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Extreme Value Analysis of Environmental
Time Series: An Application to Trend
Detection in Ground-Level Ozone

Richard L. Smith

Abstract. Several methods of analyzing extreme values are now known,
most based on the extreme value limit distributions or related families. This
paper reviews these techniques and proposes some extensions based on the
point-process view of high-level exceedances. These ideas are illustrated
with a detailed analysis of ozone data collected in Houston, Texas. There
is particular interest in whether they is any trend in the data. The analysis
reveals no trend in the overall levels of the series, but a marked downward

trend in the extreme values.
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1. INTRODUCTION

The traditional and best-known method of analyz-
ing extreme values is based on the extreme value
limiting distributions. These distributions, originally
introduced by Fisher and Tippett (1928), arise as
limits for the distribution of maxima in samples of
independent, identically distributed random variables.
In environmental applications, such as predicting ex-
treme foods or sea levels, they are generally applied to
the annual maxima of the series, though occasionally
they are also applied to maxima over a different time
period such as one month. The classical reference on
these methods in Gumbel (1958), though there are
a number of more recent proposals for fitting the
distributions (e.g., Prescott and Walden 1980, 1983;
Hosking, Wallis and Wood, 1985).

In recent years a number of alternative approaches
have been studied. One method is to look at exceed-
ances over high thresholds rather than maxima over
fixed time periods. The idea of looking at extreme
value problems from this point of view is very old, but
the modern development seems to have started around
1970 with the “Peaks Over Threshold” or “POT”
method (see, e.g., Todorovic and Zelenhasic, 1970),
and further propounded in the English “Flood Studies
Report” (NERC, 1975). This was paralleled by the
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mathematical development of procedures based on a
certain number of extreme order statistics (Hill, 1975;
Pickands, 1975; Weissman, 1978; to mention just
three) and the Generalized Pareto distribution as a
stable distribution for excesses over thresholds
(Smith, 1984; Davison, 1984; Hosking and Wallis,
1987; Davison and Smith, 1989). Another approach,
which partly combines the classical and threshold
approaches, is to take a fixed number of order statis-
tics from each year and to fit the appropriate ex-
treme value distribution for the joint distribution of
largest order statistics (Gomes, 1981; Smith, 1986;
Tawn, 1988).

In this paper, ideas of extreme value theory are
applied to the study of ozone in Houston, Texas.

‘There has been much publicity recently of the ozone

depletion problem in the upper atmosphere, but
ground-level ozone is also a topic of considerable en-
vironmental concern, since excessive levels of ozone
are taken as indicative of high air pollution generally.
This is reflected in the formulation of U.S. air pollu-
tion standards in terms of the rate of exceedance by
the ozone content of a specified threshold level (12
parts per 100 million). The current standards permit
no more than three exceedances of this level in any 3-
year period, but in a number of U.S. cities, including
Houston, this standard is far from being met and the
task of regulatory bodies such as the Texas Air Control
Board is to introduce measures to reduce the frequency
and level of high exceedances. The major contributory
factors to the ozone problem are factory emissions
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and vehicular exhaust, but the condition is exacer-
bated by particular meterological conditions, hot still
weather being the worst from the point of view of
allow high ozone levels to build up.

Extreme value theory has previously been used as a
tool in studying air pollution problems (e.g., by Sing-
purwalla, 1972; Horowitz, 1980). This is partly because
extreme values are of particular interest in assessing
the impact of high air pollution, and partly because
air-quality standards are formulated in terms of the
highest level of permitted emissions. Roberts (1979)
also reviewed the application of extreme value theory
to air pollution problems and discussed further the
role of statistical concepts in formulating air-quality
standards. However, most existing methods are based
on the traditional “annual maximum” approach to
extremes, whereas the threshold approach to the sta-
tistical analysis has not so far been very well developed
in this context.

The present paper takes the form of a case study.
The data consist of hourly measurements of ozone
over a 15-year period, and the problems of interest
concern such issues as estimating the frequency with
which specified high levels are exceeded, and espe-
cially whether there is any evidence of the frequency
changing over the period of the study. The data feature
many of the problems common in applying extreme
value methods to environmental time series—short-
range correlations, seasonal variation and the need to
test for long-term trend—as well as the additional
complication of missing values brought about by the
measuring equipment being out of service for periods
of anywhere between a few hours and a month. The
combination of these features is such that none of the
methods above is directly applicable; instead I propose
a broader approach emphasizing the point-process
viewpoint of high-level exceedances. This includes all
the preceding methods as special cases and illustrates
the wide applicability of extreme-value procedures.

The point-process approach to extreme value prob-
lems has been emphasized, though in quite different

ways, in the books of Leadbetter, Lindgren and"

Rootzén (1983) and Resnick (1987), but both of these
books are concerned primarily with the probabilistic
rather than statistical aspects of extreme value theory.
The present paper is intended to draw attention to
the versatility of this approach and to discuss the
practical problems present in any application of this
nature.

