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Rejoinder

Richard L. Smith

My thanks to all six discussants for their comments,
which have focused attention on a number of issues
raised by the paper. In my reply I have attempted to
classify what the major issues are, dealing with the
individual discussants’ points under those general
headings.

1. IS THERE REALLY A TREND?

Given the emphasis of the paper and the practical
importance of the question, it is not surprising that
several discussants have focused on this issue, and
Raftery has provided an enlightening alternative
analysis.

Let me first remind the reader of my own conclu-
sions on this question. The evidence for a downwards
trend is by no means clear-cut. Fitting model (4.1)
with estimated (; yielded nothing at all. A likelihood
ratio test based on split data (Section 5) also failed to
produce a significant result, though, as Raftery points
out, it would have been worth trying some more par-
simonious forms of the alternative hypothesis. Only
the calculation of exceedance rates in Table 4 pro-
duced any solid evidence for a trend, and even there
it is hard to be sure about their significance. This may
indeed be rather a weak conclusion but I think it fairly
reflects the evidence in the data.

Raftery has proposed an alternative analysis based
on the point process of exceedances of a fixed level.
By concentrating on cluster means and employing a
time transformation to take account of both seasonal
effects and the missing data, he creates a data set for
which the null hypothesis of a homogeneous Poisson
process would be reasonable, and he then tests this
against the alternatives of: (1) a log-linear decay in
the intensity, and (2) a change-point model. The evi-
dence against homogeneity is stronger using the
change-point alternative than a log-linear decay, but
still “not worth more than a bare mention.”

I think this is consistent with my own conclusions.
Indeed, merely from the data in Table 5 it is possible
to carry out a likelihood ratio test of whether the
Poisson rate is the same over the two halves of the
data. For exceedances of level 16, I obtain a deviance
statistic (nominally x?) of 3.36, while, based
on exceedances of level 20, the corresponding value is
1.74. Again, this is some evidence but hardly very
strong.

As a technical aside, a full development of Raftery’s
analysis would presumably take account of the fact
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that the seasonal variation itself depends on estimated
parameters. This would be tedious but straightforward
to incorporate into the analysis of model (1), but model
(2), with its nonregular features, may pose more
problems.

The real import of these conclusions, however, can
only be assessed in comparison with similar analyses
carried out at other sites. My understanding is that
ozone analyses at other sites in Texas have yielded far
more clear-cut evidence of downward trend than this
one. There is also an argument that the absence of a
clear upward trend is evidence in itself that air quality
regulations are having an effect. Thus it may be better
to focus on estimation of a trend rather testing for its
existence. In that case, the main message of the paper
would be not to look for a simple additive trend but
to measure it in terms of estimated exceedance rates
of high levels, in which case the evidence for a trend
may well depend on the level chosen. Fairley’s com-
ments reinforce this point; standard statistics such as
mean or median may not give an accurate indication
of what is happening at extreme levels.

2. FORMATION OF CLUSTERS

The other aspect which all the discussants mention
in some way is the local behavior of the series near
high exceedances. This can be subdivided into several
individual points.

Identification of clusters. The paper used a very
crude rule to identify clusters, and both Joe and
Singpurwalla queried the appropriateness of this. To
answer a point of Singpurwalla’s, if the clustering rule
failed to produce approximately independent clusters
then equation (3.6) would indeed not be valid. In

_ Smith (1984) and Davison and Smith (1989), an alter-

native method has been proposed based on assuming
the full point process of exceedances to be a simple
doubly stochastic process. However, the clustering
procedure proposed is very similar to the one in this
paper. One could also consider methods based on, say,
the Neyman-Scott or Bartlett-Lewis models for a
clustered point process. There is scope for more work
here. In the present study I do place considerable
weight on Table 3, but it is reasonable to ask what we
would do if the results were not so good, as might
indeed happen if there were longer clusters than there
appear to be in the present data set. In such cases, a
more careful treatment of the clustering problem
might well be required.
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Structure within a cluster. Having identified the
clusters, my analysis used just the times and peak
values, ignoring everything else that goes on within a
cluster. One way to extend this is to consider both the
size of a cluster (defined as the number of exceedances
within a cluster) and its length (time from first ex-
ceedance to last), Based on hourly data, the means are
shown in Table 1.

