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The Geometry of Asymptotic Inference

Robert E. Kass

Abstract. Geometrical foundations of asymptotic inference are described in
simple cases, without the machinery of differential geometry. A primary
statistical goal is to provide a deeper understanding of the ideas of Fisher
and Jeffreys. The role of differential geometry in 'generalizing results is
indicated, further applications are mentioned, and geometrical methods in
nonlinear regression are related to those developed for general parametric

families.
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1. INTRODUCTION

In statistical science, geometrical methods are
ubiquitous, their analytical and aesthetic virtues taken
for granted. Differential geometry, on the other hand,
is largely unfamiliar to most statisticians and may
seem rather technical. My purpose in this paper is to
show how two simple and appealing ideas lead natu-
rally to the introduction of differential geometrical
structure in problems of parametric inference and,
further, how the geometrical approach succeeds here,
as elsewhere, adding clarification and insight as well
as techniques that can produce new results. I will
attempt this using very little differential geometry
itself, presuming no previous knowledge on the part
of the reader. As a pedagogical device, I will discuss
extremely simple special cases, indicating only briefly
the more complete treatment that may be compiled
from the references.

The first of the two ideas is to base a local measure
of distance between members of a family of dis-

tributions on what is most commonly called the »

Kullback-Leibler number or, equivalently, on Fisher
information. This led Rao (1945) and Jeffreys (1946)
. to introduce a Riemannian metric defined by Fisher
information—Rao in his paper on what is now called
the Cramér-Rao lower bound, and Jeffreys in his paper
on an invariant prior for estimation problems, which
is sometimes known as Jeffreys’ general rule. The
second idea is to connect the special role of exponen-
tial families in statistical theory with their loglinear
structure. This led Efron (1975) to quantify departures
from exponentiality by defining the curvature of
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a statistical model. As pointed out by Dawid (1975)
in his discussion of Efron’s paper, the two ideas
are related, but the appropriate foundation for
Efron’s measure of curvature actually involves non-
Riemannian differential geometry.

Rao developed his work further in several papers,
applying it in his studies of genetic diversity. (See
Rao, 1987, for references.) Here, however, I will con-
centrate on Jeffreys’ uses of the Fisher information
metric, elaborating on the geometrical basis of his
methods in greater detail than did Jeffreys himself.
Meanwhile, the description I will give of the work
initiated by Efron and developed further by others,
primarily Amari (see Amari, 1987a; and Kass, 1987)
will be oriented toward its most basic achievement: a
thorough and concise geometrical interpretation of
information loss, Fisher’s fundamental quantification
of departure from sufficiency, and information recov-
ery, his justification for conditioning. Thus, in one
sense this is a paper about Jeffreys and Fisher. On the
other hand, it is also a highly selective review of the
ideas and writing of many authors, some of whom I
have borrowed heavily from in preparing my own
presentation.

I am not intending to survey geometrical results in
asymptotic inference, though I will cite some related
references in two short bibliographical sections. Per-
haps the most egregious deficiency is that I reduce to
only a few words the line of research followed by
Barndorff-Nielsen and his colleagues (see Barndorff-
Nielsen, 1986b, 1987a). Nor will I have much to say
about geometrical methods in nonlinear regression,
though I will make some remarks about their relation-
ship with the work that concerns asymptotic inference
more broadly.

The justification I offer for a lengthy exposure to a
comparatively narrow view of the field is twofold.
First, many further geometrical investigations of
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statistical inference originate from material reviewed
here. Second, the aspects of Jeffreys’ and Fisher’s
theories under discussion relate to issues that are, in
my view, of ongoing vital importance. These are the
role of reference priors in Bayesian inference and the
use of conditioning In non-Bayesian inference. The
paper is not directly about these issues, and it in no
way resolves them. Still, the geometrical interpreta-
tions do lead to a deeper understanding of the con-
cepts, and with this there is, as I will try to indicate,
at least some sharpening of arguments through the
elimination of irrelevant diversions. By providing el-
ementary details in the discussion of a few topics, 1
hope to convey a sense of the statistical and mathe-
matical concepts involved in the geometry of asymp-
totic inference.

1.1 Outline

Section 1.2 contains preliminary material, which
should at least be skimmed since some basic notation
and terminology is introduced. Section 2 concerns the
Riemannian geometry based on Fisher information
with Section 2.1 confined to the trinomial family and
Section 2.2 covering generalizations. The generaliza-
tions are interwoven with descriptions and definitions
of Riemannian geometrical objects. Technical details
are omitted, and the intention is to provide just enough
material for interested readers to get some feeling for
the way the development proceeds. Subsequent sec-
tions do not depend on this one, so it may be skipped
by those who are mainly interested in the statistical
results. In Section 2.3 Jeffreys’ uses of geometry are
discussed. i

Section 3 is devoted to the geometry of information
loss and recovery. Sections 3.1 through 3.4 treat one-
parameter families, with an emphasis on “statistical
curvature.” Generalizations are presented in Section
3.5, with results stated in terms of scalar curvatures;
these scalar curvatures are compared with curvature
measures in nonlinear regression in Section 3.5.6. The
differential geometrical foundation is only briefly
mentioned, in Section 3.6. I close, in Section 4, with a
couple of brief comments on the role of geometry in
asymptotic inference.

1.2 Preliminaries

1.2.1 Derivative Notation and Terminology

In addition to various common notations for deriv-
atives, I will often use two conventions that may be
unfamiliar to many readers. The first is to indicate
partial derivatives by 9;; when the variables serving as
arguments are identified by the context. The second
is to use brackets rather than parentheses in identi-
fying the point at which a derivative is evaluated. In

addition, the point at which a derivative is evaluated
will often be omitted. Thus, I might use any of the
expressions in the equation

%y
i, |,

(D*Y)i; = 8¢ = 8:;¢[n] =

and likewise any of those in the equation
D,y = Dy(n) = (&:¢[n)).

The rank of a differentiable transformation ¢: R™ —
R* is the rank of its derivative Dy. To say that a
transformation is of full rank is to say it is of full rank
throughout its domain.

1.2.2 Parametric Families and Diffeomorphisms

Throughout the paper, parametric families of dis-
tributions & = {P,: 6 € 0} will be discussed. When Y;
is a random variable having distribution P,, its density
will be denoted by p(y;|6). The likelihood function
based on a sample y = (y1, ---, ¥,) will be written as
L(0) or L,(9) (boldface for y will not be used), and the
loglikelihood function will be written as [(6) or [, (0)
or, when an expectation is to be taken, as Ily(f).
Regularity conditions will be mentioned only in a few
places, but at the outset it is worth noting that for
most purposes we will want to assume the identifia-
bility condition, P, = P,-, if and only if 6 = 8" and the
open parameter space condition, @, is an open subset
of R™ (which would be better described as a Euclidean
topology condition, see Section 2.3).

We may instead specify the family in terms of an
alternative parameterization A\, writing &# = {P,:
A € A}, as long as the new parameterization again
satisfies the identifiability and open parameter space
conditions. The first requires the mapping from
® to A to be one-to-one, while the second is satis-
fied when the mapping is a homeomorphism (both it
and its inverse are continuous). In addition, we will
need to know that derivatives of functions of param-
eters are available regardless of the parameterization
used. Thus, for example, when we wish to assume that
the negative Hessian of the loglikelihood function at
its maximum is positive definite, we will not want to
stop and worry whether this assumption will hold if a
new parameterization X is substituted for an original
parameterization 6. Since D2l(X) = (D»\8)" - D?1(6) -
D, 6, the condition needed to insure this kind of invar-
iance is that the one-to-one transformation from 6 to
X and its inverse are smooth (infinitely differentiable)
and of full rank (the Jacobians D,A and D,6 are
invertible). Such a transformation is called a diffeo-
morphism.

In asymptotics, many arguments use parameters
that do not identify the full family <, but only part of
it, often in the neighborhood of some particular dis-
tribution P,. Such parameterizations are local as
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opposed to global. When we consider at once all pos-
sible parameterizations (both local and global) that
are related to each other as diffeomorphisms on their
common domains, we are structuring & as a smooth
manifold. A bit more will be said about this in Section
2.3, but an essential point is that if we wish results to
be invariant with respect to differentiable transfor-
mations of parameters, we impose smooth manifold
structure.

1.2.3 Subfamilies and Imbeddings

The restriction of the family & according to a null
hypothesis Hy: § € 0,, where 0, C 0, may be written
Py = {Py: 6 € 0,}. Here we will be interested in the
situation in which 0, is of dimension k < m, and part
of the purpose of this subsection is to say precisely
what this means. The simplest case occurs when the
parameter space for % takes the form ¥ X B and the
parameter spce for %, is {({, 8) € ¥ X B: y =y}, i.e.,
we would write Hy: Y =y, with 8 € B being a nuisance
parameter. Note only are some arguments simplified
when & is parameterized according to a product struc-
ture, but many basic results actually require the exis-
tence of such a structure, at least locally. A different
way of stating this requirement is to assume 0, is an
imbedded submanifold of ©.

Specifically, ®, must be obtainable from an open
subset B of R* by a one-to-one mapping 8 — 6(83)
such that (1) the mapping is smooth and of full rank
k and (2) writing ¢: ©, — B for the inverse mapping,
if a sequence {8, € ©,} converges to a point 6, € 0,
then the corresponding sequence {¢(6,) € B} must
converge to ¢(6,) € B.

Condition (1) is “enough to give meaning to the
statement that the dimension of 0, is k; technically,
it makes @, an immersed submanifold of ©. Condition
(2) is a continuity condition, which is needed to en-
sure, for example, consistency of maximum likelihood
estimates. In the remainder of the subsection, I will

elaborate somewhat on these remarks using two ex- .

amples, which will recur in subsequent sections.

When a null hypothetical subfamily is not given
* in product form, it is usually specified in one of
two alternative forms. The first may be written 0, =
{6 € ©: 9 = 6(8), B8 € B} while the second may be
written 0, = {# € 0: Y (0) = ¥,}. Both are frequently
used, the first being found most commonly in
goodness-of-fit and curved exponential family ap-
plications. Each may be illustrated using subfamilies
of the trinomial family % = {Pgy4,: 0 < 6, < 1,
o< 02 < 1, 0<1- 01 - 02 < 1}, where P(gl,gz) is the
Trinomial (n; 6., 6,) distribution: if y = (y1, ¥2, ¥3)
satisfies y; + ¥. + ys = n, we have p(y| 6, 6;) =
(n!/yl!yz!ysl)ei'legz(l - 01 - 02)”.

Example. Hardy-Weinberg model. The Binomial
(2; B) subfamily of the Trinomial (n; 6,, 6,) defined

by
0:(8) = B> 6:(8) = 28(1 — B),

so that 8;(8) =1 — 6,(8) — 6.(8) = (1 — B)?, is called
the Hardy—Weinberg model. It furnishes an example
of the first kind of specification of a subfamily, without
product structure, mentioned above. The “null hy-
pothesis” here is that the Hardy—Weinberg model
holds, 8, = {§ € ©: 6 = 6(8), B8 € (0, 1)}.

Example. Symmetry model. The subfamily of the
Trinomial (n; 6,, 6,) defined by 6, = 6; with §; =1 —
0; — 6, will be called the symmetry model. Here we
may consider the conditional probability that an ob-
servation falls in the first category, given that it is in
either the first or the third, ¢ (6) = 6,/(1 — 6,). The
null hypothetical submodel is then specified by @, =
{0 €0:y(0) =}

In each of these examples, there are many apparent
ways of defining the additional parameter, ¢ in the
first case, 8 in the second, so that the Trinomial space
will be filled out. For instance, in the Hardy-Weinberg
model we could define () = 6,/(201%(1 — 1/?)), and
in the symmetry model we could define 8(6) = 6. In
each example, we could then begin an analysis with
the (¥, 8) parameterization and a null hypothetical
specification Hy: ¢ = ¥, (Yo = 1 corresponding to the
Hardy-Weinberg model).

Asymptotic theory of subfamilies often relies on
the existence of a local reparameterization, in
product form, in some neighborhood of each point
6, in the null hypothetical space 0,. Writing 2V =
{P, € 2. 6 € U}, the condition may be stated formally
as follows:

For each 6, € 0, there exists an open neighbor-
hood U C 0 and a parameterization (¢, 8) of 2,
meaning 2V = {P, 4: (¥, 8) € ¥ X B}, such that
b0 € Uand 2 = {Py: (¥, B) E ¥ X B, ¥ = yo}.

Using the inverse function theorem, this condition
may be shown to be equivalent to the imbedded sub-
manifold assumption. Thus the imbedded submanifold
assumption amounts to an assertion that, for local
(asymptotic) results, “without loss of generality” the
null hypothesis may be written Hy: ¢ = ¢, for some

W, B).
1.2.4 Arclength and Curvature of Curves

The simplest definition of the curvature of a
curve is in terms of the arclength parameterization.
If c: I - R* is a twice differentiable curve with
nonzero derivative (where I is an interval), it may
be parameterized by arclength s, for which

(1.1) [Dscll =1

and then its curvature at s* is k = x,» = | DZc[s*]].
One way to motivate this definition of curvature is to
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assume the curve is twice continuously differentiable
and then show that the circle that best “fits” the curve
at ¢(s*) (the “osculating circle”) has radius « *; since
the inverse of the radius is an obvious measure of the
curvature of a circle, the inverse of the “instantaneous
radius” of the curve, i.e., the inverse of the radius of
the best-fitting circle, is an intuitive general measure.

The arclength parameterization is useful for some
purposes, but not others. An alternative expression,
in terms of an arbitrary parameter, is obtained by
decomposing the second derivative vector D’c into
a component (ch)T tangent to the curve, i.e., in
the direction of D,c, and the residual normal compo-
nent (ch)N = ch - (ch)T. We have the curvature
formula

(1.2) ID2c|l = |(Dfe)nll - | Decll ™

which will be used in Section 3.

1.2.5 Exponential Families

In this section, I set up notation while reviewing a
few relevant properties of exponential families. De-
tailed treatments may be found in Barndorff-Nielsen
(1978) and Brown (1986). Let & be a canonical or
natural exponential family of order k, having densities
of the form

p(y|n) = exply™n — ¥(n)]h(y)

with respect to a dominating measure v. The elements
of @ will be denoted by @,. The natural parameter
space will be denoted by N, i.e.,

N= {n € R*: f exp[y“nlh(y) dv(y) < °°}-

If for each 5 in N there exists @, in &, then & is said
to be full; if, in addition, N is open as a subset of R*,
then & is said to be regular.

In a regular exponential family, N is a convex subset
of R*, ¥ is a strictly convex analytic function on N,
the moments of Y of all orders exist and the mean
and variance are given by

E,(Y) = Dy[n],
V,(Y) = D*y[n]

with D?y[n] being positive definite. Let p = u(n) =
E,(Y), so that u may be considered a mapping of N
into R*. In a regular exponential family, the mapping
u: N —> R* is one-to-one and smooth (infinitely dif-
ferentiable). Since Dy = D?y is positive definite, it
then follows by the Inverse Function Theorem that
the inverse mapping is also smooth, and u(-) is a

diffeomorphism of N onto its image. The image space
w(N), which is the mean-value parameter space, will
be denoted by M. Exponential families discussed
throughout the paper will be assumed to be regular.
The basic result needed for asymptotics is the fol-
lowing. Suppose Y3, - - -, Y, are iid observations from
an element Q, of ©. With probability one, for suffi-
ciently large n there exists a unique MLE 7, which
may be found as the unique root of the likelihood
equations; in addition, 7 is strongly consistent and

[ni () ]2(7 — 1) = NW(0, I)

where i(5)'/? is the positive definite square-root of the
information matrix i(n) = D*Y[n].

2. INFORMATION-METRIC RIEMANNIAN
GEOMETRY

How far apart are two members of a parametric
family of probability distributions? From the point of
view of asymptotics, it would make sense to measure
distance using asymptotic standard deviation units of
the best estimators (or posterior distributions) of the
parameter. In the one-dimensional case, the asymp-
totic standard deviation is [ni(0)]*/? so that some-
thing like [ (8)]/* times the magnitude of the deviation
of the two parameter values would seem appropriate.
I say “something like” because it is not clear what
value of 0 should be used in [i()(6; — 6)?]*/% One
could fix an arbitrary 6, and measure all distances
relative to i(f,), but the resulting numbers would
depend on both the parameterization and the value 6,
that were chosen. An alternative is to integrate the
infinitesimal version of this quantity, i.e., to use

(2.1) d(8y, 6,) = f2 i(0)* do

0,

as a distance measure. This is the information distance.