2. THE DATA

The data consist of hourly readings of ozone in
Houston, Texas from April 1973 to December 1986,
nominally 119,905 values. Of these values, however,

24,472 (about 20%) are missing from periods when the
equipment was out of service.

An earlier analysis of similar ozone data was per-
formed by Davison and Hemphill (1987). That paper
proposed models for the frequency of exceedances over
a fixed threshold, justifying that approach on the
grounds that air pollution standards are defined in
that way. However, in cities such as Houston, where
the legal threshold is exceeded very frequently, atten-
tion shifts to how best to control the problem. In
assessing this, it is important to consider also the
magnitudes of the exceedances. Particular interest is
focused on whether there is any long-term trend in
the results, since this may indicate the success or
failure of the Air Control Board’s efforts.

A histogram of the right-hand tail of the raw data
is shown in Figure 1. Units are parts per 100 million,
and the range of the histogram is from 12 to 34 (largest
value). A raw histogram is, however, misleading as an
indicator of how frequently high levels occur, partly
because of the seasonality inherent in the data and
more expecially because extreme values tend to occur
in clusters.

The latter point suggests trying to identify clusters
of high-level exceedances with the intention of con-
centrating on cluster maxima for the rest of the analy-
sis. Some procedure of this form is standard in
applications of the POT procedure mentioned in Sec-
tion 1, but there is no universally accepted method for
identifying the clusters. It is possible to take a model-
based approach; for example, Smith (1984) used a
doubly-stochastic model for the point process consist-
ing of the times of high-level exceedances. More sim-
ple-minded approaches, however, seem to work just as
well in practice. Such an approach is the one adopted
here.

The approach taken to identify clusters consists of
specifying a threshold and a cluster interval. Two
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exceedances of the threshold which are closer together
than the cluster interval are deemed part of the same
cluster, but when the time interval between successive
exceedances is longer than the cluster interval it is
considered that the old cluster has finished and a new
one begun. In this way, clusters are defined and cluster
maxima established. The threshold and cluster inter-
val are both to some extent arbitrary, but the sort of
considerations which go into their choice will become
apparent from the subsequent discussion. In any case,
it is recommended that different values be used for
comparison.

For most of the analysis in this paper, a threshold
of 8 (parts per 100 million) was adopted. This was
chosen so as to be high enough to exclude the great
bulk of the data which are of no relevance for ex-
tremes, but still to include enough data to allow de-
tailed statistical analysis. Initially a cluster interval of
24 hours was chosen, this representing the rough
intuitive judgment that exceedances further apart
than that could be treated as effectively independent.
When clusters were formed using the procedure just
outlined, however, it was found that there were still a
number of instances where only a few days separated
clusters, so the procedure was repeated with a cluster
interval of 72 hours. This produced more satisfactory
results, and a cluster interval of 72 hours was adopted
for most of the following analysis.

Figure 2 shows a histogram of cluster maxima
formed by this procedure. The shape is very different
from Figure 1, with a much longer tail reflecting the
fact that very large values are much more likely to be
cluster maxima than only moderately large values.

A number of other plots were drawn to try to iden-
tify which features of -the data were important.
Figure 3 shows a boxplot of the mean number of peaks
per month, calculated for each month of the year. As
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expected, there is a strong seasonal variation, with
high values throughout the summer months through
to October. However, there is also wide variability in
the estimates, as indicated by the interquartile ranges
and whiskers. Figure 4 shows a similar plot based on
the mean excess over the threshold, i.e., the difference
between mean cluster maxima and the threshold. This
also shows a strong but irregular seasonal pattern.
Finally, in an attempt to make an initial judgment
about long-term trend, the numbers of exceedances
and mean excesses were plotted for each month over
the period of the data, in Figures 5 and 6, respectively.
Superimposed on these plots are moving averages to
estimate the deseasonalized trend. These were calcu-
lated by applying a moving average filter to the
13 months centered on that point (Kendall, 1973,
page 38). There is one prominent outlier in each plot
but no other visual indication of any long-term trend.
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3. EXTREME VALUE MODELS

This section reviews classical extreme value theory,
leading up to the point process viewpoint which is
used as the basis of the statistical method in Section
4. The initial discussion is restricted to independent,
identically distributed (iid) random variables, though
© later that restriction will be removed.

Suppose X;, Xo, is an iid sequence with
common distribution function F, and M, =
max(X;, ---, X,). Classical extreme value theory
looks for normalizing sequences a, > 0, b, such that
(M,, — b,)/a, converges in distribution, so that

Pr{(Mn - bn)/an = x}
= F™(a,x + b,) — H(x),

where H is a nondegenerate distribution function. The
convergence in (3.1) occurs if and only if

(3.2) n{l — F(a,x + b,){ = — log H(x).

(3.1)

Following the theory originally developed by Fisher
and Tippett (1928) and Gnedenko (1943), it is known
that H must be one of three types of limiting distri-
butions. These three types may be combined into the
single Generalized Extreme Value distribution

(3.3) H(x; p, 0, k) = exp[—{1 — k(x — u)/a}"*]

valid on the range {x: 1 — k(x — u)/oc > 0}. Here
o > 0 and u, k£ may be any real numbers, the case
k = 0 being interpreted as the limit &k — 0,

(34) H(x; u, o, 0) = exp[—exp{—(x — u)/d}],

widely called the Gumbel distribution.

