic utility, that is, as a substitute for utility
when the actual utilities are difficult to estimate. (A
quasi-utility can be defined as an additive epistemic
utility.) Just as for money, diminishing returns even-
tually set in; for example, in a court of law, if the
weight of evidence in favor of guilt or innocence be-
comes overwhelming there is little point in seeking
further evidence, especially if it is expensive. The same
principle applies in scientific or medical research or
even in a game of chess (where evolving or dynamic
probabilities are relevant: see Good, 1968b, and espe-
cially 1977a). But the effect of diminishing returns
can often be ignored. When this is done we naturally
bring in the concept of expected weight of evidence,
which, in discriminating between two multinomials,
leads to an expression of the form

3) 2, pilog(pi/q:).

This, or its general form (continuous or mixed), is
often called cross-entropy, or relative (neg)entropy.
Such expressions were used by Gibbs (1875/1906/
1961, page 163), somewhat implicitly, in statistical
mechanics and in statistics by a number of authors.
For many references see Good (1985c), Christensen
(1983, Chapter 1) and the indexes of Good (1983f)
under “weight of evidence.” Ordinary entropy is effec-
tively minus a special case of cross-entropy, namely
when g; has the same value for all i. In the design of
an experiment for estimating a parameter it might be
reasonable to maximize the expected cross-entropy;
but to minimize the cross-entropy when doing the
estimation after the experiment is done. (Compare
Good, 1968a.) This is because, according to a theorem
due to Wald (1950, page 18), a minimax solution is a
Bayes solution that uses the least favorable prior.
Minimax solutions are not optimal but they have the
merit of invariance under changes of variables. (See
also Good, 1955/56, 1969; Lindley, 1956.) It seems
that whole areas of statistics can be regarded as
having their logical roots in the concept of weight of
evidence and its mathematical expectation. This is
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not surprising because weight of evidence is a concept
almost as fundamental as probability itself. I believe
that even Shannon’s coding theorems in communica-
tion theory are understood better in terms of expected
weight of evidence rather than entropy (Good and
Toulmin, 1968).

TAIL PROBABILITIES OR P-VALUES

In statistical practice a small p-value such as Yo
is usually regarded as evidence against the “null
hypothesis” H, and there is a temptation to think that
any fixed value, say p = 0.031 (which is not at all the
same assertion as that p < 0.05; see Good (1950), page
94n) conveys the same amount of evidence against H
on all occasions, at any rate if we are careful to use
either single tails or double tails, depending on circum-
stances. (Perhaps Fisher (1956), page 100, implies this
view, for example, when he refers to “the weight of
evidence.”) This temptation must be resisted for sev-
eral different totally convincing reasons. Some of
these reasons are mentioned in my paper on hypoth-
esis testing (Good, 1981a), and I shall not repeat them
here. Here I'd like to mention that a very simple
argument can be given, without mentioning Bayes or
Neyman and Pearson, to prove conclusively the di-
minishing significance of a fixed p-value when a sam-
ple size is increased (Good, 1983c). Indeed, given a
fixed statistical model, a fixed p-value, however small,
can support the null hypothesis if the sample size is
large enough and if the mathematical model is suffi-
ciently reliable. Many statisticians are still surprised
to hear that this conclusion is true even if the null
hypothesis is absolutely sharp. But in practice a small
“neighborhood” should usually in principle be in-
cluded around the null hypothesis (as pointed out by
Laplace in 1774 according to Stigler (1986, page 135n)
and somewhat later independently by Good (1950,
pages 90-93). When this is done it is obvious that a
small p-value with respect to the sharp null hypothesis
might support the “enlarged” null hypothesis. (For a
brief discussion of what it means to say that a theory
is true see Good, 1986f.)