Jeffreys observed that the Kullback-Leibler number
generates the information distance via the information
metric (in the terminology used here), and this led to
his general rule for determining priors, which is to
take the prior density to be proportional to the square
root of the determinant of the information matrix.
Jeffreys also revealed his geometrical viewpoint in his
treatment of odds factors for hypothesis tests based
on “orthogonal” parameters, an orthogonal parame-
terization being one in which the information matrix
is diagonal. I will return to Jeffreys’ methods after
first discussing the geometry of the information met-
ric. The main example I will treat will be the multi-
nomial, because no abstract geometrical notions are
needed in that case.
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2.1 Spherical Multinomial Geometry

In this section, I illustrate many aspects of infor-
mation-metric geometry with a spherical representa-
tion of the trinomial family.

2.1.1 Spherical Representation

Let @ be the trinomial family with n = 1 and let @,
be a one-dimensional imbedded subfamily (see Section
" 1.2.3). Since @ is an exponential family, it may be
represented in terms of the mean value and natural
parameter spaces, but a common alternative is to use
the simplex {(p1, p2, P3):P1+ P2+ ps=1,p;>0;i =
1, 2, 3} in R®. Instead of the simplex, consider the
positive-orthant portion of the sphere of radius 2,
defined by

(2.2) z=2vp, i=1,238,

so that the simplex relation becomes 2% + 25 + 25 = 4
with 2, >0, i = 1, 2, 3. The subfamily &, may then be
represented as a curve

z(8) = (21(8), 2:(8), 2:(B)),

on the sphere. The reason for doing this comes from
the following calculation.

The tangent vector to the curve z is Dsz = (Dgz,
Dg2z,, Dg2zs). Its squared length is

B € B,

(Dgz, DﬁZ) = (Dﬁzi)z

1

Tpg e

3 (Dy(2p.)y”

3
2:3) 3 p(®) Dp.)

3
= X pi(B)(Dylog pi)?

=i(8).

, Thus, the length of the tangent vector to the curve z
is

(2.4) I Dsz || = i(8)"

Combining (2.1) and (2.4), the information distance
between two elements @ and Q* of @, is the length of
the curve z between z(8) and z(3*),

o*
(2.5) d(Q, Q%) =J; I Dsz |l - dB.

Note that the length of the curve z between z(83)
and z(3*) does not depend on the parameterization of
the curve, and thus the information distance also does

not depend on the parameterization of the model in
(2.1). In addition, it is immediate from (1.1) and (2.4)
that arclength is a variance-stabilizing parameteriza-
tion, i.e., a parameterization in which i (8) is constant.

Expression (2.4) may be extended to an interpreta-
tion of Fisher information for the full trinomial family.
Suppose 0 is a parameterization for & (i.e., the map-
ping from the (p:, p.) parameter space to O is a
diffeomorphism, see Section 1.2.2), so that © is in R?
and z becomes a function of § = (;, 6;). Then, working
backwards in (2.3), and considering p; as a function
of 6,

3

1(0)r pi(0)(8;log p;)(dxlog p;)

=

(2.6) > (9;2:)(9r2z:)

i=1

= (ajz9 akz>

where 9,z = 9, z, etc., and j and k are either 1 or 2.
That is, the (j, k)-component of Fisher information
is the inner product of the jth and kth coordinate
tangent vectors on the surface of the sphere defined
by (2.2).

To define the information distance between two
multinomial distributions @ and Q*, let ¢ and ¢* be
the points on the sphere that correspond to € and Q*
according to (2.2) and consider all possible curves
connecting q and g*. Each curve represents a one-
parameter subfamily &, within which the information
distance between @ and @* may be defined, using
(2.5). Let d.(Q, @*) denote the information distance
between @ and Q* as members of the one-parameter
family represented by the curve c¢. Then the informa-
tion distance between @ and @* as members of the
full trinomial family & is

(2.7) d(@, @*) = min d.(Q, Q%)

where the minimum is taken over all curves ¢ con-
necting the points g and g*. The curve that achieves
this minimum is an arc of the great circle through ¢
and ¢*, and is called a geodesic.

Since the information distance between @ and Q*
in a haVing Values Of (pla D2, P3) and (p;k’ p;’ p;)9
respectively, is the length of the great circle connecting
the corresponding z and z* vectors defined by (2.2), it
is equal to the angle between z and z* multiplied by 2
(the radius of the sphere and, therefore, also the
circle). The dot product of the unit vectors z/2 and
z*/2 is the cosine of the desired angle and, therefore,
the information distance is

(28  d(@ @) =2 - arccos 3 (pip! )"

i=1
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2.1.2 Information Distance, Hellinger Distance and
Kullback-Leibler Number

Information distance is a simple transformation of
Hellinger distance, here denoted by dy:

3 1/2
du(Q, Q%) = (z (pi"” — p;*‘/z)2>

= (A)|z — z*|
=2 . sin(d(Q, @*)/4).
It may be noted, in addition, that
(29) du(Q Q%) = (%)d(Q, Q%) + 0(d(Q, Q*)°)

as @* — @, so that for small distances the two distance
functions are essentially the same (other than the
factor %2).

There is also a close relationship between informa-
tion distance and the Kullback-Leibler number, or
information divergence, defined by

K(@Q @) = % pilog(p/p]).
As Q* — @ there is,
~log(p}/p:) = —log(1 + (p} —p:)/p:)
=—(p})/pi— (o) (p} —p))*/p?
+0((p} —p:)*)
so that
K(Q, Q%)
(2.10) 3 N 3
=04 % (p} — p)*/pi + O(E1 | p} —pil3)-

Now as @* approaches @, it does so along some path.
Parameterize this path by arclength (of the corre-
sponding path of z* as it approaches z on the sphere).
As one consequence, from (1.1) and (2.3),

(2.11) Y pi(s)(D,log p;)* =
where s is arclength. As another, s* — s = d(Q, @*)
for z = z(s) and z* = z(s*). Thus,
(pds*) — pils))?

= (D.pi(s* = 5))* + O(| s* — s|?)
and combining (2.10)-(2.12),
(2.13) K(Q, Q%) = (%)d(Q, Q*)* + 0(d(Q, Q*)%).

Equation (2.13) makes precise the idea that the
Kullback-Leibler number behaves locally like the
square of a distance function (which was the starting
point for Jeffreys). Notice, too, that (2.10) provides
the well-known relationship between the Kullback-
Leibler number and the chi-squared discrepancy mea-

(2.12)

sure. From (2.13) we also obtain approximate equality
of information distance and chi-squared discrepancy.
These identities will lead to a geometrical derivation
of familiar asymptotic chi-squared distributional re-
sults in Section 2.1.5.

2.1.3 Jeffreys’ Prior

A different use for the spherical representation is
in picturing Jeffreys’ prior = () o« det(i(8))2. To
calculate this determinant for the multinomial, let us
introduce spherical polar coordinates (6, ¢) defined by

6 = arccos(6/?),
¢ = arcsin(y/?),
where
0 = ps,
Y = P2/ (p1 + P2).
See Figure 1. The trinomial likelihood becomes
L5, v) = v72(1 — v)76'™722(1 — §)7™
and the information matrix determinant is
det(i(3, v)) = |8y — v)| 7"
Changing to (6, ¢) parameters then yields
det(i (6, ¢))/*dod¢
= det(i (5, v))**dddy
_ 4 cos(#)sin(8)cos(¢)sin(¢)dbd ¢
cos(6)sin(¢)cos(¢)
= 4 sin(0)d6d ¢,

which is the element of surface area on the sphere of
radius 2. That is, (2.14) shows that Jeffreys’ prior is
uniform on this sphere.

(2.14)

2.1.4 Orthogonal Parameters

- Let (6o, ¢o) be the spherical polar coordinates of the
point g, on the sphere (2.2), as shown in Figure 1.
The vectors tangent to the coordinate curves ¢ = ¢,
and 6 = 0, are denoted by 4/d0 = /30|, , and
3/d¢ = 3/3¢ | 4,4, respectively, and are also shown
in Figure 1. The coordinates 6 and ¢ are orthogonal
in the sense that /06 and 8/d¢ are perpendicular.
Since 6 and v are obtained by separate transformation
of 6 and ¢, they too are orthogonal. By (2.6), a param-
eter pair is orthogonal whenever the information ma-
trix in terms of that pair is diagonal.

2.1.5 Imbedded Subfamilies and Asymptotically
Chi-squared Statistics

Suppose @, is a one-parameter imbedded subfamily
of the trinomial family & (as in the examples
of Section 1.2.3). To say that @, is an imbedded
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23
§ (when normalized)
Z*/ (when normalized)
21
FiG. 1. The transformation from (p,, p2, ps)-space to (21, 2, 23)-space, with polar coordinates 8 = arccos(p¥'?), ¢ = arcsin((pz/(p2 + p2))*?).

The vectors 3/060 and 3/d¢ are tangent to the coordinate curves defined by the polar coordinates (0, ¢).

subfamily of a multinomial family is just a simple way
of saying that it satisfies Birch’s conditions (Birch,
1964; Bishop, Fienberg and Holland, 1975, page 510).
In this section, I give a geometrical interpretation of
distribution theory based on the imbedded subfamily
assumption.

Let .# denote the positive-orthant portion of the
sphere (2.2), let .#, denote the subspace of .# corre-
sponding to &,, and let §, be the point in .# corre-
sponding to the MLE Q = Q. in @, based on a sample
of size n. If we define the Kullback-Leibler minimum

K@, @,) = min K@, Q)
Qea,

(assuming the minimum exists), the likelihood ratio

test statistic for testing &, against @ is 2n - K @, @,). _

If we likewise define
d(Q, @) = min d(Q, Q)
QEg,

where d(Q, Q*) is the information distance of (2.7)
and (2.8), then it follows from (2.13) that

(2.15) 2n - K@, @) = n - d(Q, @)? + 0,(1).

Equation (2.15) provides a geometrical understand-
ing of the asymptotic chi-squared distribution of the
likelihood ratio test (and, using (2.10), Pearson’s chi-
squared statistic, as well). In the theory of linear
models, the squared length of the residual from an
orthogonal projection of a spherical Normal variable
onto a linear subspace has a chi-squared distribution.
Here, letting g, in .# be the point corresponding to
the true distribution @, in &,, we may use the tangent

plane V at g, to linearly approximate the sphere .7,
and a line V, in that plane to approximate .#, (see
Figure 2). When g, is mapped to the tangent plane
(by a mapping described below) its image Y, is asymp-
totically spherically Normal, and

(2.16) n - | = Py)Y. |2 x2

where Py, is the orthogonal projection onto V;, and
is the identity. But

o 1
(217) d@, @)’ = I — Py,)Y,|I* + op<;)
which, together with (2.16), implies that n - d(Q, @,)?

23

22

21

Fi1G. 2. The subspace V, of the tangent plane V at qo. Y, is the
image of §, under the mapping F defined by (2.18).
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is asymptotically chi-squared and, therefore, by (2.15),
sois 2n - K(Q, @,).

Some details. 1 now fill in a few of the details
leading to (2.16) and (2.17). For simplicity, assume &,
is the symmetry model. Each point ¢ on .# may be
connected to ¢, by an arc of a great circle, which has
a unit tangent vector 0 at ¢, in the direction of q.
Thus, ¢ may be identified with a vector v = d(qo, q) -
U in the tangent space V to .# at q,. This identification
defines a mapping F: .# — V according to

(2.18) F(q) =d(qgo, q) - 0

Now let {v;, vy} be an orthonormal basis for V. The
pair (0, 6,) defined by

(2.19) F(q) = 011)1 + 0202

is a parameterization of £ and the coordinate tangent
vectors are v; and v,. Since v; and v, are orthonormal,
it follows from (2.6) that the parameterization defined
by (2.19) has the identity as its information matrix,
and, therefore, the limiting Normal distribution of its
MLE, based on repeated sampling, is spherical.

Now, when &, is the symmetry model, the image V,
of A, under F becomes a linear subspace of V. Letting

= 6, be the MLE for the parameterization of (2.19),
(2 16) follows immediately. Once it is shown that

(2.20) |1 = Py)vl* = d(q, @)* + o(d(qo, 9)°*)

as d(qo, q) — 0 where v = d(qo, q) - 0, (2.17) will
follow. Equation (2.20) may be derived using

| F(g*) — F(q)ll
d(q*, q)

as (¢*, q) — (qo, @o). This is a very general result, but
here it follows from (2.8) (e.g., using (2.9)).

Although the symmetry model is rather special, the
argument will go through with minor modifications
for any imbedded subfamily (Kass, 1980). Of course,
in the general setting in which &, is an imbedded
subfamily of a multinomial family &, the degrees of
freedom are dim(&Z) — dim(&,).

The condition that &, be an imbedded subfamily of
& is important. In the definition given in Section 1.2.3,
it was noted that without the continuity condition (2)
@, becomes an immersed but not imbedded subfamily.
In this case, the MLE may be inconsistent and the
various asymptotically equivalent goodness-of-fit sta-
tistics no longer have limiting chi-squared distribu-
tions for all elements of the null hypothetical family
@,. It is easy to construct families that exhibit MLE
inconsistency using the asymptotic spherical Normal-
ity of Y, = @, for the parameterization (2.19); we may
take any smooth rank-one curve in R? that doubles
back on itself at the origin as in Figure 3, and then
consider (6;, 6;) to be the coordinates (possibly after
shrinking the curve toward the origin so that it will

lim =1

)

/ 9]

F1G. 3. A smooth curve that doubles back on itself at the origin:
0,(2), 0:(t) = (sin(t) - (cos(t) + 1), sign(t) - sin*(t)) for t in
(—n/2, ), with the arrow indicating that the curve approaches the
origin as t approaches .

fit within ® C R?%) and use F~! (according to (2.18),
with go being arbitrary) to define &,. Figure 3 then
becomes a picture of the tangent space at go, with
6, being asymptotically spherically normal. For
any 0, within the dotted lines, §, will lie on the “tail”
portion of &,, and not near B,. This occurs with
positive probability for all n, so that 3, will not con-
verge in probability to 8y. (The topological nature of
consistency of the MLE is quite general, e.g., Bahadur,
1971, Section 9.) Similarly, the limiting distribution
of n - d(Q, @,)? will be based on the squared length of
a projection onto a space consisting of the union of a
ray through the origin and a line through the origin,
rather than the line alone.

2.1.6 Inference Regions Based on Information
Distance

The information distance can also be used to define
an inference region as the set of all points in & within
a distance 6 of the maximum likelihood point . By

" inverting the test of H,: @ = @, based on the criterion

n - d(Q, Q)? and using the asymptotic chi-squared
distributionof n - d (Q, Qo)?, on two degrees of freedom
(which follows from the argument in Section 2.1.5),
we find the asymptotic coverage probability of such
a region to be 1 — o when § is chosen to satisfy
P{x3 > 6%} = a. It is also an approximate highest
posterior density region on the sphere (2.2), and its
boundary becomes an approximate likelihood contour
when the likelihood is defined on that sphere. Equa-
tions defining this region in terms of p;, ps, and p; are
easily derived.

2.2 Parametric Families as Riemannian Manifolds

Most of the geometrical relationships in Section 2.2
hold for arbitrary regular parametric families. In this
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section, I will briefly indicate the generalizations by
describing some of the basic elements of Riemannian
geometry, while showing how families of densities are
given the structure of Riemannian manifolds. Those
seeking to learn the mathematics may consult Spivak
(1979), volumes I and II. Another recommended ex-
position is Stoker (1969), which is written in the
classical, i.e., nonabstract, spirit and devotes most of
its attention to the differential geometry of surfaces
in three-dimensional Euclidean space. Boothby (1975)
gives a very straightforward treatment of the relevant
material, while Kobayashi and Nomizu (1969) go
somewhat deeper (as do the subsequent volumes by
Spivak).

For emphasis, I first summarize the most important
aspects of the description I am about to give. A smooth
manifold may be intuited as an abstract surface on
which functions are defined, with calculations made
in terms of some coordinate system on the manifold.
It is important, however, in geometry and also in
geometrical developments in statistics, that the choice
of coordinates plays no essential role in the theory. In
statistics, parametric families of densities become
manifolds and parameterizations become coordinate
systems. A Riemannian metric is a collection of inner
products, one defined at each point of a manifold on
the tangent space to the manifold at that point. The
information metric is the collection of inner products
defined by the Fisher information matrix, which may
vary continuously from point to point. A Riemannian
manifold is a manifold on which a Riemannian metric
is defined.