The extremal index mentioned by Weissman is
essentially the reciprocal of mean cluster size. As can
be seen, it does depend quite markedly on threshold
and cluster interval, so we are clearly not far enough
in the tail for the asymptotic theory mentioned by
Weissman to hold. Nevertheless, these statistics
should prove useful in assessing the broader impact of
the ozone exceedances.

There is an additional problem in going from hourly
to daily data. If I understand Chock’s point (men-
tioned by Joe) correctly, it is to query the appropri-
ateness of federal standards based on the total number
of days on which the standard is exceeded, when the
possibility of day-to-day dependence exists. My pro-
posed solution to this problem is as follows. By taking
a sample average over clusters, it is possible to esti-
mate the probability that a cluster contains exactly &
daily exceedances of whatever threshold is specified,
for each of k=1, 2, .... Combined with the Poisson
process of clusters, this then gives a compound Pois-
son distribution for the number of daily exceedances
per year (compare the theoretical results in Hsing,
Husler and Leadbetter, 1988). From this it is possible
to calculate the mean number of daily exceedances per
year, for any specified high threshold.

An even broader problem would be to describe the
full joint distribution of high values within a cluster.
The asymptotic theory has been given by Mori (1977)
and Hsing (1987), but the general representation is
very complicated, and depends further on the stability
which was just found to be lacking in the case of
extremal index. So far I have not pursued this, but it
would be a useful practical exercise to describe other
features of the structure of clusters.

Alternative approaches. The main alternative to the
clustering approach used in the present paper is to
" model the full process generating the data and then
to'calculate extreme value distributions from that. In

TABLE 1
Mean cluster size and mean cluster length

Threshold Cluster interval | Mean size =~ Mean length
8 72 11.2 59.7
8 24 7.3 22.2
10 72 6.8 37.7
12 . 72 4.7 27.1

view of the very extensive literature now existing on
extremes from stochastic processes, that ought to be
an attainable programme. However, there is a real
difficulty with deciding what stochastic models to fit.
Along with Joe, I reject the idea of fitting standard
time series models such as AR(1); even if the data are
transformed to fit the marginal distribution, the ex-
ceedance behavior of linear Gaussian processes is too
restricted to capture the clustering in the data. Joe’s
idea of using a first-order (nonlinear) Markov chain
is much better, and can be extended to a kth order
Markov chain. Jonathan Tawn, Sammy Yuen and I
have been looking at these ideas as an extension of
the multivariate extreme value theory of Smith, Tawn
and Yuen (1989). It represents an interesting alter-
native approach presenting many new questions of
both a theoretical and practical nature.

3. MEASUREMENT ERROR AND
RECALIBRATION

Fairley mentions a number of practical problems
with this kind of data set and implicitly asks whether
the analysis can be extended to take account of meas-
urement error. I am not aware of any theoretical
treatment of this, though there are certainly other
areas in which the problem arises, most notably in
oceanography. In what follows, I present a few tenta-
tive thoughts on how the problem might be tackled.

Suppose we write Y = X + ¢ where X is true ozone
level, Y is measured ozone and ¢ is an independent
random error. Following the ideas of the paper, we
might assume that the exceedances of X over a high
threshold follow the Generalized Pareto distribution,
calculate the convolution of that distribution with that
of ¢, and approximate the resulting distribution of Y
by another Generalized Pareto. If it were thus possible
to relate the extreme value parameters of X and Y,
that would provide a basis for inference about the
extremes of X using data on those of Y.

To take this further, we need to know something
about how to derive Generalized Pareto approxima-
tions. At present there is no established procedure for
this, but in Smith (1989) I have made one proposal
which is quite simple to understand and which turns
out to have good properties. Recalling that the idea
is to approximate {1 — F(u + y)}/{1 — F(u)} by
(1 — ky/o)'* (equation (3.5)), the proposal is simply
to equate the first and second derivatives at y = 0, in
other words to write

1/o = f(u)/{1 — F(u)},
(1-k)/e®=f"(u)/{1 — F(u)}

where F is a distribution function and f the corre-
sponding density. Note that the Generalized Pareto
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parameters ¢ and k& must be combined with 1 — F(u),
the probability of exceedance of the threshold u, to
obtain a full description of the tail behavior.