" In several situations the Bayes factor against
a sharp null hypothesis is roughly proportional to
1/(PVN): see Jeffreys (1939, Appendix 1), Good
(1983f, page 143). One way to understand this is that
the prior measures of reasonable sets of non-null
hypotheses, such as 97%% confidence intervals,
shrink roughly proportionally to 1/vN. I have ac-
cordingly suggested (Good,. 1982b, 1984a, g, h)
that p-values, if you must use them, should be
standardized to a fixed sample size, say N = 100, by
replacing P by :

(4) min(¥2, PVN/100)

(when N > 10) and calling it a p-value standardized
to sample size 100. The reason for the % is given in
the cited reference. Even a fixed standardized p-value
does not correspond to the same weight of evidence
for all occasions, but it is better in this respect than
an ordinary p-value. I guess that standardized p-values
will not become standard before the year 2000. Of
course if you are sure that there are only two simple
statistical hypotheses, then there is little point in
using p-values instead of Bayes factors.

Standardized p-values exemplify the concept of a
Bayes/non-Bayes compromise. Several other exam-
ples, and historical comments, can be found, for
example, in a recent encyclopedia article on scientific
method and statistics (Good, 1988a). One example is
the concept of the strength of a test (Crook and Good,
1982).

For some recent discussion of p-values see Berger
and Sellke (1987), Casella and Berger (1987) and Good
(1986e).

THE COMBINATION OF P-VALUES
IN PARALLEL

Let P,, Ps, - - - be some p-values obtained by distinct
tests, but based on the same data. I call these “tests in
parallel.” A dishonest experimenter might choose the
smallest or largest of these depending on whether he
is bribed or intimidated to disprove or to support the
null hypothesis. A rule of thumb that seems to appeal
even to non-Bayesians is to replace these p-values by
their harmonic mean or perhaps by a weighted har-
monic mean. This proposal has an informal Bayesian
justification, and is a nice example of a Bayes/non-
Bayes compromise (Good, 1958). The argument was
based on the fact that a Bayes factor against a null
hypothesis is often, in any given experiment of fixed
sample size, very roughly proportional to 1/p, at least
when p is less than say “. There have been recent
elaborations and applications of this harmonic mean
rule of thumb; Good (1984b,c,d,e). For example, you

- might not know whether a comparative experiment

should be regarded as paired or unpaired and the two
possibilities would give two different p-values that
could be combined by the rule of thumb. The rule of
thumb was published 29 years ago in a well-known
periodical, but is still being ignored because most
statisticians like to pretend their methods are precise.
I think it is better to be approximately correct than
precise and wrong. Perhaps this will be the usual
opinion by the year 2001.

THE CHOICE OF A CRITERION FOR A
SIGNIFICANCE TEST

An early example of a Bayes/non-Bayes compro-
mise, understood explicitly as such, was related to the
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choice of a criterion for a significance test (Good,
1957, page 863). The proposal was to compute a Bayes
factor (or equivalently a weight of evidence), based
on a Bayesian model in which you do not necessarily
have much confidence, and then to treat this Bayes
factor merely as a criterion in the “Fisherian” manner
so to speak by obtaining its distribution given the
null hypothesis. (I sometimes refer to the use of
p-values as Fisherian to distinguish this usage from
the acceptance-rejection procedure of Neyman and
Pearson and from strict Bayesian methods. But
p-values have a history dating back for two centuries.
The idea of finding the distribution of a Bayes factor,
given the null hypothesis, is now practicable up to a
point by simulation (Good, 1986d).) Fisher used to
select criteria for significance tests without any ex-
plicit formal principle, but based on “common sense,”
although he had explicit principles for estimation
problems. His common sense was undoubtedly based
on some vague non-null composite hypotheses, in fact
he said (Fisher, 1955, page 73), in relation to p-values,
that “The deviation [might be] in the direction ex-
pected for certain influences which seemed to me not
improbable - - -” (my italics). Note the personal Baye-
sian tone here and on page 74 he refers to “the tester’s
state of mind.” I wonder where this explicit subjectiv-
ism first occurred in Fisher’s writings. Did it occur
before the revival of the modern subjectivistic move-
ment? (Soon after Good (1950) was published Fisher
told a common colleague that he had found it inter-
esting. Giants can be influenced by the dwarfs that
stand on their shoulders and whisper in their ears.)
Strict Bayesians and Neyman-Pearsonians have to
select precise non-null hypotheses, although in reality
there is nearly always some vagueness in the real
world. How much should be formalized and how
much should be left vague depends partly on personal
judgment.