The term “surface” usually refers to a smooth m-
dimensional subspace of R", described by n-m equa-
tions in the coordinate variables x;, xo, ---, x,. We
may imagine the surface sitting within the surround-
ing or “ambient” space R", just as a two-dimensional
surface sits within R3. The space R™ and the coordi-
nates x;, Xs, - -+, X, are not part of the surface itself,
but are external to it, and properties that are charac-
terized in terms of the ambient space and its coordi-
nates are called extrinsic. Modern differential
geometry, since Gauss and Riemann, has emphasized
instead the intrinsic properties of surfaces, which do
not depend on extrinsic coordinate expressions. In
studying surfaces as spaces on which functions are
defined and analyzed directly, without reference to the
ambient space, a first step is to introduce coordinate
systems of the proper dimension. For instance, the
two-dimensional unit sphere S? centered at the origin
of R? has a positive portion S% that lies in the interior
of the first octant; this surface may be identified using
any of the coordinate pairs (x, v), (x, 2), (¥, 2), (0, ¢)
(spherical), or (r, ¢) (cylindrical) (Figure 4).

A coordinate mapping is a homeomorphism (a con-
tinuous, one-to-one mapping with a continuous in-
verse) of an open subset of the surface onto an open

st
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FI1G. 4. The first-octant portion of the unit sphere, and its tangent
spaces at points q and q*. Labels identifying alternative coordinate
systems (x, y), (8, ¢), and (r, ¢) are shown; u, and v, are tangent
vectors at g, with u, being tangent to the great circle connecting q*
and q.

subset of R™, for some m. The mapping (6, ¢) maps
all of S2 onto (0, /2) X (0, 7/2). The term “coordinate
system” refers to the pair comprised of a coordinate
mapping and its domain. When the domain is the
entire surface, the coordinate system is called global.
The sphere S? is compact and the homeomorphic
image of a compact set is compact. Therefore, there
does not exist a global coordinate system on SZ%. The
coordinate mapping (6, ¢) is global on S% but must be
defined locally on SZ2. Note that the mapping (x, v, z)
which gives SZ its familiar algebraic characterization,
x%2+ y% + 22 =1, is not a coordinate mapping because
its image is not an open subset of R>. The surface S3
is intrinsically two-dimensional; this is expressed by
the openness in R? of the image spaces of the various
coordinate mappings, (x, y), (0, ¢), etc. For a property
to be intrinsic it must be expressible indifferently with
respect to the choice among the infinitely many pos-
sible coordinate systems. This consideration leads to
the construction of manifolds and their substitution
for surfaces as the main object of study.

The basic requirement of a topological manifold is
that each of its points must have a neighborhood that
is homeomorphic to R™, for a fixed m which becomes
the dimension of the manifold. In order to exclude
pathologies, topological manifolds are also required to
be second-countable Hausdorff spaces. Differentiation
is carried out in terms of coordinates, and coordinate
systems could be introduced on topological manifolds,
but without additional structure the definition of dif-
ferentiability could depend on the coordinate system
used to define it. To secure irrelevance of the choice
of coordinate systems, ¢ and ¢ are said to be compat-
ible if both ¢ e ' and ¢ © ¢~ are smooth (infinitely
differentiable) on their respective domains, which
are open subsets of R™ (or are empty if the domains
of ¢ and ¥ do not overlap). That is, ¢ and y are com-
patible if the transformation from ¢-coordinates
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to y-coordinates is a diffeomorphism (see also Sec-
tion 1.2.2). A collection of compatible coordinate sys-
tems that cover a topological manifold is called a
smooth structure (or an atlas) on the manifold.
When all possible compatible coordinate systems are
included, the collection is called a maximal smooth
structure (a maximal atlas). Finally, a topological
manifold together with a maximal smooth structure
is a smooth manifold. (Terminology varies; for in-
stance, smooth manifolds are not always required to
be second-countable).

Since asymptotic statistical theory is predominantly
local (e.g., concerning results that hold in a neighbor-
hood of a true value of a parameter), the distinction
between local and global parameterizations is rarely
of interest. On the other hand, it is very important to
be able to change parameters without affecting regu-
larity conditions that involve differentiability. Thus,
rather than making inferences on a particular param-
eter space, one might consider at once all possible
compatible local parameterizations. This is precisely
what is done when a family of densities is structured as
a smooth manifold. (In fact, in one construction of a
manifold, each point in the abstract space is the
equivalence class of coordinate system image values—
in statistics, each point would be the equivalence class
of corresponding parameter values for all possible
compatible local parameterizations.)

The manifold of densities. As already done implic-
itly in Section 1.2.2, let us assume that the family of
distributions % may be considered, instead, a family
of densities. Let us also suppose that the family of
densities has the structure of an m-dimensional
smooth manifold, and relabel it €. In most cases, the
manifold structure of @ would be defined in terms of
a global parameterization, which would induce a
“usual” Euclidean topology. (Note, however, that lo-
cation families on spheres do not have global param-
eterizations.) Beginning with any familiar family %,
it would be possible to introduce some strange topol-
ogy for &, but when common parameterizations be-
come coordinate systems for &, the topology of &
becomes the weak topology.

Letting g denote a generic element of @, the likeli-
hood function may be defined on & according to

L,: @ —> R,
Ly(Q) =q(y).

Similarly, the loglikelihood function may be defined
directly on &, with no reference to a particular param-
eterization. A maximum likelihood estimate, if one
exists, may also be considered a point ¢ in & defined
by

Ly(é) = max L,(q).
qE@

The purpose of mentioning these definitions is to
emphasize the possibility of introducing geometrical
structure in a “coordinate-free” or parameterization-
invariant manner.

Subfamilies as submanifolds. In Section 1.2.3, the
imbedded submanifold assumption on null hypothet-
ical subfamilies was discussed. There it was described
in terms of a parameter space 0, but we may avoid
working with a particular parameter space simply by
requiring the subfamily to form an imbedded subman-
ifold @, of @. Although I have not specifically said
how imbedded submanifolds are defined in general,
the local product structure mentioned at the end of
Section 1.2.3 continues to be a characterization in
abstract settings.

The next construct is tangent vector. Tangent vec-
tors may be described in several ways. The tangent
vectors at a given point on a smooth manifold form
the tangent space to the manifold at that point. In the
case of a two-dimensional surface, such as S%, im-
bedded in R? it is easy to “see” the tangent spaces
(two are sketched in Figure 4): they are planes—
importantly, two-dimensional vector spaces—tangent
to the surface at some point. It is irrelevant, and even
meaningless in the abstract constructions in which R?
plays no role, that points in R® away from the surface
may lie on more than one tangent plane. The primary
concept is abstract but simple: at each point there is
defined a vector space of the same dimension as the
manifold. On R™, each tangent space is canonically
identified with R™ itself: the tangent space at ¢ € R™
may be pictured as the space of vectors whose tails
are anchored at g; we are able to characterize vectors
in R™ in terms of their direction and length, ignoring
their location, only because R™ is flat.

Intuitively, tangent vectors are tangent to curves on
the manifold. This intuition is fully justified when the
manifold is imbedded in R", for in that case the curves
on the manifold are also curves in R™ to which the
tangent vectors are tangent. One intrinsic formulation
defines tangent vectors at a point g as equivalence
classes of curves through g, the curves being equivalent
if they have the same directional derivatives in their
coordinate expressions. The simplest definition of tan-
gent vectors characterizes them according to the for-
mal properties of directional derivative operators.
Thus, a tangent vector at g is a linear operator v, on
the space of real functions that are smooth at g such
that v, satisfies the Leibniz rule: if f and g are smooth
atq’ then Uq(f ° g) =f ° Uq(g) +g ° Uq(f)-

Tangent vectors are often written in the notation
used above, e.g., v, is a tangent vector at g, but then
coordinate representations are also needed. A coordi-
nate mapping, x, defined on an open set U C & with
x: U — R™, may be written in component form: x =
(x', x*, -+ x™). (Superscripts are standard; subscripts
are reserved for other related objects.) Then, the
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tangent space at a point ¢ € U is spanned by the
vectors that are tangent to the coordinate curves, the
ith coordinate curve satisfying x/ = constant for all j
# i. The ith x-coordinate basis tangent vector at the
point q is written 3/dx’ | ,. (See Figure 2.) The depend-
ence on the point at which the tangent vector lies is
often eliminated from the notation, leaving 3/dx". This
tangent vector is the directional derivative operator
that takes the directional derivative along the ith
coordinate curve; thus the partial derivative notation.
When the coordinate system is specified by the con-
text, the notation 9; = 9/dx’ is often used.

Vector fields on smooth manifolds are analogous to
those on R™; they are collections of tangent vectors
v,, one at each point ¢. A vector field X, made up of
tangent vectors X, is smooth if the mapping ¢ —
X, (f) is smooth whenever f is a smooth real function.
In terms of a coordinate basis {d;} the vector field X
has components a;, ie., X, = = a;(q) - 3/dx'|,, and
for smooth vector fields these components are smooth
functions. The space of smooth vector fields on & is
denoted by Z(2).

Now, if an inner product is defined on each tangent
space, there being no necessary relationship among
the inner products (although some smoothness is usu-
ally assumed), then the collection of these inner prod-
ucts is a Riemannian metric; it is denoted here by
() =1{(,)q| q € @}, where (,), is an inner product on
the tangent space at q. Together with (,), & then
becomes a Riemannian manifold. The usual notation
for the coordinate expression of a Riemannian metric
is g;j = (0;, 6 ).

On R™, the usual Euclidean metric assigns to each
tangent space the Euclidean inner product. On sur-
faces in R™, there is a usual metric “inherited” from
the Euclidean metric on the ambient R™. For instance,
the usual metric on S2 is inherited from the Euclidean
metric on R®. In Figure 4, the vectors u, and v, in the
tangent plane at ¢ may be considered vectors in R®

(that is, in the tangent space to R® at ¢, but, as noted

earlier, the various relocations of R™ are not usually
distinguished). As such they have a usual inner prod-
uct, and their inner product as elements of the tangent
space may be defined to be equal to this extrinsic,
usual inner product.

More generally, but omitting details, smoothness
and rank of mappings from one manifold to another
are easily defined using arbitrary coordinate systems.
From this, if @, is an imbedded submanifold of £, and
@ has a metric (,), then the inherited metric on &,
may be defined. In addition, the Riemannian metric
structure-preserving mappings may be defined; these
are called isometries, and when there is an isometry
between two manifolds they are called isometric. The
intrinsic geometries of isometric manifolds are iden-
tical. In terms of coordinate components, a diffeo-

morphism ¢ from one Riemannian manifold € to
another @@ is an isometry when there exist coordinate
systems such that g (¢(q)) = g;;(q), i.e., the mat-
rices representing the metrics have the same form.
These remarks will be used in deriving the spherical
multinomial geometry from a Euclidean Poisson
geometry later in this subsection; there, the mat-
rices representing metrics will be Fisher information
matrices.

The information metric. The information metric is
easily defined in terms of any parameterization 6
according to

(0, 8;) =1(8)y;

where i(); is the (i, j)-component of the Fisher
information matrix i(6);; = E4(d;lvd;ly). This serves
as a definition as long as E,(d;lyd;ly) is finite for all 4
and the matrix i(#) is positive definite and continuous
in 6. A coordinate-free definition may be written

Gy Z2(@) X (@) - R,
(Xq, Zg)q = Eq(X,(1¥)Z,(ly))

under the analogous assumptions stated in terms of
general tangent vector fields X and Z, that is, positive
definiteness of the bilinear mappings (,), and conti-
nuity of the mapping ¢ — (X,, Z;),- More than
continuity is required for many purposes, geometrical
as well as statistical. Thus, it is convenient to assume
that the information metric is smooth. Standard con-
ditions for asymptotic theory of maximum likelihood,
Cramer’s conditions or some variant (Lehmann, 1983)
also may be easily formulated directly in terms of the
manifold of densities, in a coordinate-free manner.
An important property of the information metric is
its consistency under inheritance on a submanifold.
That is, if @, is an imbedded submanifold of a manifold
of densities & on which the information metric is
defined, then the information metric may also be
defined on &, and it is equal to the metric inherited
on &, from the information metric on &. An illustra-
tive application of this property is given next.
Multinomial geometry, via Poisson geometry. In
Section 2.2, the sphere (2.2) was shown to represent
the Fisher information metric geometry of the trino-
mial family according to (2.3) and (2.6). Here an
alternative derivation of the spherical representation
is given. Consider the manifold & of the joint densities
of m + 1 independent Poisson random variables Y;
with Poisson parameters \;>0,i=1, ---,m + 1. If
interest centers on the relative magnitudes of the A,

A
TN AF At o A A

q;

then we may reparameterize using (qi, -+, gm, 8),
where 8 = X 4! \;, and, in the terminology of Cox
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and Hinkley (1974, page 35), the sufficient MLE
(G, ---, Gm, B) may be decomposed into the con-
ditionally sufficient component (§,, ---, §.) and
the ancillary component 8§ = Y2Z%' A. Inference
about (g, ---, ¢») may proceed by conditioning on
n=Yrily =Y A to yield a joint multinomial
distribution. Writing

> qi<1;q,->0,i=1,---,m}>

i=1

ymE{(qu gz, - - 'qu)

and ¢,,.. =1 — X2, q;, let @,,(n) denote the mani-
fold of Multinomial(n; q,, ---, g.) densities, with
(q1, @2, -+, gm) € ™. Returning now to the full
(m + 1)-dimensional Poisson family, let &, be the
subspace defined by

m+1

2 Ai = n}.

=1

-, @m)-coordinates @, may be written

Gy = e N —
0 i=1 yi!

USing (qu qa, -

m+1 nyi)
Go=7\e™ s
0 {< iI=11 ¥i!

-q?q¥-~qﬁqﬁﬁuqh-~,mJEéV{}

Although the sample spaces of @, and &, (n) are
different, the information matrices in (q, ¢,,)-coor-
dinates are identical, so the two spaces, with the
information metrics, are isometric. That is, the infor-
mation-metric geometries of @, and &, (n) are the
same. Meanwhile, from the inheritance property of
the information metric, the information geometry of
@, is the geometry it inherits from the information
geometry of @. The latter geometry is Euclidean:
the coordinates defined by the Poisson “variance-
stabilizing” transformation

EiE‘/ZXi

are Euclidean, since the information matrix becomes
the identity. But in these coordinates &, is the set
Elz+£§+ +£72n+1=4n7£l>0,l=17 7m+1
Therefore, @, is isometric to the positive-orthant por-
tion of the m-dimensional sphere of radius R = Vin.
Thus, the information metric geometry of @,,(n) is
that of the positive-orthant portion of the m-dimen-
sional sphere of radius R = Van (which is described
by (2.2) where n =1 and m = 2).

There is a connection between the uses of “metric”
in “Riemannian metric” and “topological metric
space.” At each point of a parameterized curve on a
manifold there is a tangent vector, “tangent to the
curve,” in the tangent space. A Riemannian metric
gives this tangent vector a length and when length is
integrated along the curve the result is called the
arclength of the curve. Given any two points on a

i=1--,m+1,

connected manifold, the arclength of the shortest
curve connecting them defines a distance between
them. With this distance, the manifold becomes a
metric space and, it turns out, the metric space topol-
ogy coincides with its original topology. Meanwhile,
the shortest curve connecting two points, when
parameterized by arclength, is called a geodesic.

The information distance. The information distance
is the distance function determined by the information
metric. An explicit expression for it was given in the
multinomial case in Section 2.1.1. The squared infor-
mation distance d(§, &,)? of an MLE ¢ in a manifold
of densities & away from a null hypothetical imbedded
subfamily £, becomes a general goodness-of-fit statis-
tic; its asymptotic chi-square distribution may be
derived essentially according to the argument of Sec-
tion 2.1.5, with the mapping F of (2.18) becoming,
more generally, the inverse of what is called the “ex-
ponential mapping.” The terminology makes sense
when the manifold is a matrix group such as the
orthogonal group: the exponential map on the tangent
space of “infinitesimal elements of the group,” e.g., on
the space of infinitesimal orthogonal matrices, the
anti-symmetric matrices, may be written in the famil-
iar matrix Taylor series form. The set of densities in
@ within a distance d = 6 of the maximum likelihood
point ¢ is, in general, an inference region having
asymptotic coverage probability 1 — a« when 6 is chosen
to satisfy P{x2 > 62} = «. It also has approximate
posterior probability 1 — .

