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range of possible choices for A, which allows the
construction of good algorithms for many different
types of statistical models.

This brings me to the question of choice of algo-
rithm, or, in the case of iterative weighted least
squares, the choice of the matrix A. The choice of
algorithm depends very much on the expected use of
the algorithm, and there is a world of difference be-
tween an all-purpose algorithm and an algorithm tai-
lored for a specific application. For example, the
Fisher scoring algorithm may be considered a good
general algorithm. However, in many specific appli-
cations, it is easy to find better algorithms, for example
the algorithms based on the deviance weights or score
weights mentioned above. Another example is the case
of a convex objective function, for which the Newton—
Raphson algorithm is the natural choice for a general
algorithm. However, if the objective function is close
to being nonconvex, as is the case for example for the
hyperbolic distribution mentioned in Jgrgensen
(1984), the Newton-Raphson algorithm may become
unstable, and, again, one of the two algorithms men-
tioned above may offer a more stable performance. An
extreme case of this is L;-estimation, where the New-
ton-Raphson algorithm fails, whereas the algorithm
with score weights may be used.

Finally, I want to point out that our understanding
of the relative performance of algorithms is still, at
best, incomplete. I believe that the study of conver-
gence, as practiced in the mathematics of optimiza-
tion, is a fairly crude and incomplete tool for the
understanding of the performance of algorithms, at
least for statistical algorithms. For example, I have,
until now, never seen a satisfactory explanation of the
fact that Fisher’s scoring algorithm works extremely
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weighted least squares (IWLS), in which the response
vector Y is assumed to have a diagonal covariance
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For purposes of exposition this distinction seems
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well in the case of generalized linear models, as ex-
emplified by GLIM. I have rarely seen an example of
a generalized linear model where the algorithm di-
verges, in spite of the fact that no steplength calcula-
tion is performed (in GLIM), and the number of
iterations to convergence is, in the majority of cases,
around three to five. This is in contrast to the case of
more general, non-exponential, models where the
Fisher scoring algorithm may become excruciatingly
slow, even when a steplength calculation is included.
To draw a parallel, the simplex algorithm for linear
programming is known to perform much better in
praxis than expected on the basis of a worst-case
analysis. Not surprisingly, at least to a statistical
audience, a more complete understanding of the effec-
tiveness of the simplex algorithm was obtained only
after a probabilistic analysis of the algorithm was
performed (cf. Borgwardt, 1987 and references
therein). Similarly, I suspect that our understanding
of the performance of iterative weighted least-squares
algorithms will remain incomplete until a probabilistic
analysis of the algorithm has been undertaken.
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to justify the usage of two four-letter acronyms. For
numerical purposes, however, the savings in compu-
tational effort and organizational overhead resulting
from the assumption of independence are very sub-
stantial. Thus, as the title suggests, the most useful
distinction relates to computational organization
rather than to conceptual issues.

ESTIMATING EQUATIONS VERSUS
MINIMIZATION CRITERIA

del Pino is correct in his claim that the generaliza-
tion of Gauss-Markov estimation is most naturally

&4

Statistical Science. NINORY

www.jstor.org



ITERATIVE GENERALIZED LEAST SQUARES 405

expressed in geometrical terms as in (7.3) rather than
in algebraic terms as the solution to a minimization
problem. In essence (7.3) asserts that the residual
vector must be orthogonal to the tangent space of M
at the maximum likelihood point. It is not immediately
obvious that any minimization is involved. What fol-
lows is an attempt to reconcile these two points of
view.

The generalized Gauss—-Markov estimator given by
del Pino in equation (7.3) may be written in the form
U(B;y) = 0, where

(1) U(B;y) =DV (y — u(B)).

In this notation, points in the manifold M are ex-
pressed in the form u(8) = E(Y; 8), where 8 is a p-
dimensional vector. The tangent space of M at u(8)
is spanned by the columns of D, where D;. = du;/d8,.
Thus generalized Gauss-Markov estimates or quasi-
likelihood estimates are obtained as the root of what
Godambe (1976) and Godambe and Thompson (1989)
call an optimal linear estimating equation. The esti-
mation equation, but not the estimate itself, is linear
iny.

If the components of U are denoted by U,, it is
ordinarily the case that

3U, , 9L,
a8, 9B,’

even though their expectations are equal. Thus, unless
some conditions are imposed on the functional form
of the matrix V, U(8; y) cannot be the gradient vector
with respect to 8 of any scalar function. It is neither
necessary nor sufficient that V be diagonal. It is
unclear to me what statistical implications the asym-
metry in the derivative matrix might have.

Although U(8; y) cannot, in general, be the gra-
dient vector of a scalar function, it is nevertheless
possible to express the root of (1) as the solution to a
minimization problem. We simply define @(8; y) to
be the squared length of the projection of (y — u) on
to the tangent space of M at u(8). The appropriate
projection matrix is

) Py, =DDTV'D)'DTVL
The weighted squared length of Py (y —)u)‘ is
QB;y) =(y —u)"'VI'Py(y — n)

) = UT(D’V'D)"'U.

This function is strictly positive except at the roots of
(1). By contrast, as del Pino points out, minimization
of Pearson’s statistic

3) X (w;y) =(y —w)'Viy —p)

with respect to 8 does not ordinarily lead to consistent
estimates, claims to the contrary by Berkson (1980)
notwithstanding.

Note that (3) depends only on the point u € R", but
not otherwise on the manifold M. By contrast, (2)
depends not just on u, but on the tangent space of
M at u.

For the purpose of setting approximate confi-
dence limits or approximate Bayesian intervals for 8,
or components thereof, it is tempting to treat
~%Q(B; y) as if it were a log-likelihood function.
Thus, if there are no nuisance parameters, the ap-
proximate confidence set for 8 is

{8: Q(B; y) < x}.}

at level 1 — . In many cases this procedure gives
sensible results. For example, the statistic has desir-
able invariance properties, and the x 2 approximation
for Q(B; Y) is often quite accurate. There is, however,
at least one undesirable property of the method that
may be important in small samples. If the likelihood
function is such that it has a minimum as well as a
maximum, and if (1) is in fact the log-likelihood
derivative, then (1) will have two roots, 8 and 3. By
construction Q(8; y) is zero at both roots even though
the likelihood at 8 may be negligible compared with
the likelihood at 8. Thus regions based on small values
of (2) may include the least plausible parameter points
as well as the most plausible points. In large samples
these regions should be well separated, and no confu-
sion should arise. In small samples the two regions
may overlap, making it more difficult to present un-
ambiguous results.
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