Note that the Neyman-Pearson-Wilks “likelihood
ratio,” a ratio of maximum likelihoods, can be regarded

as a crude approximation to a Bayes factor for a very |

bad Bayesian model, yet it works well as a significance
criterion. The basic idea is that, if you cannot evaluate
' an integral, work instead with the maximum of the
integrand without even allowing for the curvature of
the integrand at its maximum! This crude idea also
leads to the use of maximum likelihood as another
example of a Bayes/non-Bayes compromise.

When the number of parameters is large this infor-
mal Bayesian justification of maximum likelihood es-
timation is liable to break down, and then, I believe,
the method of maximum likelihood becomes unac-
ceptable. A very good example is the estimation of a
probability density function f given a finite sample of
observations x;, xs, - -, xy. In this case the number

of parameters is infinite and the maximum likelihood
estimate consists merely of one Nth of a Dirac func-
tion at each observation. This disaster can be avoided
by using the method of maximum penalized likelihood
in which the log likelihood Y); log f(x;) is penalized by
subtracting from it a roughness penalty ¢ (f) such as
B [ [(vf)"]? dx where 8 is called a hyperparameter or
smoothing parameter (Good and Gaskins, 1971, 1972,
1980; Good and Deaton, 1981; Leonard, 1978). The
method of maximum penalized likelihood was de-
scribed by Good and Gaskins (1972) as a wedding
between Bayesian and non-Bayesian methods because
one can either regard exp(—¢) as proportional to a
prior density (possibly improper) in function space or
else the whole procedure can be regarded as a common
sense ad hoc non-Bayesian adjustment of maximum
likelihood estimation to save it from disaster. (A spe-
cial feature of the Bayesian interpretation is that it
leads to a way of evaluating bumps.) A similar penal-
izing of a log likelihood was also suggested by Good
(1963, page 931). The idea proposed there, but not
developed, was to maximize a linear combination of
log likelihood and entropy. When there is no sample
this suggestion reduces to the method of maximum
entropy, so the proposal was a generalization of that
method.

For all these procedures it is necessary to choose
the hyperparameter, procedural parameter or smooth-
ing parameter. Methods are given by Good and Gas-
kins but their reliability needs to be investigated by
further simulation methods. One could also assume a
hyperprior for the hyperparameter. If a sample is large
then the smoothing parameter can be reliably esti-
mated by using the old-fashioned split sample method
or by means of the modern modifications called cross-
validation or predictive sample reuse, although these
methods can be expensive. For further discussion of
the cross-validation method for density estimation
techniques see Wahba (1977).

The theory of significance tests, based on p-values,
cannot be entirely separated from the theory of esti-
mation of parameters. Thus, Fisher (1955) said “- - -
in the theory of estimation we consider a continuum
of hypotheses each eligible as a null hypothesis, and
it is the aggregate of frequencies calculated from each
possibility in turn as true—including frequencies of
error [p-values], therefore only of the ‘first kind,’
without any assumptions of knowledge a priori—
which supply the likelihood function, fiducial limits,
and other indications of the amount of information
available.” In this way Fisher was able to subsume the
concept of errors of the second kind under those of
the first kind. This p-value function is a continuous
form of all possible confidence intervals, although
Fisher might have deliberately avoided this mode of
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expression! It is not surprising that Pearson (1955)
said, in response, that “.-. I do not think that our
position in some respects was or is so very different
from that which Professor Fisher himself has now
reached” (my italics). Another implication of Fisher’s
remark is in suggesting the notion of a continuum of
hypotheses possibly forming an “onion,” or part of an
onion, surrounding the null hypothesis, these hy-
potheses being “more non-null” when further out, and
the inner core being virtually the null hypothesis.