Corresponding to each Riemannian metric on a
smooth manifold there is a uniquely defined “infini-
tesimal” element of volume on each tangent space.
Taken together, these define what is called the natural
volume element (with respect to the given metric)
on the manifold. In the case of the usual Euclidean
metric on R™, we usually write the natural volume
element in terms of rectangular coordinates: dV =
dx,dx; --- dx,. When m = 2, in polar coordinates
we write: dV = rdrdf. On S% with the usual in-
herited metric, in spherical coordinates we write:
dV = sin(f)dfd ¢. As is true in general for surfaces in
R™ having the inherited metric, the natural volume
element on S% corresponds to the familiar element of
surface area of advanced calculus. The general form
of the natural volume element is

dV = det(G(z))Y? - dz;dz, --- dz,,

where G (z) is the z-coordinate matrix representation
of the given metric. The natural volume element gen-
erates a measure on the manifold, which may be
considered “uniform” with respect to the metric (see
Section 2.3.1 for discussion of the implications of this).

Jeffreys’ rule. The measure determined by the
information metric is, of course, that determined by
Jeffreys’ general rule.
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Orthogonal parameters. Whenever the (i, j)-com-
ponent of the information matrix i () is zero, 9; and
d; are orthogonal, and 6; and 6; are called orthogonal
parameters. Usuallly this term refers to global orthog-
onality, i.e., i(f);; = 0 for all 6, though in some cases
it can be useful to consider parameters that are or-
thogonal only on restricted regions.

It is interesting that the information metric geom-
etry of the most basic family of distributions, the
multinomial family, is the simplest of all non-Euclid-
ean geometries. It may also be shown that the infor-
mation metric geometries of location-scale families
constitute the next simple class of non-Euclidean
geometries, the hyperbolic spaces, which have
constant negative curvature. According to Gauss’
“Theorema Egregium” and its generalization, this
curvature (Gaussian curvature and, more generally,
Riemannian scalar curvature) is intrinsic: it is deter-
mined solely by the metric. As a consequence, a space
of non-zero curvature is not isometric to Euclidean
space, and so cannot have its metric be represented
by a constant matrix in any coordinate system. Thus,
for a family of densities that has non-zero curvature
with respect to the information metric, there does not
exist a parameterization in which the information
matrix is constant. That is, for such a family there
does not exist a “covariance stabilizing transforma-
tion.” (As noted by Reeds, 1975, this remark solves a
problem posed by Holland, 1973.)

2.3 Elaboration of Jeffreys’ Methods

2.3.1 Reference Priors: Uniformity, Symmetry
and Jeffreys’ Rules

As reviewed in Section 2.2 (and Section 2.1.3), the
prior of Jeffreys’ general rule = (f) o« det(i(9))"? is
generated by the natural volume element of the infor-
mation metric. I now briefly consider this scheme
as a general method of getting priors, comparing
measures determined by metrics of Lebesgue measure
on R™.

The motivation here is that the uniform measure
on some parameter space (i.e., Lebesgue measure)
seems, at first glance, to be a good choice for a refer-
ence prior (that is, for a prior chosen according to a
formal rule, without detailed consideration of the con-
text). It is objectionable, however, because a prior that
is uniform on one parameter space is not uniform on
others. Jeffreys’ rule, on the other hand, is invariant
while also being uniform in a meaningful sense, e.g.,
on the sphere (2.2). I suggest that this kind of
uniformity is what makes Lebesgue measure seem
appealing, and the fact that measures determined by
metrics may be considered uniform provides heuristic
motivation for using them as reference priors.

It might be argued that the appeal of Lebesgue

measure comes from its translation invariance, which
is to say from symmetry. Within Riemannian geome-
try, however, uniformity is more general than invari-
ance under transformations that respect symmetry.
Uniformity and translation invariance coincide on R™,
but do not necessarily coincide in general: there is an
intuition behind the meaning of a uniform distribution
on a surface that exhibits no symmetry. One would
interpret, it seems to me, a uniform application of
paint on the surface of an irregularly shaped object,
as one in which equal amounts of paint were applied
to regions of equal surface area. Uniform distributions
on surfaces are special cases of measures that apply
equal mass to sets of equal volume, that is, of measures
that are determined by Riemannian metrics.

Furthermore, when symmetry is present, the metric
may be required to respect it. If, for instance, the space
in question has differentiable group structure, i.e., is
a Lie group, then the symmetry-preserving metric
determines (left) invariant measures, that is, Haar
measures. This means that familiar uses of symmetry
in determining reference priors (see Villegas, 1971,
1977) may be incorporated into the geometrical rule
of defining the prior in terms of the volume element.
Thus, the concepts of uniformity and symmetry may
be distinguished within Riemannian geometry; uni-
formity is an attribute of all measures determined by
metrics, while invariance under transformation by
elements of a group is an attribute of measures deter-
mined by metrics that respect symmetry.

When the manifold of densities is a Lie group, the
information metric is, in fact, left invariant, so that
Jeffreys’ general rule determines left Haar measure.
In treating problems having location parameters, Jef-
freys modified this rule (1946, pages 458-459; 1961,
pages 182-183): if u is a location parameter and « is
some other (possibly multidimensional) parameter,
Jeffreys’ modified rule becomes = (u, o) = |(gx)|"*
where (g;.) is the information matrix based on « alone.
(The modified rule also applies when the location
parameter is multidimensional.) In the special case
of the Normal(y, ¢%) family, this entails replacing
w(p, o) = det(i(p, 0))* = ¢ with x(y, o) =
i(¢)™? = ¢7'. His argument, as I understand it, is
simply that location parameters should be considered
separately. In terms of the manifold of densities &,
there is a factorization € = &, X &, where @, is
identified with the location group G (using a smooth
isomorphism so that @,, is “essentially identical” to
G). Then the appropriate metric on the first factor,
@, is the one that preserves the symmetry, i.e., the
invariant metric. If the metric on the second factor &,
is the information metric, then the volume element
on @ = @, X @, is a product volume element and the
measure determined by the product metric is a product
measure: the measure on the first factor being a Haar
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measure, and the measure on the second factor being
that generated by information metric. Thus, by taking
the volume element determined by the product metric
we arrive at Jeffreys’ modified rule. Note that u and
« are a priori independent as a consequence of the
product form of the metric. The point is that geometry
accommodates the analysis and, although Jeffreys did
introduce a new element, symmetry, into his argu-
ment, there is a similarity of method in the general
rule and its modification in that both determine the
prior from a metric.

The purpose of these remarks is to indicate that the
method of determining reference priors from metrics
is intuitive and can generate prior densities other than
the square-root of the information determinant. The
only suitable metrics I know of, however, are those
just discussed, producing Jeffreys’ rule and its modi-
fication. It would be interesting to find others.
Whether a reference prior determined by a metric is
appealing depends on whether the metric is appealing.
The information metric is the seemingly natural
choice, from the point of view of asymptotics. In
practice, of course, one must always consider the pos-
sible distortion in representing knowledge by a refer-
ence prior, and the extent to which this distortion
affects inferences. (See Kass, Tierney and Kadane
(1989) for discussion of asymptotic methods for as-
sessing the sensitivity of inferences to the choice of
prior, and Kass (1988) for some additional discussion
of invariance, Jeffreys’ rules, and data-translated
likelihood.)

2.3.2 Odds Factors and Orthogonal Parameters

Jeffreys introduced the term “orthogonal parame-
ters” to refer to a parameterization in which the
information matrix i(9) is diagonal. The geometrical
interpretation was given in Section 2.1.4. Jeffreys’
chief application was in his theory of hypothesis tests
(which he called “significance tests”) based on what
is now often known as odds factors. The “odds factor”
or “Bayes factor” is the ratio of the posterior odds of
a null hypothesis H, (versus an alternative H,) to the
prior odds of Hy: schematically, we have

P{Ho I data} _ P{data | Ho} . P{Ho}
P{H,|data} P{data|H,} P{Hj,}
where P{H,} = 1 — P{H,} is the prior probability of
H,, and the odds factor is
K = P{data| Ho}/P{data | Hyl.

Suppose we have a parameterization (8, ¥) and wish
to test Hy: ¢ = ¢ vs. Hy: ¥ # y, using a prior = (8)
under H, and 7(8)w (¢ | 8) under H,. The odds factor
becomes

- I p(yY1B, Yo)w(B) dB
JIp(y1B, Y)x(B)x(y|B) dB dy”

For the case in which the parameter spaces B and ¥
are one-dimensional, Jeffreys provided an asymptotic
approximation to K, noted an important simplifica-
tion that occurs when 3 and ¢ are orthogonal, and
recommended a particular Cauchy reference prior.
Jeffreys’ results may be derived, sharpened, and
generalized using Laplace’s method. (For general dis-
cussion and references on related uses of Laplace’s
method in statistics see Reid (1988) and Kass,
Tierney and Kadane (1988).) Writing p(y| 8, gg) =
exp[l(8, ¥)] and I*(8) = L(B, ¥o), and letting (B, ¥)

and 3* be the maxima of [ and (¥,

__ det(3 (%)) expll(*, yo)Im(8*)
(2m) 2 det(2) *expll (B, ¥)1r (B (F1 B)

{1+0(n™)}

(2.21)

where
2 (o) = (=D¥*[B*]) and = = (—D2I[(B¥)]) "

Now suppose that 8 and ¥ are one-dimensional or-
thogonal parameters, and assume that the “true” value
of ¢, is either y, or a neighboring alternative satisfying
¥ — ¥ = 0(n™%), so that Yo — ¥ = O(n™?). By
expanding 951 (8%, yo) about (8, ¥),

(2.22) B*—B=0(n")
and using this in (2.21) yields

K= (2r)"2g det(Z) V2

(2.23) . a s
- exp[L(8*, ¥o) —L(B, ¥)] - 7 (¥ | B) "

with
K=K{1+0(n™)}

where o = Z()"2

When 8 and ¢ are independent under the prior,
expression (2.23) is a substantial simplification of
(2.21): the prior will then enterAthe app;ozgimation to
the odds factor only through = (y') = = (¢ | 8). Thus, to
order O(n™'), when the parameters are orthogonal
and a priori independent, only the parameter quanti-
fying departure from the null hypothesis need be
contemplated. In fact, the parameters need not be
globally orthogonal, but merely orthogonal at (3, )
for all 8. (Such parameters may be called “null-
orthogonal.”) This is enough to ensure (2.22).

There remains the problem of determining the prior.
An appealing possibility is to put a prior on the
distance from the null hypothetical submodel to a
particular alternative (8, ¢). In multidimensional
problems, one could use a spherically symmetric dis-
tribution on the slices of a tube around the model,
with the spheres being defined by the information
metric. Interestingly, in the two-parameter case he
treated, this is essentially what Jeffreys proposed.
Jeffreys did not use (2.23), but instead made a further
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approximation, replacing o and = with their expected
information counterparts, and [(6%, ¥,) — 16, t,l;) with
its corresponding quadratic approximation (expected
information again replacing observed). This produced
an expression accurate only to order O(n~"/?). To this
order, however, it may be shown that the prior Jeffreys
used (1961, page 275) was

1
@I =T 115
where 6 = sign(y) - d((¥o, 8), (¥, B)) is the signed
information distance away from the null hypothetical
submodel.

Except in special cases, this information distance is
somewhat difficult to compute. A more practical pro-
cedure might be to use an elliptically contoured dis-
tribution on ¥ in (2.23), with the ellipses defined by
Fisher information i (3, ¥),,. Doing so, we would again
achieve the interpretation that a prior was being put,
approximately, on the distance from the model (with
an accuracy of order O(n~'/?)). I intend to provide
further references and details of these matters else-
where. Cox and Reid (1987) have also used orthogonal
parameters to define a conditional profile likelihood.
See their paper for additional references, as well.

2.4 Bibliographical Notes

With the exception of Section 2.3.2, the material in
this section is based on Kass (1980) and an unpub-
lished 1981 technical report, which had the same title
as the present paper. Most of the results were also
obtained by other authors. As noted in the introduc-
tion, the other investigations of Fisher informa-
tion Riemannian geometry were motivated by the
paper by Rao (1945; see also Bhattacharyya 1943,
1946). The spherical Multinomial and hyperbolic Nor-
mal geometries were discovered or re-discovered by
various authors (including Atkinson and Mitchell
(1981), while Amari (1985) references an unpublished
report in 1959), and several papers have described
the information metric geometry for other families
(Yoshizawa, 1971; Atkinson and Mitchell, 1981;
Mitchell and Krzanowski, 1985; Oller and Cuadras,
1985; Skovgaard, 1984). A version of the relation-
ship between information distance and Pearson’s
chi-squared statistic was given by Bhattacharyya
(1946), and a geometrical derivation of the lim-
iting chi-squared distribution of certain goodness-of-
fit statistics appeared in Dudley (1979). The use
of alternatives to the Kullback-Leibler number in
generating alternative metrics was mentioned in
Good (1969), and geometries of other entropy-like
measures were explored in some detail by Burbea and
Rao (1982a, b; see also Burbea, 1986). See Rao (1987)
for additional references and discussion of applica-
tions to the study of genetic diversity. Stein (1965)

also introduced the information metric in his study of
admissibility of Bayes estimates based on improper
priors, but I do not know of any related subsequent
use of it. Finally, I note that the multinomial geometry
of Section 2.2 may be considered a simplified version
of infinite-dimensional geometry (see Dawid, 1977),
which is used in nonparametric statistics (see, e.g.,
Beran, (1977) and Pfanzagl, (1982, especially Chapter
6) for comparison).

3. GEOMETRY OF INFORMATION LOSS
AND RECOVERY

This section reviews the interpretation of Fisher’s
theory of estimation within a restricted context, that
of iid observations from one-parameter subfamilies of
exponential families, which Efron (1975) called curved
exponential families. These families are of interest
partly because their regularity ensures validity of
many formal manipulations, and also because in this
setting geometrical understanding of the estimation
process becomes more readily apparent: an estimate
may be considered a kind of projection of the expo-
nential family observation onto the subfamily, in a
manner roughly analogous to that of a projection of a
data point onto a regression subspace in the theory of
linear models. The benefit of such analyses is not
only that results established apply to interesting
examples of curved exponential families but, more
importantly, the families might be considered arche-
types for parametric inference.

One way that curved exponential families could
serve as archetypes is by including an important spe-
cial class, the subfamilies of multinomial distributions.
Multinomials themselves could be considered arche-
typical in the sense that they can represent any con-
tinuous distribution through discretization, that is, by
dividing the sample space into disjoint regions and
taking the multinomial probabilities to be the proba-
bilities assigned to the regions by the continuous
distribution. This was routinely used by Fisher (and
by Jeffreys) without comment. That is, he often per-
formed calculations for subfamilies of multinomials
and then applied them to continuous distributions.

In addition to the multinomial representation of
general distributions, it has been shown by Amari
(1987a), following a suggestion of Efron (1975), that
there is a specific sense in which curved exponential
families are local approximations to general families
and that the geometrical analysis may be carried out
using the local approximation method. Furthermore,
one would hope that the insights gained from analysis
of this special class might be of wider use, as well.

Curved exponential families will be used here to
interpret Fisher’s concepts of efficiency, information
loss, and information recovery, and the claims he made
about them.
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3.1 Fisher’s Principles

Fisher articulated his theory primarily in three pa-
pers published in 1922, 1925, and 1934, and in his
book Statistical Methods and Scientific Inference
(1956). Fisher’s starting point is concisely presented
in his statement, “Briefly, and in its most concrete
form, the object of statistical methods is the reduction
of data” (1922, page 300). Although this phrase may
sound unobjectionable, it puts him on a path that will
diverge from that taken by decision theory; decision
theory considers crucial the purpose to which the data
or their reduction are to be put. In particular, Fisher’s
concept of estimation is different from “point esti-
mation” in that it involves data summary rather than
optimal decision-making. (See Efron (1982) for some
discussion of this.) As a matter of emphasis, the
amount of “information” that a statistic can “sum-
marize” is primary, and sufficiency, efficiency and
ancillarity should be recognized as relating to infor-
mation summary, as well as being understood from
the more technical definitions.