Now suppose F'is the distribution function of X and
G that of Y and suppose ¢ ~ N (0, ¢2) (the assumption
of normal errors is not needed but is conven-
ient for illustration). In the limit ¢ — 0 we have the
expansion

4

G) = F(u) + §F"(u) + % Fou) + . ..

and we can differentiate this to obtain corresponding
expansions for g(u) = G’(u) and g’(u). The assump-
tion that o is small seems reasonable since if the
measurement error were not very much smaller than
the variability of X there would be no hope of doing
anything worthwhile.

The difficulty with this is that to obtain even the
first-order approximations to g(u) and g’(u) we have
to go as far as the fourth derivative of F, so there is
no direct way of establishing a one-one correspond-
ence between F(u), f(u) and f’(u) on the one hand,
and G(u), g(u) and g’ (u) on the other. If we knew the
full distribution of X (say, normal or lognormal), then
it would be possible to use these ideas to relate the
extreme value limits of X and Y; but the whole spirit
of this paper has been to avoid making parametric
assumptions on the whole distribution. I therefore see
the need for a more powerful approach to modeling if
this problem were to be dealt with.

Fairley and Joe also mention possible biases caused
by recalibration. If the approach of the last four par-
agraphs were adopted, it might be possible to deal with
this aspect by varying the distribution of ¢ to take
account of known changes in the calibration proce-
dure. In the absence of that, I could only suggest a
deterministic adjustment. I was not previously aware
of this problem and do not know how it would affect
the Houston analysis.

Finally there is the disturbing question of whether
the supposed drift in extreme values could in fact be
due to errors in the data collection procedure. Both
Fairley and Raftery mention this possibility. In par-
ticular, Guttorp, via Raftery, makes-a specific sugges-
tion implying that the variance of individual
measurements might have decreased over the period
of the study.

In Table 2 I have computed standard deviations of
the original data, separately for each hour of the day
from 10 a.m. up to 6 p.m. (all the high exceedances
occurred during these hours), averaged over the years
1974-1980 and 1981-1986, and separately for periods
3 and 4 (dividing the year up into six 61-day periods;
I quote only periods 3 and 4 because these are the
most interesting for high exceedances). As can be seen,
the results support Guttorp’s hypothesis.

TABLE 2
Standard deviation for each hour

Period 3 Period 4
Hour
1974-1980 1981-1986 1974-1980 1981-1986
10 2.371 2.126 2.113 1.811
11 3.060 2.644 2.750 2.350
12 3.635 2.933 3.382 2.814
13 3.839 3.120 3.920 3.032
14 3.884 3.222 4.226 3.291
15 4.107 3.039 4.352 3.513
16 3.943 2.816 3.734 3.438
17 3.657 2.685 3.562 3.259
18 3.291 2.439 3.079 2.811

What effect might this have on the extreme values?
There is no direct way to check, but one might expect
the effect to increase the serial correlations, and this
might have an effect on probabilities of consecutive
high exceedances. The following analysis uses level
16, chosen because, of the levels considered in
Table 5 of the paper and in Raftery’s discussion, this
was the one which gave strongest evidence for a drift.
We could try computing the extremal index for each
year, as suggested by Weissman, but for this specific
problem it seems to me that only the lag-1 correlation
is relevant. Therefore I computed: (a) total number of
exceedances (not now cluster maxima), and (b) total
number of pairs of consecutive exceedances, on the
same hourly basis as in Table 2. In each case, the
results are expressed as mean number per year, as
seen in Table 3.

Perhaps the most meaningful way to summarize
Table 3 is in terms of the ratio of total number of
pairs of exceedances to total number of exceedances.
In Period 3 this ratio is .532 for 1974-1980, and .559
for 1981-1986. The corresponding figures for period 4
are .480 and .548. In each case there is only a very
slight increase.

In summary, Table 2 does show that there is a
decrease in variance, supporting Guttorp’s hypothesis.