Fisher mentioned fiducial limits in the quoted pas-
sage, so I’ll remind you en passant that, in my opinion,
Fisher’s fiducial argument is fallacious and the reason
he made a mistake was simply because he did not use
a notation for conditional probability. In Fisher (1955,
page 24) he says “He [Neyman] seems to claim that
the statement (a) ‘0 has a probability of 5 per cent of
exceeding T is a different statement from (b) ‘T has
a probability of 5 per cent of falling short of ¢’.” In my
opinion the error was Fisher’s because only one of the
statements should be made conditional on T. Bad
notations and terminology tempt people into making
substantial errors. An example was Carnap’s use of
“confirmation” for logical probability, a usage that
still causes confusion among philosophers of science.
The ordinary English meaning of confirmation is
much closer to weight of evidence than to probability.
I predict that the misuse of the term “confirmation”
will continue until the year 2002.

Jeffreys (1939) showed that in some circumstances
the use of the fiducial argument was equivalent to
assuming a specific Bayesian prior, usually “im-
proper,” that is, integrating to infinity instead of 1.
According to Stigler (1986, pages 91 and 102-104) the
fiducial argument was foreshadowed by Thomas
Simpson in 1755 and its relation to inverse probability
was recognized, but only implicitly, by Laplace. The
error in the exposition of the fiducial argument by
Fisher (1956), together with the psychological reason
for the error, has been precisely pinpointed (Good,
1971, page 139).

SURPRISE INDEXES

» A kind of alternative to the use of p-values are
surprise indexes. To save space I refer you to a review
of this topic in Good (1988b).

PROBABILISTIC CAUSALITY

Sometimes “causality” is taken to mean “determin-
ism” as when people say that quantum mechanics
sounded the death knell for causality. In the present
context it is convenient to refer to determinism as
strict causality and to refer to something less strict as
probabilistic causality. Work on quantum mechanics

during the last decade seems to refute determinism
but it also seems to refute objective reality (d’Espa-
gnat, 1979) so, following Einstein, me-thinks the the-
ory refutes too much.

If the world is deterministic then probabilistic cau-
sality does not exist, but we’ll never know with cer-
tainty whether determinism or indeterminism is true.
So it is legitimate to assume indeterminism even if it
is only a convenient fiction, somewhat like using the
axiom of choice in a mathematical proof. There would
be no criminal law if, believing in determinism, we
always said “Tout comprendre c’est tout pardonner.”
Anyway nous ne tout comprendon jamais, we never
understand everything.

It is essential to make a distinction between the
tendency of one event F to cause a later one E, denoted
by Q(E:F), and the extent to which F actually caused
E, denoted by x(E:F). I gave a convincing example
of this in Good (1961/62) based on a dramatic incident
involving Sherlock Holmes, Watson and Moriarty. In
the law, a simple example is the distinction between
murder and attempted murder. The distinction is im-
portant because the law rewards inefficiency in this
case, at least in many countyies.

The notations Q(E:F) and x(E:F) are both only
abbreviations because one must allow also for the state
U of the universe just before F occurred and also for
all true laws of nature. It is also necessary to allow for
the negations of E and of F but when you put all these
aspects into the notation in a lecture some people walk
out because they think you are doing mathematics.

It is extremely difficult to find a fully satisfactory
explicatum for x, although I think I have made some
contribution toward it. (For my latest effort see my
reply to a valid criticism by Salmon in Good, 1987a.)
Here I shall discuss only @ which seems to me to be
of much greater importance in statistics, although in
legal matters x is at least as important. It will be @
that counts when you reach “dem pearly gates.” I
won’t say much even about @ because I have recently
given two lectures on the topic (Good, 1985d, 1987a).