3.1.1 Fisher’s Measure of Information

Suppose 6 is one-dimensional, and let iY(d) =
E,;((Dyly(0))?) denote the Fisher information in the
sample Y. For a statistic T, let i 7(6) = E,((Dyl+(8))?)
denote the information supplied by 7T, where [, (§) =
log(p(t]6)), p(t|0) being the density of the statistic
T. Letting T and A be statistics derived from Y, the
properties of Fisher information are as follows.

1) 0=iT@) <iY(@).
(i1) 7(8) =iY(0) for all #if and only if T is sufficient.
(iii) i“(#) = 0 for all @ if and only if A is distribution-
constant (that is, its distribution does not depend
on f).
(iv) i) = i"@) + i“() if T and A are inde-
pendent.

Writing i7'4() = E,((D,log(p(T| A, 6)))?), with
the expectation taken with respect to Y, (iv) may be
strengthened to

(v) 1 TA0) =iT140) + i (9).

These elementary properties lead immediately to
concepts of information loss and recovery. In the first
place, the information lost in using an insufficient
estimator 7 in place of the sample Y may be quantified
by i7(8)/i¥(8) or iY(8) — i”(6). Secondly, if (T, A)
is sufficient and A is distribution-constant then
i"14(@) = i¥(#). Thus, the information lost by an
insufficient estimator T can be recovered by condi-
tioning on an appropriate statistic A: if (T, A) is
sufficient and A is distribution-constant, then the
conditional distribution of T given A supplies all of
the information in the sample.

It is plausible that these properties might charac-
terize Fisher information, but I do not know of any
results on this. Properties (i)-(iv) were specifically
mentioned by Fisher (1935, page 47). Property (v) was
used implicitly. Generalization to the multiparameter
case is immediate.

3.1.2 Information Loss and Recovery

The information lost by an estimator could be quan-
tified in terms of i”(8)/ni(8) or by ni(6) — i7(9),
where i() is the information per observation in a
sample of size n, but it is analytically easier to use the
limiting values of these quantities. The limiting value
of the ratio form is 1 for efficient estimators. The
limiting difference then provides a way of distinguish-
ing among these estimators. Fisher defined the infor-
mation loss of T as lim ni(§) — i”(8). Note that this
quantity will typically be infinite for inefficient esti-
mators, which leads back to consideration of the ratio
in that case. Fisher introduced this definition in his
1925 paper saying that in his 1922 paper the “discrim-
ination among statistics within the efficient group, a
discrimination which is essential to the advance of the
theory of small samples, was left in much obscurity.”
In Section 12 of that paper, Fisher claimed that among
all consistent, efficient estimators T, the MLE mini-
mizes the information loss.

Fisher did not provide any justification for the state-
ment, but geometrical analysis greatly clarifies the
situation. His calculation of information loss for the
MLE yielded the expression

1(0){2(0) [ poz — 2ma1 + pao]

(3.1) ,
-1- l(o)_?,[”'%l + I-lgo - 2#11#30]}

where, with p, = p(y | 0) representing the density for
each observation,

Mk = Ea([Dep]/Pe)j ([Dgp]/pa)"’.

Fisher’s second claim was that the information lost
by the MLE could be recovered using what is now
(apparently since Efron and Hinkley, 1978) called
observed information, I,(§) = —D?1,(6). He said (1925,
page 724), “With the aid of such an ancillary statistic
[as I,(A)] the loss of accuracy tends to zero for large
samples.” This statement involves two facts. The first
is that the statistic (4, Iy(é )) has zero information loss
in the limiting sense defined above. The geometrical
argument will be given in Section 3.3. The second is
that a suitably normalized version A of the statistic
I,(0) is approximately ancillary, so that i(f) tends
to zero (Efron and Hinkley, 1978; Amari, 1982b;
Skovgaard, 1985). From property (v) we will then
obtain zero limiting information loss for the MLE
after conditioning on A.
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3.2 Curved Exponential Families

3.2.1 Imbedded Subfamilies

One-parameter subfamilies of exponential families of
order k (for k > 1) may or may not themselves be
exponential families of order 1. The Hardy-Weinberg
model (defined in Section 1.2.3), for example, is itself
a Binomial(2; ) family and, therefore, a one-dimen-
sional regular exponential family. (The parameter 6
was B in Section 1.2.3.) The Trinomial(n; p;, p2)
distribution is a two-dimensional regular full exponen-
tial family with natural parameter components n; =
log(p;/ps) for j = 1, 2. Substituting the expressions for
p: and p, into the definitions of #;, we obtain 7, (f) =
2 log(8/(1 — 6)) and 7.(8) = log(6/(1 — 0)) + log 2.
Thus, the multinomial natural parameter restricted
by this model becomes

(3.2) n=na+£0) - s

where 75 = (0, log 2), n§ = (2, 1) and £(9) =
log(8/(1 — 6)). The specification of the Hardy-
Weinberg model within the trinomial, according to
(3.2), restricts 5 to an affine subspace of the natural
parameter space N. It may be verified that the ability
to write n(#) in the form (3.2) is necessary and suffi-
cient for a one-parameter subfamily to be itself an
exponential family of order 1.

To formalize the notion of a one-parameter subfam-
ily of an exponential family, let &, be the subfamily
of @ defined by the restriction of 5 to a subset N, of
N, where N, is the image of a curve in N, i.e., of a
mapping n: ® — N, with 0 being an open interval. If
@, is an imbedded subfamily of &, I will call it a one-
parameter imbedded exponential subfamily or curved
exponential family. As explained in Section 1.2.3, this
means that the mapping 7(-) is one-to-one, smooth
(infinitely differentiable), and of rank one (its first
derivative is not the zero vector), and in addition
n(-) is a homeomorphism onto N, with the inherited
topology (that is, for sequences {6;}, n(6;) — 7(0) if
and only if §; — 0). For some purposes, it is preferable
‘to represent &, in the mean-value parameter space M
as the image M, of u: ® — M. Since (as noted in
Section 1.2.5) the mapping from N to M is a diffeo-
morphism, it follows that N, is imbedded in N if and
only if M, is imbedded in M.

The definition given here is slightly different than
that of Efron (1975), who required only that »(-) be
twice continuously differentiable rather than a smooth
imbedding. With regard to the smoothness condition,
it would be possible to count the required number of
derivatives for each result, but there seems to be little
point in doing so. If (-) is one-to-one, smooth and of
rank 1, but not necessarily a homeomorphism, &, may
be called an immersed exponential subfamily. I am

requiring the additional topological condition to avoid
nuisances such as the inconsistency of MLE’s de-
scribed in Section 2.1.5. It is easy to verify that if &,
is an immersed exponential subfamily, then it satisfies
Cramér’s conditions; but these only guarantee the
existence of a well-behaved sequence of roots of the
likelihood equation. Of course, since imbedded expo-
nential subfamilies are also immersed, they too satisfy
Cramér’s conditions.

An important special case is that of a one-parameter
subfamily of a Multinomial(n; p;, - -, pr+1) family.
As mentioned in my introductory comments, this case
was routinely analyzed by Fisher. In addition, in a
series of papers, Rao (1961, 1962, 1963) studied more
formally the problem of estimation in such families.
The basic problem is to choose among the many
proposed estimators. To name just a few, in addi-
tion to the MLE of 6, there is the minimum chi-
square estimator found by minimizing Y f;'ll b —
p;(0))?/p; (8) where p; is the observed proportion for
the jth sample value, the minimum Hellinger distance
estimator found by minimizing Zf;'ll ( 13}/ Z—pi(0)V?)?,
and the minimum Kullback-Leibler number estimator
found by minimizing 3"} p;(0)log(p;(0)/p;). Note
that the MLE is found by minimizing the Kullback-
Leibler number with p; (§) and p; interchanged. Least-
squares and weighted least-squares estimators might
also be considered. For example, after transforming to
n; = log(pi/pa+1), T -y w; (#; — m;())* might be mini-
mized, where 7; = log(p;/Pr+1) and {w;: j =1, ---, k}
is some set of weights, which may depend on the data.

Each of these estimators involves solving some es-
timating equation, defined by a minimization problem.
The solution may then be considered a mapping from
the space of observations, that is, the sample space of
the natural sufficient statistic for the Multinomial
family, to the parameter space @. In the discussion
here, it is convenient to restrict estimators to be
mappings from M into ©. This avoids nonexistence
problems for the MLE, and for asymptotics it is irrel-
evant insofar as we will consider the mean Y of n iid
observations from the curved exponential family and
Y, with probability one, will fall within M for suffi-
ciently large samples.

When an estimator T is continuous, T(Y) —
T(u(0)) with probability one. Thus, a continuous es-
timator T will be strongly consistent if and only if
T(x(0)) = 0. The latter condition may be considered
a representation of Fisher consistency: T produces the
correct value 6 when applied to u(f) rather than an
observation y. In addition to being continuous, it is
convenient to assume that an estimator is smooth and
of full rank. This will allow the decomposition used in
Section 3.2.3. An estimator T': M — 0, where 0 is the
parameter of a curved exponential family, will be
called regular if on some neighborhood V of M, = u(©)



THE GEOMETRY OF ASYMPTOTIC INFERENCE 205

in M, T is smooth and of rank 1 and for all § € 0,
T(u(0)) = 6. We may now note that well-behaved
estimating equations produce regular estimators. Let
W be a neighborhood of My in M. If f: @ X W —> R is
a smooth function of rank 1 and f (6, 1(6)) = 0 for all
0 € 0, then it follows from the Implicit Function
Theorem (e.g., Spivak, 1979) that there exists an open
neighborhood V of M, in W on which a regular esti-
mator T'is uniquely defined by the estimating equation

f(T(y),y) =0.
In the case of the likelihood equation f is given by

f0,y) = (y— u(0))"Dyn[6].

Again, this function uniquely defines the MLE in a
neighborhood of the curved exponential family. Fur-
thermore, for a curved exponential family, the MLE
is regular.

An example that is important in both theoretical
and applied statistics is nonlinear regression. Let
Y, =9, +¢,j=1, ---, k, where the ¢’s are iid
N(0, ¢?) and 5, = 7,;(8) = h(0, x;), with o positive and
known, ® an open interval, and h a real function
of ® X C, where C is a subset of the real line. These
models are one-parameter subfamilies of the Normal
location model Y ~ Niu(n, ¢%I.) with n € N = R*,
and ¢ a known positive number. As a first special case,
if h(0, x) = a + 6x we obtain a simple linear regression
model, with fixed intercept «, which defines an expo-
nential family of order 1. As another special case, if
h(6, x) = exp(—fx), we obtain the one-parameter
exponential nonlinear regression model.

Binary regression also furnishes a class of ex-
amples. Let Z; be independently Binomial(n;, p;),
with p; € (0, 1) for i = 1, - .-, k. If the p;’s are not
further restricted, then the Z;’s form a product of k
exponential families, which is itself an exponential
family of order k. The natural parameter for this
family has components »;, = log(p;/(1 — p:)). Now
suppose h is a real function on ©® X C, where 0 is an
open interval and C is a subset of the real line. Then,
as in the nonlinear regression setting, n; = 7;(0) =
h(0, x;) defines a one-parameter subfamily of the
Binomial product model. A first special case k2 (0, x) =
o + fx yields a simple logistic regression model with
fixed intercept «, which again is an exponential family
of order 1. As a second case, letting F be a continuous
distribution function, take h(0, x) = log(p/(1 — p))
with p = F(a + 0x). When F is the Normal(0, 1)
distribution function, we obtain the probit regression
model with fixed intercept «, which is not an expo-
nential family of order 1. )

3.2.2 The Auxiliary Space Associated with an
Estimator '

At the heart of Fisher’s analysis of an estimator T
is a replacement of the data Y by a sufficient statistic

(T, A). From i®4 @) = iT(0) + i*'7(9), which is
property (v) of Section 3.1.1 (with the roles of T and
A reversed), the information not contained in 7' must
instead be contained in the conditional distribution of
A given T'; thus, good estimators are those for which
there is little information about 6 in A given T.

In curved exponential families, the situation is sim-
plified and it is easy to construct a suitable statistic
A. If T is a regular estimator, then for each 6, € 0
there exists a neighborhood U of u(f;) in M and a
diffeomorphism (T, A) of U onto an open subset of
R* such that the intersection of U with M, is {u € U:
A(p) = 0} and Ty is the restriction of T to U. (This
follows from the Implicit Function Theorem.) This
allows a local decomposition of M near u(6,) which is
identified by (T, A) with a product subset of ® X R*™*.
As in Figure 5, a point x in U becomes identified with
(T'(), A(n)) = (8, ). The data Y, with probability
one, will fall in U for all sufficiently large n. Large
deviations results (as in, for instance, Brown, 1986,
Chapter 7) may be used to show that replacing the
sample space of Y by U does not affect the local
asymptotic calculations given below, in Section 3.3.
Making this replacement and restricting the family to
{0: u@®) € U}, (T(Y), A(Y)) becomes sufficient,
and the amount of information lost by T'is the amount
contained in the distribution of A (Y) given T. The set
A,={u € U: T(u) =t} is called the auxiliary subspace
associated with the estimator T at ¢. In Section 3.3,
we will see that the geometry of the decomposition,
specifically involving both M, and the auxiliary sub-
spaces, determines the loss of information of 7. In
general, an open set together with a diffeomorphism
onto an open subset of R* is called a local coordinate
system and is a basic element in the construction of a
smooth manifold. In statistics, these become local
parameterizations (see Section 2.2). Here, (6, «) is a
local parameterization of € on the domain U.

I would like to draw attention to an important but
potentially confusing point. If the MLE of (0, &) as

M

A

U #(60)

e (6,a)

F16. 5. The local decomposition of M near u(6,). Points p within
the neighborhood U become identified by coordinates (6, a).
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a parameterization of U is denoted by (6%, a*) then
(T, A)(y) = (8%, «*) for y € U and, in particular,
T(y) = 0*. Thus, every regular estimator T may be
viewed the first component of the MLE of (6, a) for
some a. T need not be the MLE of 6§ as a parameter
of Q,, that is, 6* heed not equal 6. The definition of a
component of a parameter, here 6, depends on the
manner in which other components are used in iden-
tifying the model: when 6 is viewed as the first com-
ponent of (f, «), 6* results from ML estimation,
whereas when it is viewed as the only parameter of
@, 0 results. This is a general phenomenon most
familiar in the regression context: the meaning of a
regression coefficient for a particular explanatory
variable depends on the span of the other explanatory
variables in the model.

3.2.3 The Information Inner Product and
Exponential and Mixture Curvatures

The information inner product on the natural pa-
rameter space N at 7 is defined by

LYo NXN—>R,
(l), w>n= vTi(ﬂ)w-

Since i(n) is positive definite for a regular exponential
family, the inner product is well defined. The infor-
mation inner product on the mean-value parameter
space M is also needed. It is defined by

(,)o: MX M —R,
(v,w),=vTi(u)w,

where i(u) is the information matrix in terms of u,
ie., i(uw)jr = E,(0;ly[u]dly[u]) with [,(x) being the
loglikelihood function on u. Note that there is the
change-of-variables formula i (x) = (D,7)%i(n)(D,n).

Suppose 7 and 7® are two one-to-one, smooth,
rank 1 curves in N and let 4™ and x® be the corre-
sponding curves p = u(n®) in M. (These would be

representations of two curved exponential families.) .

Suppose further that the curves intersect at a point 7,
in N and uo = u(n) in M. Writing Dy for the
derivative of 5 at 7,, etc.,

(3.3) (Dp®, Dp®),, = (D™, Dn®),,.

Thus, as one consequence, the angle between two
curves with respect to the information inner product
does not depend on whether it is measured in M or N.
It may be noted that the same argument could also
be applied using any alternative parameterization 3:
& — B, with the analogous definition of the informa-
tion inner product on B, as long as the transformation
from B to N is a diffeomorphism. Another formula
that will be used below is

(Dp?,v),,= (DnP)Tv

for all v in M. This follows from the chain rule
D'I(l) = Dnﬂ . Dﬂ(l) = i(ﬂO)Dﬂ(l)-

Now suppose @, is an imbedded exponential sub-
family defined by 5: ® — N. Letting i () be the Fisher
information for &,,

i(0) = || Dyn " :(a),

as is easily verified from the definition of i (), together
with the chain rule. The quantity

y=70) =1 Dinnll,o - I Donll g

where the normal component (D;5)y and the norms
are computed with respect to the (, ), )-inner product,
is called the exponential curvature or the statistical
curvature of @, at 6. The analogous quantity

B=60) = 1Diu)nllue - | Dorll )

calculated with respect to the (, ), )-inner product, is
called the mixture curvature of @, at 6. Note that each
of these is a direct generalization of ordinary curva-
ture, as in equation (1.2) of Section 1.2.3. The expo-
nential curvature measures the departure of €, from
being an exponential family. The mixture curvature
measures the departure of &, from being a mixture
family.