"However, the attempt in Table 3 to see whether this

affected the correlation of extreme values was nega-
tive. Whether this is indeed the explanation of the
trend requires a more detailed examination of the
method of data collection, but it is clear that this
additional feature of the data needs to be taken into
account.

4. METHODS OF INFERENCE

In this paper, I have concentrated on the choice of
model rather than the method of inference and have
mostly been content with numerical maximum likeli-
hood for the latter. Weissman points out the stability
of the procedure with respect to the estimation of
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TABLE 3
Exceedances and pairs of exceedances
Exceedances per year in Pairs of exceedance per Exceedances per year in Pairs of exceedances per
period 3 year in period 3 period 4 year in period 4
Hour 1974-1980 1981-1986 1974-1980 1981-1986 1974-1980 1981-1986 1974-1980 1981-1986
10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
11 0.143 0.167 0.000 0.000 0.571 0.167 0.000 0.000
12 0.714 0.667 0.143 0.000 1.000 0.667 0.429 0.167
13 1.000 0.833 0.571 0.667 1.143 1.167 0.857 0.667
14 1.714 0.667 0.571 0.500 1.714 0.833 0.571 0.667
15 1.429 0.667 1.143 0.333 1.571 0.833 1.143 0.667
16 0.714 0.500 0.571 0.333 1.143 0.667 0.714 0.333
17 0.571 0.333 0.429 0.167 0.714 0.833 0.571 0.333
18 0.429 0.333 0.143 0.000 0.571 0.000 0.429 0.000

N-year return level. This is a reassuring feature of the
present data, but it is not always the case in this kind
of analysis. Davison and Smith (1989) have an ex-
ample, based on the River Nidd in the North of
England, where the precise opposite behavior is ob-
served! There is plenty of evidence that the asymptotic
properties of maximum likelihood can be a long way
from reality when applied to extreme value distribu-
tions (see, for example, Hosking, Wallis and Wood,
1985; Smith and Naylor, 1987), so we should be wary
and on the look-out for alternatives.

Singpurwalla, Raftery, and Pickands propose
Bayesian alternatives. Singpurwalla proposes this in
place of the maximum likelihood analysis of (4.2). In
principle I am sympathetic to this (see Smith and
Naylor, 1987, where an argument was made for the
practical efficacy of Bayesian procedures in problems
where the log likelihood is far from quadratic in
shape), though in the case of the present data I doubt
whether it would make much difference. Also I wonder
how realistic it is to try to obtain prior information
about the 8;s. Raftery’s Bayesianism is of a different
form, concentrating on Bayes factors as a means of
model selection. Raftery’s own work has done much
to draw attention to the usefulness of this concept,
especially in nonregular problems such as estimation
of a change point, and I would be interested to see
how far it can be taken in the extreme values context.
. Pickands’ proposal to correct the log likelihood for the
number of parameters is in similar spirit, though I am
assuming that the reader will mentally adjust for the
number of parameters in interpreting the quoted log
likelihoods.

I thank Joe for suggesting an alternative initializa-
tion procedure in the context of maximum likelihood.
Given the convergence difficulties that already exist,
this might well be useful.

5. SPATIAL ASPECTS

Fairley argues for the need to consider the spatial
distribution of ozone data. Apart from requiring data

at several sites, this also involves modeling spatial
variability in the analysis. Another field where spatial
aspects feature heavily is rainfall data; Reed and Dales
(1988) proposed methods of reconciling the point and
areal distributions of rainfall extremes and, in work
not yet written up, S. Neil and I have proposed an
alternative approach based on a model for spatial
extremes. Fairley’s comments, however, touch on a
variety of aspects relating to the spatial distribution
of ozone concentrations, and suggest a whole range of
both practical and theoretical questions. Perhaps the
main point we should be making as statisticians is to
emphasize the possible biases that can arise if these
effects are ignored, so that scientists and politicians
understand the need for extensive sampling.