The old-fashioned name “the probability of causes”
referred to the application of Bayes’s theorem, where
the “hypotheses” are regarded as mutually exclusive
possible “causes” of some event or events. For exam-
ple, the “event” might be a set of medical indicants
and the possible “causes” might be various disease
states. The topic I'm discussing now is different: it
refers to the tendency of some event F to cause another
one E, not the probability that F was the cause of E.

Let us assume that Q(E: F) is some function of all
probabilities of the form P(A | B) where A and B are
logical combinations of E and F. This comes to the
same thing as assuming that @ depends only on
P(E|F), P(E|F) and P(F). The probabilities are
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here best regarded as physical (propensities) because
I am thinking of probabilistic causality as something
that exists even if no conscious being is around. By
assuming several desiderata related to the “causal
strengths” and “causal resistances” of causal net-
works, we can arrive at the explicatum that @ is equal
to the weight of evidence against F provided by the
nonoccurrence of E; that is,

(6)  QE:F) = W(F:E) = IOg[_i - iﬁﬁi?i]

(where of course U is taken for granted throughout).
This expression is mathematically independent of
P(F) and this could have been taken as a desideratum
although it was not explicitly used to obtain the ex-
plicatum. That Q(E: F) is mathematically independ-
ent of P(F), the initial probability of F, is desirable
for the following reason.

In a scientific experiment we might decide whether
to apply a treatment F by using a randomizing device
that would determine P(F). The purpose of the ex-
periment might be to find out to what extent F causes
E by repeating the experiment many times. It would
be contrary to the spirit of scientific experimentation
if the conclusion were to depend on our arbitrary
choice of P(F). Some people would go further and
would say that no reliable conclusions are possible
unless the experimenter uses a randomizing device to
control whether F occurs. In this way we can be
convinced that E and F did not have a common cause
unless we believe in some possibly magical or para-
normal effect that relates the randomizing device to
the effectiveness of the treatment. This is why it is
reassuring to discover that the proposed explicatum
for € does not depend on P(F), although this property
was not used in the original derivation of the expli-
catum.

It seems intuitively right that @ should have some-
thing to do with weight of evidence. So what happens

if we define Q(E: F) by some other weight of evidence,

the possibilities being (i) W(F:E), (ii) W(E:F) and
(iii) W(E:F)? The second and third possibilities can
" be excluded because they depend on the initial prob-
ability of F, P(F). So the only rival to W(F:E) is
W(F:E), still conditional on U of course. This rival
will now be ruled out. Consider the “game” of Russian
roulette (possibly called American roulette in
Moscow). In a self-explanatory notation, and for
an obvious slightly oversimplified model, we have
P(E|F) = Y%, P(E|F) =0, if the “game” is played
with a six shooter that contains just one bullet.
Hence, W(F:E) = log(%s) = 78 centibans (or “centi-
causits”), whereas W(F': E) = log[%s/0] = . It makes
sense that a necessary cause of E should have only a
finite tendency to cause E, whereas a sufficient cause

should have an infinite tendency if E was not already
inevitable. Playing Russian roulette is a necessary but
not a sufficient cause for disaster in the assumed
model. Similarly, trying to cross the road is usually a
necessary cause for getting run over, but fortunately
it is not sufficient. Thus, W(F': E) is shot down. We
see then that if Q(E: F) is to be expressed in terms of
weight of evidence there is really only one serious
candidate, namely W(F': E). Moreover this has desir-
able additive properties (for example, Good, 1983f,
page 209) that would not be shared by any function of
it other than a mere multiple.

It turns out that Q(E:F), as thus explicated, is
identical with one of the measures of association used
for 2 by 2 contingency tables. Also there is a relation-
ship to the theory of linear regression, but I’ll just give
you citations for this (Good, 1980b, 1985d, 1987a).