3.3 Geometrical Interpretation of Fisher’s Principles
3.3.1 Efficiency

Using the local parameterization (8, «), described in
Section 3.2.2, a simple geometrical expression for the
asymptotic variance of the estimator T may be de-
rived. Consider first an imbedded Normal nonlinear
regression model. As shown in Figure 6 (for k = 2),
the angle between N, and A, is, by definition, the
angle ¢ between Dyn = D,;n[0] and the tangent hyper-
plane to A,. This, in turn, is the angle between Dyn
and the vector closest to it that lies in the tangent
hyperspace (when k& = 2). Writing Z = D,y and,
regarding n as a function of both # and « on U,
X = (D,n0, a«)) so that X is a & X (k — 1) matrix
spanning the tangent hyperplane, there is the familiar

No

o)~

Ay

FI1G. 6. The angle between N, and A, is the angle ¢.
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expression
3.4) ZT7Z - cos’¢p = ZTX(X"X)'X"Z.

Now, to obtain the asymptotic variance of T, the
information matrix for (6, @) may be used, with the
formula above substituted for simplification. Viewing
n first of all as providing a Euclidean coordinate
system on N, the parameter space for the k-dimen-
sional Normal(#, ¢21,) family, the information matrix
i(n) is 072 times the identity. Changing coordinates
to (0, ) using the general formula

i(y) = (D,8)"i(8)(D,B)

where (D, ) is the & by k matrix with (D, 8);; = 9; 8;
and 3 = B(v), yields the partitioned matrix

. S VAV AD. ¢
i0,a) =0 Z{XTZ XTX}

with X and Z as defined above, and then the upper
left block of the partitioned inverse is

@0, o)) = Uz{ZTZ - ZTX(XTX)_lXTZ}_l.

Substitution of (3.4) into this expression yields the
desired asymptotic variance formula. We find that if
T is a regular estimator for a one-dimensional im-
bedded Normal nonlinear regression model &, with
variance ¢2, and Y, is the mean of n iid observations
from @, € &,, then the asymptotic variance of T is
given by

Avar,(n'*T(Y,)) = o*{sin’¢ - || D,n[0])2}*

where ¢ is the angle between N, and A,.

The interpretation of the formula is clear: note that
| Den[0111 = i(8); the asymptotic efficiency of the
estimator T is sin’¢. Together, T and A contain all of
the information about 6; when they are highly asymp-
totically correlated, A will contain much information
about # and the use of T alone results in substantial
loss of information. The coefficient sin?¢ depends only
on the angle ¢ between N, and A,. When the estimator
T has its auxiliary space A, orthogonal to N,, it
becomes efficient. .

The corresponding result for general one-dimen-
sional curved exponential families is obtained by
repeating the argument, while noting that the infor-
mation matrix i(n) is no longer equal to a multiple
of the identity. If T is a regular estimator for a one-
dimensional curved exponential family &, and Y, is
the mean of n iid observations from Q,, € @,, then
the asymptotic variance of T is given by

Avar,(n'?T(Y,)) = {sin’¢ - || Dyn[0]11%,,} ™"

where || - ||, is the norm,‘ and ¢ is the angle between
N, and A,, with respect to the information inner
product on N at 5(f). The interpretation here is

analogous to that in the Normal case and was dis-
cussed by Efron (1982, Section 6).

This result may be applied to estimators that are
defined by estimating equations based on smooth, full-
rank functions. Suppose f (-, -) is such a function and
let D, f and D, f be its partial derivatives with respect
to its two arguments. Note that D, f is a scalar while
D, f is the gradient of f (6, -) and, therefore, is normal
to the contour Ay = {u: f(0, u) = 0}, with respect to
the usual Euclidean inner product. Letting n, =
i(u(0))*Dyf (0, u(0)), there is then for any vector v
tangent to A, at u(6),

0 =0v"(Dyf) = (v, g Yy

where (D, f) = Dyf (0, u(8)). Thus, n, is normal to A,
at u(0), with respect to the (, ), -inner product. The
angle between n, and M, thus determines the effi-
ciency of the estimator defined by f (-, -).

In the case of the MLE, from the likelihood equation

0=1(0,5) =@ — u®)"Den)
there is
D:f = Dyn = D,n - Dyp = i(u(8))Dyp.

Thus, n, = Dyu so that the angle between M, and A,
is w/2. This maximizes sin’¢ and thereby minimizes
the asymptotic variance. Thus, we have a geometrical
argument that among regular estimators for a one-
dimensional curved exponential family, the MLE min-
imizes the asymptotic variance.

It is easy to check whether an estimator is efficient
by following the preceding argument. For instance, for
the least-squares estimator minimizing Z(y; — u; (0))?
there is Dy;f = Dyu. When i(u(9)) differs from a
multiple of the identity, as it does when the family is
non-Normal, n, is not proportional to Dyu, so the
least-squares estimator is inefficient. The weighted
least-squares estimator is also easily shown by this
method to be efficient when the weight-matrix i (4) is
used where i = 3.

3.3.2 Information Loss

Fisher was interested in the quantity lim ni(8) —
i7(#), which has been called the (limiting) information
loss. Unlike the efficiency measure i 7(0)/ni () (or its
limit), the quantity ni(8) — i 7(9), is not invariant with
respect to reparameterization. Thus, it is in this
respect desirable to consider the (limiting) relative
information loss, lim i () [ni(8) — :7(#)]. This quan-
tity was interpreted by Fisher (1925, page 720) as the
number of additional observations required when us-
ing T in place of the whole sample.

There are two issues involved with the information
loss of efficient estimators: how much information
must be lost, and which estimators lose the least
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possible. As far as the first question is concerned, a
quick appreciation of the role of the model and the
simplicity of the results may be gained from the fol-
lowing version of a heuristic argument used by Fisher,
here presented in the context of Normal nonlinear
regression.

To calculate the difference ni(8) — i 7(9), it is most
convenient to use a result that is due to Fisher: for a
regular estimator T of 6 in a curved exponential family,

Dyl (6) = Eo(Doly[0]1 T = t)

where [, (0) = log p(¢| 0) is the loglikelihood based on
the estimator T at ¢t. Using V(DIly) = E(V(Dly | T)) +
V(E(Dly| T)) together with this result,

(3.5) ni(0) — iT(0) = E,(Vo(Dyly| T)).

To get the limiting relative information loss, a new
parameterization may be chosen freely; for the non-
linear regression model it is most convenient to use
arclength. For this parameterization,

D3ly[s]=—na*[(Dn)"(§ —n(s)) — (Dsn)"(Dsm)]
=-no*[xu’(§—n(s))—1]

where u = (D29)/|| D27] is a unit vector and x =
|| D27 |l is the curvature of 5 (-) at s. Now, putting the
above in the approximation

D,l,[s] = D?1L,[s](s — §) + R,
= -D?l,[s]1(§ —s) + R, + R,

where R, and R, are lower-order remainder terms
yields

DL [s1=ne?[xuT (3 —n(s)) —1](5—s) + R, + R,.

The variable n?2u”(Y — #5(s)) is distributed as
N(0, 02) (under the true value s) so that when the
remainders are ignored there is, with T being the
MLE of s,

Vo(Dl[s]I T = §) = na™%k*(§ — s)*

Finally, since i(s) = ¢72(D,;5)"(Dyn) = ¢72, the lim-
iting relative information loss of the MLE is found by
taking the expectation and passing to the limit while
noticing that no~2(§ — s)? is asymptotically x 2:

lim i(0)'[ni(0) — i"(6)] = o°«*

where T is the MLE.

This argument could be made rigorous, but the
general result for an arbitrary regular efficient esti-
mator, a result which involves statistical and mixture
curvatures rather than ordinary curvature, has been
established by a somewhat different derivation. As-
suming Fisher’s assertion that the limiting informa-
tion loss is minimized by the MLE was correct (and,

of course, it was), the “result” above already shows
how the model determines the least limiting informa-
tion loss. For linear models the MLE is sufficient and
there is zero loss of information, and also zero curva-
ture. As the model becomes more curved, however, the
MLE is less able to summarize the sample. Also, the
factor o appears in the expression: as ¢ decreases, the
probability increases that the observation Y will be
near 7(#), and in terms of the limiting information
loss, the curve effectively becomes more nearly linear.

The basis of the alternative derivation is an expan-
sion of the score function using the local reparameter-
ization (0, «). From ni(8) = i‘"*(9) and i T2 9) =
i“1D(9) + i7(#) it is apparent that, as in the analysis
of efficiency, the loss of information will depend on
the amount of information in A given T. This is the
average information in A given T = ¢, averaged over
T, and the set T' = t is A,. Thus, the shape of the
auxiliary space will once again play a major role. The
simplest case of the general result is the following.

Suppose T is a regular efficient estimator for a one-
dimensional imbedded Normal nonlinear regression
model where the ambient full Normal exponential
family has dimension k = 2; then the limiting relative
information loss at 6 € O is

lim i(0)7'[ni(8) — i"(0)] = o%k* + (%) ok2

where « is the curvature of the curve n(-) at 6 and «,
is the curvature of A, (i.e., A, with ¢ = ) at « = 0.
This says that there is a remarkably simple decom-
position of the relative information loss into two com-
ponents. The first is inherent to the model and does
not depend on the estimator used, while the second is
determined by the estimator. Both are products of ¢2
and squared curvatures: as ¢ decreases, the statistical
effect of curvature diminishes, the curves effectively
straightening out in the local statistical sense of
the result. For the MLE, A; is the set of possible ob-
served values that would lead, via the likelihood
equations (least-squares, in this case), to 6, ie.,
A; = {n: (n = 7(0))"Dy (@) = 0}. Thus, A; is a line
segment in N, so that x, = 0, which verifies Fisher’s
claim in this restricted context: the MLE minimizes
the information loss.

The generalization to curved exponential families
requires an additional regularity condition: the Edge-
worth density approximation must converge uni-
formly to the true density of the sample mean Y. A
sufficient condition (Feller, 1966, Section 16.2) is that
foralln € N, E, (exp(it” Y)) ? be an integrable function
of ¢t for some p = 1. This rules out discrete distribu-
tions, and a counterexample was given by Efron (1975)
in the multinomial case. (Although the existence of
such counterexamples must have been known to ear-
lier workers, it is very nice to have a clear prescription
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in the literature: it is a reminder that moments of
asymptotic distributions can differ from limits of cor-
responding sample moments, and it also furnishes a
counterexample to the Koopman-Pitman-Darmois
theorem in the discrete case.) The remainder of the
discussion will be carried out assuming this condition
is satisfied.

Suppose @, is a one-dimensional imbedded expo-
nential subfamily of a two-dimensional regular full
exponential family ¢ and T is a regular efficient
estimator for § € ©. Then the limiting relative infor-
mation loss of T based on iid sampling from &, is

(3.6) lim i(8)7'[ni(6) —i7(0)] = v* + (Y2)B?

where v is the exponential curvature of &, at § and 8
is the mixture curvature of A, at o = 0. Note that in
the nonlinear regression context we have y = ox and
B = ok,. The exponential and mixture curvatures
measure curvature in a statistical sense, adjusting for
standard deviation. From this result, the exponential
curvature may, in general, be considered a measure of
the insufficiency of the MLE, while the mixture cur-
vature of the auxiliary space quantifies the deficiency
of other estimators.

In the general case, in which the dimension of & is
k = 2, the expression for relative information loss
remains the same with

3.7) B2= 3 g*g"((dijn)n, Bumn)

Lkl

where the indices correspond to components of «,
g™ is the (i, k)-element of the asymptotic covariance
matrix of the auxiliary statistic A (based on Fisher
information for (0, a) at a = 0), the derivatives are
taken with respect to components of the auxiliary
coordinates and evaluated at « = 0 and the normal
components and norms are based on the information
inner product at (8, ) for o = 0 (with normal meaning
normal to the auxiliary space A;). Reduction of
this expression to the previous one when k& = 2 is
immediate, since then the mixture curvature is
NI Dapl™ - |(DZp)n|l and the asymptotic variance
of A becomes || D u | 2

Equation (3.6) is a one-parameter version of a
multiparameter expression derived by Amari (1982b).
I will comment further on it in Section 3.5. It is
clear, though, that the result provides verification of
Fisher’s claim in the case of one-dimensional curved
exponential families: the limiting information loss
is minimized by the MLE since A, = {u € U:
(p — p(8))"Dyn(0) = 0} is flat in M, so that the
derivatives 9;; u in 8% vanish and 8* = 0 in this case.

To conclude this section, I note that the argument
used (by Amari) to derive the tensorial form of (3.6)

involves an expansion of the score function,
n~"Dyl,[66] = (Dyn)" (Dyp)(8* — 6o)
+ X (Dgn)" (Do) et

+ %(Den)T(Dﬁu)(é’* — )

(3.8)
+ X (Don)" (Doe,u) (0% — o)

1
+ 5 2 (Dan)T(Da,ajﬂ')aiaj
LJ

+ R(6*, «)

where T'(y) = 6*. The asymptotic expectation of the
conditional variance, conditional on T, gives the de-
sired result according to (3.5). Omitting details, the
outline is clear. First of all, after conditioning on T,
the variances of the first and third terms (and cross-
product terms involving these) vanish. The second
term vanishes because of the orthogonality relation,

0 = (Dyn)" (Do;pt)

which is equivalent to (Dyu, Dop ). = 0, and is
required for efficiency of the estimator (as in Section
3.3.1). Differentiation of this equation produces

(3.9) (Dyn)" (Dgape) = —(D3n)" (Do)

which allows conversion of the fourth term in (3.8) to
a summation involving D27, and this leads to the
curvature v 2 The fifth term leads to 82

3.3.3 Information Recovery

The quantity 82 appearing in the expression for
information loss is invariant in the sense that it does
not depend on the choice of coordinates for the aux-
iliary space A,. In this subsection, A will be trans-
formed to simplify the fourth term of (3.8), so that it
will be apparent geometrically that a one-dimensional

_ statistic (the first component of A) may be used to

recover the information lost by the MLE. Then, an
explicit expression for this statistic will verify Fisher’s
second claim (see Section 3.1.2).

We first transform A so that D, u is made orthogo-
nal, and then rotate the result so that the first column
is in the direction of (D;7)y. Using (3.9), we then
have

(Dyn)" (Dyap) = —(Din)" (Do) - 81

where §;; is 1 if i = 1 and 0 otherwise, and the fourth
term in the score function expansion (3.8) becomes

E(Da’ﬂ)T(Daa[#)(a* — 0o)a;

(3.10
= —(Dyn)(Da ) (0* — o).
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This is especially interesting: suppose T is the MLE
so that the normal components of D,,. oy vanish. Then,
from the discussion following (3.8), the only term
contributing to the limiting information loss is (3.10).
It is apparent, however, that conditioning on (T, A;)
rather than T alone will make the conditional variance
of this term vanish. Thus, the limiting information
loss of (T, A,) will be zero.

To obtain A, explicitly, assume that T' = 6 is the
MLE. Note that A, may be regarded as a vector
space of vectors with tails at u(6), i.e., Ay = u(0) +
fu — p(0): (xg — p(0), Dyp),e = 0}. Pick an ortho-
normal basis v,(f), ---, v,—1(f) for this space (i.e.,
for Ay — p(0)) in such a way that the v;(0)’s vary
smoothly with 6. For instance, Gram-Schmidt ortho-
gonalization could be used with the existing basis
vectors D, p. The resulting coordinate system will
then be (0, a;, - - -, ar—;) with the «;’s defined by

p— p(0) = Za;0;(0)
and, writing u = u(0) + Za,v;(6), this implies
Dalﬂ = U

where v, = v, (f). Decomposing D2 5 into its tangential
and normal components D.n = (DZn)r + (DZn)n,
to require D, 7 to be in the direction of (D2 7)y is to
require

Don = b(0) - (Djn)y

where b(f) is a number. Now, from the orthogonality
of the basis,

ay = (U1, p— pu(0))u0)
= (Do p, 0 — p(0)),0)
= (Do, )" (p — u(8))
= b(0)(Dyn) y(r — n(6)),

but for any vector w tangent to N, at n(6) there is
wT(u — p(8)) = 0 and, in particular,

(Din)7(n — u(8) =0
so that
a; = bO)(Dyn)"(n — n(0)).