6. LONG-RANGE DEPENDENCE

Joe refers to work of Hirtzel and Quon which sug-
gests that correlation persists at large time lags
(15-20 days) in ozone data, and Raftery mentions his
own paper with Haslett which has examined long-
range dependence as one of a number of issues in the
modeling of wind data, asking in particular what effect
this might have on an extreme value analysis.

In the specific context of the ozone data, I have not
examined this issue and agree that it is yet another
which would repay further study. On the broader
question of the effect of long-range dependence on
extremes, the only class of models for which the ques-
tion has been answered explicitly are stationary
Gaussian processes, and there the surprising answer
is that long-range dependence does not matter unless
it is very strong indeed. Specifically, if p, log n — 0
where {p,} is the correlation function, then the
asymptotic properties are the same as in inde-
pendent sequences (Berman, 1964). The cases where
pn log n — C with 0 < C =< o are another matter
(Mittal and Ylvisaker, 1975), but the standard long-
range dependence models such as fractional Brownian
motion and fractional difference processes have
polynomially decreasing correlation functions and
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therefore satisfy Berman’s condition. For general sto-
chastic processes the main condition is Leadbetter’s
Condition D (Leadbetter, Lindgren and Rootzén,
1983), which is essentially a mixing condition far
weaker than conditions such as strong mixing or ¢-
mixing used in central limit theory. On the basis of
these theoretical results, I think there is some justifi-
cation for ignoring long-range dependence, but the
precise effect of correlations such as those observed
by Hirtzel and Quon has not been determined and
would be worth exploring.

7. OTHER QUESTIONS

Singpurwalla asks whether there is a connection
with the point-process model of Ferguson and Klass.
I am not aware of any; the question asked by Ferguson
and Klass is a much broader one, namely how to
characterize all processes with independent incre-
ments lacking a Gaussian component. This indeed
leads to a Poisson jump process, but the jumps do not
have a parametric distribution. This would make the
statistical application of the model appreciably harder.

Singpurwalla also raises the questions of decision
making and control. I think he is actually making two
points here: first, the possibility of short-term fore-
casting and control, and secondly, the need to consider
more general measures of extreme value behavior.

The first of these points is not entirely germane to
the problem under study here, though in other con-
texts (e.g., when to sound a flood warning) it could be
highly relevant. The main work in the existing liter-
ature is Lindgren’s on the “Slepian” model and its
extensions for high-level exceedances of continuous-
time processes (e.g., Lindgren, 1985). However, an
analysis based on the stochastic properties of the
exceedance clusters would represent an entirely dif-
ferent approach and deserves to be explored. Singpur-
walla is kind enough to mention my paper with Miller
which attempted one version of this, via a state-space
model for extreme value distributions, but the class of
models we proposed is very restrictive. It is not easy
to generalize the class of models without losing the
exact Bayesian predictive analysis which Miller and I

"were able to provide.

The second point is very important and is also
implied by Fairley in his comments about the health
effects of ozone. Is it sensible to formulate legislation
purely in terms of the number of crossings of a fixed
high level? I think not. The approach of this paper
would lend itself very well to the calculation of other
functionals of the point process of high-level exceed-
ances, and I would certainly like to see this aspect
explored.

Finally, I agree entirely with the desirability, men-

tioned by several discussants, of including covariates
in the analysis and would see this as a strong area of
future development.

8. SUMMARY

The discussion has drawn attention to many aspects
not mentioned, or only glossed over, in the paper. I
would regard the point-process approach as merely
the starting point; once this is accepted as a basic
approach, there are many possibilities to extend it to
incorporate other features of practical importance. In
particular, the discussion has drawn attention to the
need for more detailed modeling of short-range time
dependence (clustering) and has suggested problems
related to spatial aspects.

Fairley’s final sentence raises an important point
about how statisticians should approach such prob-
lems. It is undeniable that, however powerful the
statistical technology used to tackle these questions,
there remain very real uncertainties about the final
conclusions. If statisticians use this as an excuse to
avoid the problems, they are leaving the field open to
others less qualified to address the real difficulties.
My view of the duty of statisticians is that they should
answer the questions as best they can, while making
clear the inherent uncertainties about their answers.
In certain circumstances, this may indeed result in a
declaration that no meaningful answer can be given
to a certain question.
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