EXPLICATIVITY

Popper (1959) suggested that a measure or index of
explanatory power should be developed and this was
a main theme of, for example, Good (1968b). I there
introduced the concepts of weak and strong explana-
tory power and gave one statistical example. The
qualification “strong” means that a penalty is paid for
cluttering a hypothesis with irrelevances. I returned
to the topic in Good (1977b) where the name strong
explanatory power was changed to explicativity.

By explicativity n is meant the extent to which one
proposition or event explains why another should be
believed, to express the matter a little too briefly. The
concept is not intended to capture all the senses of
“explanation.” A desideratum-explicatum approach
was used leading quickly to the explicatum

n(E:H)
®  _jog P(E|H) - log P(E) + v log P(H)

where 0 < v < 1 and where v = % might be adequate.
We can think of v as a clutter constant because the
more we object to cluttering H with irrelevancies, the
larger we would make «.

The amount by which the explicativity of H exceeds
that of H' is

n(E:H/H')
=(1-y)W(H/H":E) + v log O(H/H' | E),

a compromise between the weight of evidence provided
by E on the one hand, and the posterior log odds on
the other hand. If we take v = 1 there is no better
hypothesis than a tautology such as 1 = 1. If we take
v = 0 we ignore the prior probabilities. We must
therefore compromise.

If explicativity is regarded as a kind of quasi-utility,
its maximization leads to a method for choosing

(7
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among hypotheses, and this principle can be used in
statistical problems of both estimation and signifi-
cance testing. The results of applying this method
make intuitive sense in several examples. For example,
the method leads to interval estimation of parameters
in these examples without assuming in advance that
interval estimates should be used. The method is very
general and could be used, for example, for the selec-
tion of regressor variables. The result would resemble
methods proposed by Akaike (1974) and by Schwarz
(1978). The maximization of expected explicativity is
areasonable recipe for experimental design, and it can
be seen that v then becomes irrelevant and the method
reduces to that cited soon after equation (3).

The notion of explicativity seems appropriate for a
semiquantitative discussion of how good natural selec-
tion is as an explanatory theory as compared with
other theories of evolution (Good, 1986b).

For more on explicativity see Good and McMichael
(1984) and Good (1985b).

ADHOCKERY

When a hypothesis or theory H appears to be un-
dermined by the total relevant evidence E a defender
of H might patch it up by changing it to a more
elaborate hypothesis H’. Then has H been improved
or is the change merely ad hoc? The concept of expli-
cativity provides at least a formal solution to this
problem: the change is ad hoc if 7n(E : H/H’) is positive,
and n(E: H/H’) is a measure of the adhockery. If it is
negative then the change is justified (compare Good,
1983d).

“SCIENTIFIC METHOD”

Somewhat supplementary to what I have said in
this lecture is an encyclopedia article entitled “Scien-
tific method and statistics” (Good, 1988a). In that
article I tried to define scientific method in terms of
fourteen facets and to argue that statistics makes use
of all of these facets. This does not show that statistics
is identical with the scientific method but only that
statistics is one example of the method. For each way
of ‘assigning weights to the facets one gets a different
interpretation of “scientific method.”

EXPLORATORY DATA ANALYSIS

At first it might seem that exploratory data analyéis
is nonphilosophical but I believe it has implicit Baye-
sian aspects. This is argued in Good (1983e).

TECHNIQUE VERSUS PHILOSOPHY

Because I have been emphasizing the interface be-
tween philosophy and statistics, I might have given

the impression that statistics is nothing but philoso-
phy. That has not been my intention. Much of statis-
tics consists of techniques for condensing data sets
into simplified numerical and graphical forms that
can be more readily apprehended by the eye-brain
system, a system that has evolved at a cost of
some 10'® organism-hours. Philosophers recognize the
importance of techniques and technicians should
reciprocate.
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