For definiteness, and for subsequent use, we choose
b(@) so that || Donll,e = 1, which yields b(0) =
[£(8)y(8)]*. Now, to define the corresponding statistic
we let A; = a;(y) so that § = 6= T(y) and we obtain
the explicit form

Ay = [i@)y @I D)7 (F — ud)).

To get the interpretation of A; in terms of observed
information, notice that the second derivative of the

loglikelihood is

DiL,[0] = n(3 — u(6))"(Din) — n(Dyn)"i(n)(Dyn),
the second term of which is ni(6), so that
(311) A = —[ni(@)y(O)]'[L,6) — ni(6)].

This verifies Fisher’s claim that observed information
may be used to recover the information lost by the
MLE. In addition, the choice of b(8) = [i(8)y(0)]*
to normalize D, 7, so that the asymptotic variance of
n'?A, is 1, has two further consequences. First, since
the asymptotic density of n'/?4, is standard Normal,
the score function based on n'/?4A; is of order
O(n~?) and, therefore, the Fisher information i“:(9)
is of order O(n™'). Using lim ni(8) — ‘T4 (0) = 0,
which was noted earlier in this subsection, together
with property (v) of Fisher information (from
Section 3.1.3), we obtain

lim ni(8) — i7'“1(0) = 0

which is a fuller substantiation of Fisher’s claim (see
Amari, 1985; Skovgaard, 1985). Second, from the
expression (3.11) we get another interpretation of the
statistical curvature v. In addition to its representing
the insufficiency of the MLE, it is also the asymptotic
coefficient of variation of the observed information.
(This was suggested by Pierce in his discussion of
Efron (1975) and was proved by Efron and Hinkley
(1978).)

3.4 A Few More Facts about Curvature

3.4.1 Efron’s General Formula

A formula for v that holds outside of curved expo-
nential families is available. Within curved exponen-
tial families, using

Dyl = (y—u(8))"Dyn,
Djl,=(y—p(8))"Din— (Dyn) Ti(n(8))(Dyn)
there are
Vi(Dyly) = (Dyn, Dyn )05
Covy(Dyly, Dglv) = (Dyn, szl)nw),
Vo(Djly) = (Djn, Din )y,
so that
v(0)

(Dim)ns (DEn)n Yooy ({Dom, Do Yp0)) >
1(0)*(Din — (Din)r, Din — (Dyn)r)y0)
(3.12) =i(0)*[(Dim, Dyn)yy
—((Din)r, Din)rYoo]
=1i(0)2[V,(D2ly) — i(0)"*Cov,(Dyly, D31y)).
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The last formula may now be applied whenever the
quantities are defined. Of course, statistical curvature
remains invariant with respect to reparameterization
for general families.

Efron also pointed out that any regular parametric
family can be apprqoximated at a point 6, by a curved
exponential family having the same loglikelihood de-
rivatives at 6,. Specifically, in terms of a loglikelihood

L,(0) = log(p(y10)),
P(y|n) =exp[l,(6o) +m
- Dly(8o) + - -+ + m - D*1,(60) — ¢(n)]

with exp[y (n)] being a normalizing constant, defines
a density in an exponential family of order k (where
the derivatives D’l,(6,) are the components of the
sufficient statistic). The specification n(6) = (6 — 6,,
(*£)(6 — 60)%, - -+, (1/k!)(6 — 6,)*) then defines a one-
parameter curved exponential subfamily. The loglike-
lihood derivatives satisfy D’(log p(y|n(-)))(6s) =
D’1,(8,) and, since p(y|n(6o)) = p(y|n(6o)), their
moments at 6, agree with those for the original family.
Thus, the calculation of statistical curvature using the
geometrical formula of Section 3.2.3 for the approxi-
mating family agrees with that using the general for-
mula (3.12) for the original family.

An interesting example is the ¢, location family, for
which Efron (1975) calculated v2 = 6(3»% + 18v +
19)/[v(v + 1)(v + 5)(v + 7)]. For the Cauchy, v = %-.
Here is one of my favorite pieces of trivia. Suppose we
ask which distribution in the t, family is half way
between Normal and Cauchy on the statistical curva-
ture scale (the scale of sufficiency loss of the MLE).
For Normal v = 0, while for Cauchy v = (52)"2. Thus
we seek v such that v = (%2)"/2/2. There is no reason,
a priori, that v should turn out to be an integer: it
merely has to be a number greater than 1 (» = 1 for
Cauchy, v = o for Normal). The answer is » = 3. Thus,
in the sense of insufficiency of the MLE, as measured
by statistical curvature, the t on 3 degrees of freedom
is halfway between Normal and Cauchy. (This sup-
ports the intuition behind the choice of t; tails in
many robustness studies, such as Rogers and Tukey
(1972).) g

3.4.2 Other Applications

Statistical curvature appears in many second-order
formulas. Here I give four additional examples of its
occurrence.

Second-order efficiency. Rao (1961) introduced a
definition of second-order efficiency of an estimator
T based on the ability of a quadratic in T — 6 to
approximate the score function. Rao (1963) then in-
troduced a second definition based on asymptotic risk
for squared-error loss (see also Rao, 1962; Hodges and
Lehmann, 1970; Ghosh and Subramanyam, 1974;

Efron, 1975; Ghosh, Sinha and Wieand, 1980; Lindsay,
1988). Suppose the bias of T may be expanded and,
with lim n - E,(T — 6) = b;(0), define the “bias-
corrected” version of T by

T=T—-n"1.b(T).

As a loss function for use in asymptotics consider
L(T, 6) = g(ﬂ)(T — 0)°. Then, if T is efficient we have
n - E,(L(T, 0)) > 1 and

n

(3.13) limn?- E0<L(T, 9) — 1) =y’+ 6>+ w?

where
(3.14) w?= Dyl ™ - 1 (DGu)rll

with respect to the information inner product on u.
Note that  is analogous to v except that p is sub-
stituted for n and the tangential component is
substituted for the normal component. Equation
(3.13) is a special case of (3.19) below. I should note
that Rao did not include the factor i(f) in the loss
function (nor have subsequent authors in interpreting
his result).

Deficiency. As an alternative measure of insuffi-
ciency, Le Cam (1964) defined the deficiency of an
estimator T in terms of the distance between the joint
distribution of the sample Y and the best reconstruc-
tion of it based on T followed by a randomization.
Letting P, and P, denote these two distributions,
Skovgaard (1985) derived the inequality

n - sup(P,(B) — P,(B))* < v

where the supremum is taken over all Borel sets B in
the sample space.

Large deviations. Fu (1982) demonstrated a role for
statistical curvature in the study of estimation via
large deviations (see also Fu and Kass, 1984). Define

B(T,e)=lImn" - log P{i(0)(T — 0)*>¢},
B(6, &) =inf{K(0*,0):i(8)(0* — 0)>> ¢},

‘where the infimum is over 6* and K(0*, 6) is the

Kullback-Leibler number. The quantity B (6, ¢), which
is often called the Bahadur bound, satisfies B(0, ¢) =
B(T, ¢) and thus bounds the exponential rate of con-
vergence of consistent estimators. The difference be-
tween B and 8 may be expanded in a Taylor series in
e. Carrying out the expansion, Fu (1982) found that
for efficient estimators the first three terms (involving
¢, ¢2, and ¢°) vanish and

1
lim ¢ ™*(B(6, ¢) — B(T, ¢)) = r v®
e—0

with equality holding when T'is the MLE. (Fu actually
did not use :(#) in the definitions of 8 and B, so i ()
appeared instead in his result.)
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The Fisher scoring algorithm. The Fisher scoring
algorithm is an iterative procedure for computing the
MLE when an explicit analytical expression is un-
available. Its sequence of iterates has the form

(3.15) Or1 = Ox + G(01) " Dol 0]

with the particular choice G(6,) = ni(6,). In general,
an algorithm producing a sequence defined by (3.15)
for some G is called Newton-like (or pseudo-Newton
or sometimes quasi-Newton) because when G(0) =
—Djl,[6], (3.15) defines Newton’s method.

Newton-like alternatives to Newton’s method are
used to avoid computation of a second derivative or
to improve global behavior. In doing so, they may fail
to provide local convergence (though in practice this
can usually be fixed) and they sacrifice some finishing
speed: both convergence and limiting rate of conver-
gence are governed by the quantity

A= |G, 0) - G@)I.

When 0 < A\ < 1, the sequence (3.15) is locally conver-
gent (i.e., converges to a root of the likelihood equa-
tions for any sufficiently close starting value) with
limiting rate of convergence

lim 21— 01y
k—>0 I 0k — 0 '

When A = 1, however, (3.15) is not locally convergent
(see Ortega and Rheinboldt, 1970).

In the case of the scoring algorithm, A takes an
interesting form (Kass, 1983; Smyth, 1987). From
(3.11), for a curved exponential family we have

A=v(@) - |[(3—p@)Th]

where 71 is the unit normal vector in the plane spanned
by Dy and D%y at n(é). Whether or not the scoring
algorithm converges and, if so, how fast, thus depends
on two quantities: the statistical curvature of the

model and the component of the residual in the first

and second derivative plane (the osculating plane).

- 3.5 Generalizations

'To generalize the results, multiparameter curved
exponential families, together with auxiliary spaces
associated with estimators, are needed and then the
score function expansion may be carried out as before.
If a regular k-dimensional exponential family & is
given the structure of a smooth manifold, then a
subfamily &, is an imbedded exponential subfamily or
a curved exponential family if it forms an imbedded
submanifold of the full family. This can also be de-
scribed in terms of a parameter space 0 as in Section
1.2.3. Estimators now must map into © in R™ and to
be regular they must be of full rank m (in addition to

being smooth) on some neighborhood of p(6,) in the
family’s representation M, within the mean-value pa-
rameter space M. The existence of an auxiliary space,
and a coordinate decomposition (6, «), in a neighbor-
hood of u(6,) is again ensured.

3.5.1 Scalar Curvatures and Information Loss

The presentation of results on information loss and
recovery in Section 3.3 used limiting relative infor-
mation loss, since this quantity is invariant to repa-
rameterization. As a multidimensional analog, I will
consider the limiting scalar relative information loss of
an estimator 7', defined to be the limit of the trace of
the matrix i () '[ni(8) — i"(0)]. Since both i(f) and
i7(9) transform according to the change of variables
formula (e.g., i(£) = J Ti(0)<J, where oJ is the Jacobian
matrix D.0), the scalar relative information loss is
also invariant.

I will not bother to write out the score function
expansion in terms of (6, «), which generalizes (3.8),
but some explanation of notation is needed: g” is the
(i, j)-component of the inverse of the information
matrix for (0, «) at a = 0; following Amari, I will let
Latin indices a, b, ¢, d refer to components of 6, while
Greek indices 7, 8, «, A will refer to components of «.
The generalization of (3.6) then becomes

(3.16) limtr(i(8) [ni(0) —i"(0)]) =2+ (%)B*

in which

(8.17) ~*= bZ 8°8" - ((8aon)n, (BeaM)N Y
a,b,c,d

(3.18) pB*= 52 878 - ((Brs )Ny ()N Vu

where 82 is exactly as in (3.7) and v? is analogous,
with the normal components (1)~ and (d.4m)ny and
their inner product being taken with respect to the
information inner product at (6, «) for « = 0.

The statistical interpretation of the result is as
before: the scalar information loss is minimized for
any estimator having zero normal component of 9.;u
for all = and §; in particular, it is minimized for the
MLE. The quantity 72, which may again be called the
statistical curvature, is a measure of the insufficiency
of the MLE.

3.5.2 Asymptotic Risk and Bias

Other results generalize similarly. As a loss function
for the multidimensional problem, it is simplest to use
L(T, 6) = (T — 0)"i(0)(T — 6). The limiting risk then
satisfies

limn - E(L(T,0))=m
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whenever T is efficient, and then, with 7" being the
bias-corrected version of T, we have

(3.19) limn?- [E(L(T, 0)) —%] =v2+ B>+ w?

where

(8:20) = ¥ £°g°((dasht)T) (Oca )1 )p(0)-
a,b,c,d

The right-hand side of (3.19) is also equal to the

limiting trace (minus m) of the covariance matrix of

T relative to the ﬁrst-ozder covariance [ni(0)] 7}, i.e.,

lim n - [tr(ni(d) - Var(T)) — m].

The quantity «® is defined analogously to ~?
with the tangential component of d,,u replacing the
normal component of d,,n. It is invariant to affine
transformations of the parameter space but, unlike
v?, w® is not invariant to more general changes of
parameterization.

By permuting the indices in the inverse information
matrices appearing in (3.17), we obtain an alternative
reduction of the three-way array (9.;7)n,

m*y%= 3% g%g“((dwn)n, (Ocam)n )
a,b,c,d

which will be interpreted in Section 3.5.5. A quantity
analogous to 7> may also be defined,

m2‘52 = 2 gabng< (aabﬂ)Ty (acdﬂ)T )u(l))’

a,b,c,d

and this is directly related to the asymptotic relative
bias of the MLE (or any other estimator having min-
imal information loss),
Lim(E(f - 0))"(ni(0))(E(6 - 0))

= (Vm?@>.
Equations (3.19) and (3.21) follow from the matrix
(tensorial) form of the results given by Amari (1985,
equations (5.4), (5.11), (7.11)).

Finally, I should note that Kumon and Amari (1988)
have found that vy* and 4 ? play a role in determining
the loss of power of efficient tests. Readers should be

aware, however, that those authors use slightly differ-
- ent notation and terminology.

(3.21)

3.5.3 Statistical Curvature in General Families

It is also straightforward to generalize Efron’s for-
mula for curvature in a general parametric family.
Writing [ for the loglikelihood from a single observa-
tion and

Ka,bc = COV(bal, abcl)9
Kab,cd = COV(aabl, deal)

and continuing to use g® to denote the (a, b)-compo-
nent of the inverse of the Fisher information matrix,

we have

’)’2 = ) g*“g bd<Kab,cd -8 q Kab,ich,j> .

a,b,c,d ij

Meanwhile,. Amari (1987) has given a very nice con-
struction (of an appropriate “Hilbert bundle”) to show
how curved exponential families “approximate” gen-
eral families, thereby formalizing a suggestion of Efron
(1975) described here in Section 3.4.1.

3.5.4 The Use of Scalar Curvatures

Information loss could be studied in its matrix (ten-
sor) form lim [ni(8) — i”(0)], as could asymptotic
variance. This is the way Amari, following Reeds
(1975) and Madsen (1979), has chosen to work. There
is, of course, more detail in the matrix than in its
invariant trace, so results in matrix form produce
those in scalar form as corollaries. Though the tenso-
rial form opens the door to investigation of directions
of information loss, I have not seen any research along
these lines. (The “directions” would not correspond to
interesting combinations of parameters, but rather
alternative one-parameter subfamilies; directional loss
functions would seem more promising.) I have pre-
ferred to state results in terms of scalars mainly be-
cause I find them simpler, the invariance of a number
with respect to reparameterization being more imme-
diate than the remark that an array defines a tensor.
In addition, the scalar curvatures appearing above
will be compared with nonlinearity diagnostics in
Section 3.5.6.

3.5.5 Interpretation in Nonlinear Regression

The geometrical interpretation of v is partly appar-
ent already, but more can be said. As in the one-
parameter case (and by definition), all of the curvature
information is contained in the normal components
of the second derivatives. The question is how this
three-way array may be usefully summarized.

Consider the special case of nonlinear regression,
that is, Y ~ N(n, ¢2I,) with n = (8) € N,, where I,
is the k-dimensional identity and N, is an m-dimen-
sional imbedded submanifold of N = R*. Here, N = M
and the information inner product is the usual Euclid-
ean inner product except for a factor of ¢72 An
especially simple form for v2 at a point 5, € N, occurs
if we assume that at 7, the parameterization 6 of N,
is orthonormal with respect to the Euclidean inner
product on the space to N, at 7,; this means that
8ab = (Oam, 0N Yyy = 0 2(am, )’ =072+ 85 (072 if
a = b, 0 otherwise) where (-, -)” is the Euclidean
inner product. Then, letting A/, be the j th component
of the vector (d.,7)y Wwe have
(3.22) v2=106%-3% 3 hihl,.

ab j
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In this form, it is apparent that v is ¢ times a squared
magnitude of the three-way array of normal compo-
nents of second derivatives. If h were a vector having
components h’ with respect to the usual basis, its
squared Euclidean magnitude would be Y; h'h'; if h
were a symmetric matrix with components hi., a com-
monly-used squared magnitude would be tr(hh”™) =
Y.:; W, k). Furthermore, since the normal components
of the tangent vectors 9,7 are zero, (d.,n)n satisfies
the same transformation expression as the informa-
tion matrix when a change of parameters is made.
Thus, the expression (3.17) for y? is invariant with
respect to reparameterization; it provides the general
expression for this “squared magnitude” just as
Y g,;h‘h’ provides the general expression for the
squared length of a vector.

There is another invariant reduction of the normal
second-derivative array, which plays an important
role, along with v2, in the geometry of surfaces. Just
as y?2 was considered above to be a generalization of
o2 times tr(hh”) when h was a matrix, this other
scalar quantity is a generalization of ¢® times tr(h)>
In the orthogonal case of (3.22), it becomes

m2y? = g% . z( h;)(Z h{m)

which is a special case of m2?4? defined in Section
3.5.2. Here, v2 is the squared length of the mean
curvature vector of the surface. The difference between
these two quantities

(3.24)

(3.23)

r= m2,}-/2_ 72

is the Riemannian_scalar curvature of the surface.
Both ¥ and r are fundamental in the study of subman-
ifolds in Riemannian geometry.

Thus, in the nonlinear regression context, the sta-
tistical curvature v2 may be interpreted as a squared
magnitude of the array of normal components of the
second derivative of n (with respect to the information

metric or, equivalently, ¢2 times the squared magni- °

tude with respect to the Euclidean metric); it is one of
~ two basic scalar invariant summaries of this array.

3:5.6 Curvature Measures in Data Analysis

The discussion of curvature throughout Sections 3.3
through 3.5 has involved statistical theory rather than
methodology. In nonlinear regression, however, var-
ious measures of curvature have been proposed to help
diagnose poor performance of asymptotic approxima-
tions due to the nonlinearity of the regression surface
7(0). Following Beale (1960) and Bates and Watts
(1980), these are usually basgd on summaries of the
second derivative array D25 (), which would have all
entries zero in the linear case. There arises then the

question of how these measures of nonlinearity are
related to the scalar summaries discussed earlier.

The nonlinearity measures of both Beale and Bates
and Watts are based on normal and tangential com-
ponents of the second derivatives of curves c,(t) =
70 + tv) at c(0) = n(f), where v is a vector in R™,
which are sometimes called “lifted lines.” By analogy
with ordinary curvature, as in (1.2), the normalized
length

kn(©) = e O~ - I (e (0wl

is then taken as a measure of curvature of the surface
at n(A0A ) in the direction of the tangent vector ¢/ (0) =
D5 (8)v. Here the inner product is Euclidean, but note
that with respect to the information inner product,
the squared length of v is (v, V), = 2 - || ¢;(0) ]2

Bates and Watts used the maximal value of (xy(v))?,
over vectors v, while Beale used the integrated average
of (kn(v))?, over the sphere {v: || ¢;(0)]] = 1}. (In each
case, these numbers were multiplied by a convenient
constant.) These measures are invariant with respect
to the parameterization 6 used to calculate them.

The quantity

kr(©) = e (7 - (el (Ol

analogous to kx(v), is used in the same way (by finding
the maximum or by averaging) by these authors. Its
properties make it suitable for defining the effects of
parameterization: measures of nonlinearity based on
kr(-) are affine-invariant, that is, invariant with re-
spect to affine transformations of the parameter space,
but not generally invariant. Affine invariance is desir-
able geometrically because affine transformations pre-
serve linearity (or nonlinearity) and it is desirable
statistically because they preserve Normality.

Authors subsequent to Bates and Watts (1980) have
used their notation and terminology for the second-
derivative array after suitable affine transformation
of the coordinates. Let £ coordinates be obtained from
the usual Euclidean coordinates for R* by first trans-
lating so that the new origin is at 7(6), then rotating
so that the first m coordinates and last k — m coordi-
nates are, respectively, tangent to and normal to the
surface 7(0) at n(#); ¢-coordinates for the surface are
then obtained from a linear transformation of 6, so
that the first derivatives of ¢ (or n) with respect to ¢
are orthonormal tangent vectors. Then

1/2 &
0¢;09¢;

where s is the sample standard deviation. The m X
m X m array of tangential components is A” and the
m X m X (k — m) array of normal components is A”.
Bates and Watts called the associated curvatures “pa-
rameter-effects” and “intrinsic” curvatures. I prefer

Qjjp =8 -m
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here to call the latter “imbedding” curvatures, because
the conventional differential geometry terminology
reserves the label “intrinsic” for properties that do not
depend on the imbedding in R*.

Using the A"V array, the statistical curvature in
(3.17) evaluated at the least-squares estimate becomes
YP=co® - ¥ (@)’

b,c,\
where ¢/ = s . m'”? is the constant scaling factor
used by Bates and Watts, and A is summed over the
k — m normal-component indices. Meanwhile, as
noted in Section 38.5.5, the squared length 42 of the
mean curvature at 0 is

2
m*’y* =ce® - ¥ (2 abbx>
A b
where X is again summed over the normal-component
indices. The two measures could both be used to assess
nonlinearity and, in fact, the spherical mean squared
curvature of Beale (in terms of his quantity N,) is

4 M N¢=m2')-/2+272

where ¥ and y are evaluated at the least-squares
estimate. This follows immediately from the defini-
tions of 42 and v? together with equation (2.29) of
Bates and Watts (1980).

By analogy, as in Section 3.5.2, the tangential com-
ponents may be summarized by w? or &2, using the A”
array,

w?® =co® - 2 (abcd)29
b,c,d

2
m2(52 = 50’2 . 2 (2 abbd>
d b
where d is summed over the m tangential-component
indices. The tangential spherical mean squared cur-
vature of Beale (using his symbols N, and N, ) becomes

4. (N() - N¢) = m20-)2 + 20)2

where @ and « are evaluated at the least-squares
estimate. -

By virtue of the results in Sections 3.3.2, 3.4.2 and
3.5.2, these simple relationships may be considered
additional motivation for the curvature measures pro-
posed by Beale (and, less directly, for those of Bates
and Watts). Other connections to inferential quan-
tities were provided by Hougaard (1985), who gave
bounds on the magnitude of the bias and skewness of
the least-squares estimator, and on the magnitude of
the expected third derivative of the loglikelihood, in
terms of parameter-effect curvatures. (See also Cook,
Tsai and Wei, 1986, for further discussion of bias.) A
correction factor for likelihood-based confidence re-
gions based on imbedding curvature was proposed by

Beale (1960). Further work in this vein was under-
taken by Hamilton, Watts and Bates (1982), while
McCullagh and Cox (1986) gave some geometrical
interpretation of Bartlett’s correction, showing that it
involves v and 42, and contrasting it with Beale’s.

The malady that is supposed to be diagnosed by
curvature measures, poor performance of asymptotic
approximations, is not limited to nonlinear regression.
One might hope that analogous measures could be
developed for other problems. One possibility would
be to use the a-connections, mentioned in Section 3.6,
to define more general measures.

I must comment, however, that for an investigator
who takes a likelihood or Bayesian approach to infer-
ence, these curvature measures have little direct rele-
vance to the analysis of a given set of data. If we
assume a quadratic approximation to the loglikelihood
function will form the basis for inference, then, for a
diagnostic to be convincing in its data analytical use,
a decrease in its value would have to indicate an
improvement in inferences based on the quadratic
approximation to the loglikelihood for the data at
hand. Summaries of the third derivatives evaluated at
§ become conspicuous candidates for this purpose.
Letting £°° be the (a, b)-component of the inverse of
observed information and evaluating the third deriv-
atives at 0, the quantities

32 = 2 gadgbegcf * aabcl * adefl9

a,b,c,d,ef

ngz = Z gabgdegc/ * aabcl * adefl

a,b,c,de,f

are invariant with respect to affine transformations.
This makes them suitable for comparing alternative
parameterizations. In the Bayesian approach, the log
posterior [ may be substituted for the loglikelihood,
and the posterior mode § may be used as the point at
which the derivatives are evaluated, with §° becoming
the (a, b)-component of —D?[ (). The measures B
and B would then be used to diagnose inaccuracy of

" the “modal approximation” to the posterior, which is

the Normal distribution centered at § with variance
—D?[(f)7". (That is, they diagnose inaccuracy of the
quadratic approximation to I.) B and B are applicable
to general models.

A little manipulation shows that the quantities B
and B bear a formal resemblance to » and &, with 9yl
replacing ((8q1) 7). and §° replacing g®. In fact, there
is an interesting Bayesian analog to the expression for
the relative bias of the MLE given in (3.21). Letting
6 = E(0|y) be the posterior mean of 6, I will call
6 — 8 the posterior bias of the mode §. For diagnostic
purposes, it is a Bayesian counterpart of the bias of
the MLE 6 — 0 in the sense that it indicates inaccuracy
in the centering of the Normal distribution used
for approximate inference. From an order O(n~?)
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expansion of 8, as in equation (2.7) of Kass, Tierney
and Kadane (1988), the relative posterior bias of the
mode~ (~relative to the posterior information matrix
—D2[(9)) is

(@ —8)"(=D?1())(0 — ) = (V)m*B?

with an error of order O(n~2). That is, the role of B?
in the leading term of the asymptotic expansion of the
relative posterior bias of the mode is exactly analogous
to the role of @? in the leading term of the asymptotic
expansion of the relative bias of the MLE. Although
B and B have not, to my knowledge, been studied, a
related diagnostic was discussed by Jennings (1986)
in the context of logistic regression.

3.6 The Role of Affine Connections

I have alluded to the non-Riemannian geometrical
foundation for the curvature measures v and 8. The
reason such a structure is required may be seen by
considering the trinomial model, while recalling that
the statistical curvature of a one-parameter subfamily
@y is | Dyn|| ™2 - |(Din)n| where the information
inner product defines the normal component and the
norm. The quantity || Dy» || is easily understood using
the information metric: Dy is a tangent vector written
in terms of n; the choice of 7 is irrelevant in the sense
that for any other parameterization ¢ of the trinomial
we have || Dy¢ll, = | Domll,,, where &, = £(6,) and
7o = 1n(6y) (see (3.3)). In contrast, the length of the
normal component of the second derivative depends
on the parameterization of the ambient space; for
instance, || Dy || 72 - || (D: )~ || is a mixture curvature,
which is distinct from the statistical curvature. Fur-
thermore, if we were to define curvature of curves
relative to.the information geometry, then curves with
zero curvature would have to correspond to great
circles on the sphere representing that geometry, given
by (2.2). That would be inconsistent with statistical
curvature: the Hardy-Weinberg model is an exponen-
tial family, having zero statistical curvature, but does
not form a great circle on the sphere (2.2). This is an
example of the way statistical curvature uses a deriv-
ative calculation that is not naturally compatible with
the information metric.

The appropriate foundation for the curvature cal-
culations given here involves a pair of affine connec-
tions, the exponential connection, denoted by v, and
the mixture connection, denoted by v. In general, affine
connections determine the calculation of derivatives
(of vector and tensor fields). Within exponential fam-
ilies, curvatures calculated using v correspond to the
use of the natural parameter space, while curvatures
calculated using v correspond to the use of the mean-
value parameter space. Thus, the formulas of Section
3.5 did not explicitly use these connections, but alter-
native versions would (e.g., as in Amari’s work).

The exponential and mixture connections were
identified by Dawid in his discussion of Efron’s 1975
paper. A one-parameter family of connections based
on these, called the a-connections was introduced by
Amari (1982a). They had been discussed previously
by Centsov (1972) in the discrete case and have been
studied in some detail by Amari (1985, 1987) and
Lauritzen (1987); see also Kass (1984) for a comment
on their interpretation in terms of various parameter-
izations. The resulting curvature formulas for sub-
manifolds have been derived by Vos (1989); these
show, in particular, that the relationship of v and ¥
to the Riemannian scalar curvature, mentioned for
nonlinear regression models in Section 3.5.5, requires
modification for general curved exponential families.
This is one of many ways that the a-connection
geometries are subtle.

3.7 Related Work

In his 1975 paper, Efron noted a role for statistical
curvature in hypothesis testing: the locally most pow-
erful test tends to perform more poorly as the curva-
ture increases (see also the comments to that paper
by Ghosh, 1975, and by Pfanzagl, 1975). This subject
was analyzed in greater depth by Amari (1985) and
Kumon and Amari (1983, 1988).

Kumon and Amari (1984) studied problems involv-
ing infinitely many nuisance parameters (see also
Amari 1985, 1987a). The same authors (Amari and
Kumon, 1983; Amari, 1985) also developed the use of
tensorial Hermite polynomials in Edgeworth series for
the distribution of (T, A), and related distributions,
where A is an auxiliary statistic associated with the
estimator T (as described in Section 3.3). Related,
though rather different, is work on expansions by
Barndorff-Nielsen and his colleagues, which begins
(Barndorff-Nielsen, 1986a, 1987a) with the introduc-
tion of a Riemannian metric based on observed infor-
mation rather than expected information, and has led
to a generalization of tensors called strings (Barndorff-
Nielsen, 1986b; Murray, 1988).

Eguchi (1983) used geometrical analysis to show
that many of the good asymptotic properties of the
MLE are shared by certain minimum contrast esti-
mators. He also showed (Eguchi, 1984) that, in curved
exponential families, estimators are second-order ef-
ficient if and only if they minimize the expected length
of the residual vector (with respect to the information
inner product). Working within the setting of curved
exponential families, Moolgavkar and Venzon (1987a,
b) proposed and studied confidence intervals defined
in terms of the Riemannian geometry of the family
inherited from the ambient exponential family, based
on the information inner product at the MLE. Vos
(1988) used geometrical methods to discuss influential
observations in exponential-family regression models.
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4. CLOSING COMMENTS

In this paper, the geometry of asymptotic inference
has been motivated, primarily, as an attempt to better
understand Jeffreys and Fisher. There is an obvious
historical interest in doing so, and it is worth contin-
uing to examine Jeffreys’ and Fisher’s theories for
aspects that remain relevant to current views of the
discipline. The development here, however, should not
be construed as an accurate account of the evolution
of ideas in the literature. In particular, relatively little
of the published work on information metric Rieman-
nian geometry evolved from Jeffreys’ use of it; most
appears to have roots in the paper by Rao (1945).
Meanwhile, the “main result” of Efron (1975) seems
widely considered to have been the geometrical inter-
pretation not of Fisher’s definition of information loss,
but rather of second-order efficiency, as defined by
Rao (1963). (This was apparently the point of view of
Efron, and was the chief concern in the generalizations
by Reeds (1975) and Madsen (1979); Amari has given
considerable attention to information loss, however.)
In addition, my narrow focus has surely not done
justice to the depth and breadth of the research in
this area. I recommend Barndorff-Nielsen, Cox and
Reid (1986) and the recent IMS monograph (Amari,
Barndorff-Nielsen, Kass, Lauritzen and Rao, 1987) as
starting points for further reading. A rather different
line of interesting recent research using geometrical
methods in inference is reviewed by Johansen and
Johnstone (1989).

I have also emphasized invariance. We often think
of geometrical arguments as being driven by pictorial
representations. The relations among objects that may
be represented in pictures, however, are those that do
not require coordinate description. Although it is not
easy to say precisely what constitutes geometry within
statistics (indeed Chern (1979) has noted that it is not
easy to say what constitutes geometry within mathe-
matics), in the most fundamental sense used here
geometrical results are those that do not necessitate a
choice of parameterization. Their geometrical nature
is most apparent when they are stated in terms of
invariants as in Section 3.5, or with the use of
coordinate-free symbolism, in the manner indicated
in parts of Sections 2.3 and 3.6.

In presenting the material here, I have freely added
a number of critical remarks and made both implicit
and explicit suggestions for future research. As should
be apparent, I find the geometrical arguments re-
viewed here to be of interest first and foremost as an
aid in understanding basic statistical theory, and
many of them can be readily appreciated without
detailed knowledge of differential geometry. While
differential geometry provides a helpful perspective
on asymptotic theory for regular, parametric families,

I do not yet perceive a basis for a claim that differential
geometrical research has made inroads into a large
class of problems that is otherwise unreachable. On
the other hand, I believe that the methods are so
powerful, and the ‘connections with statistics so plau-
sible, that some further developments, of great meth-
odological importance, might well occur. Exposure to
the ideas outlined in this paper, and available in the
literature, may accelerate that process.
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