The parameter k is called the shape parameter and
may be used to model a wide range of tail behavior.
The case k < 0 is that of a polynomially decreasing
tail function and therefore corresponds to a long-tailed
parent distribution. The case & = 0 is that of an
exponentially decreasing tail, while & > 0 is the case
of a finite upper endpoint and therefore short-tailed.

The family (3.3) may be fitted to data by numerical
maximum likelihood, and an algorithm for this was
published by Hosking (1985). Of the alternative meth-
ods of fitting, the most serious competitor to maxi-
mum likelihood is the “probability weighted moments™
approach advocated by Hosking, Wallis and Wood
(1985). However, the latter is at present restricted to
single samples from a common distribution and is not
therefore suitable for the more complicated types of
modeling illustrated here. The regularity conditions
of maximum likelihood are satisfied when & < 0.5, and
alternatives are available when this condition is vio-
lated (Smith, 1985), but it is generally considered that
the condition k < 0.5 is valid for most environmental
applications.

The threshold approach is based on the distribution
of exceedances over a high threshold u (say). Given
that an observation exceeds u, the probability that it
exceeds by at least y is {1 — F(u + ¥)}/{(1 — F(u)}.
Under the same conditions as lead to (3.1), this may
be approximated for large u by the family

(3.5) G(y; 0, k) =1 — (1 — ky/o)"*

validon0<y<ow (k<0)oron 0<y<os/k(k>0).
This is the Generalized Pareto Distribution of
Pickands (1975). The case k = 0 is the exponential
distribution, which was used in all early applications
of the POT method. Its applications to hydrological
and air-pollution data have been discussed by Smith
(1984), Davison (1984) and Hosking and Wallis
(1987). Another approach is based on the joint distri-
bution of several large order statistics from a sample,
instead of just the maximum. This may be derived as
an extension of (3.2) and (3.3), or using point-process
arguments as given below. A procedure using this joint
distribution was proposed by Weissman (1978) in the
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case of a single sample of iid data, and subsequently
extended by a number of other authors. Smith (1986)
advocated an approach to hydrological data analysis
in which a fixed number r of largest values in each
year was taken, the joint distribution of r largest
values being fitted by maximum likelihood. This ap-
proach seems to improve on the classical (r = 1)
approach, but it is important not to take r too large,
as then the fit of the model is not nearly so good
(Smith suggested r = 5 as a reasonable compromise
for the data analyzed there). This method was ex-
tended by Tawn (1988), who also recommended de-
clustering the data before picking out the order
statistics.

The point-process approach to these problems was
originally introduced by Pickands (1971). Suppose
(3.2) holds for some normalizing sequences a, and b,.
Let X; ---, X, denote a random sample from F and
let Y,;=(X;—b,)/a,,i=1, ---, n. Let P, denote the
point process on %2 with points at (i/(n + 1), Yy,),
i=1, ..., n. The ordinates of P, will tend to cluster
near the lower endpoint of the (rescaled) distribution,
but away from the boundary the process will look like
a nonhomogeneous Poisson process. Weak conver-
gence of P, to a process P is easily established under
a topology which essentially excludes sets bordering
the lower boundary. The intensity measure of the
limiting process is derived from (3.2) and (3.3), as

Af(t1, t2) X (x, ®)}
= (t; — t)[1 — k(x — u)/o]"%,

whenever0<t; <t;, <land1—k(x —u)/d>0.

All the previously mentioned results in extreme
value theory may be derived from this representation.
For instance, the probability that (M, — b,)/a, is less
than x is just the probability that P, has no points in
(0, 1) X (x, «). Under the Poisson process limit with
intensity (3.6), this is precisely (3.3). The distribution
of the rth largest order statistic, or the joint distribu-
tion of the r largest (for fixed r as n grows), may be
derived almost as easily. The Generalized Pareto dis-
tribution may be derived from this approach as well:
the limiting conditional probability that Y,;, > u + y
given Y, > uis

A{(O,l)x(u+y,oo)}_[1_ ky ]lfk
A{(0, )X (u,®)} | o—ku+knu

which is just the Generalized Pareto Distribution on
replacing o in (3.5) by ¢ — ku + kp.

The statistical approach advocated in this paper is
based on viewing the high-level exceedances as points
of a Poisson process. The intensity function depends
on the parameters u, ¢ and k (which may themselves
depend on additional parameters such as the slope of
a trend) and may be fitted to the data by maximum

(3.6)

3.7

likelihood. Of course, in the statistical context we do
not know a, and b,,, but this is effectively taken care
of in the estimation of u and ¢. All the previous
approaches may be regarded as special cases of this
approach.

So far, the discussion has been confined to iid
sequences. Environmental data tends to depart from
this in two respects: first, in being heavily seasonal,
and second, in exhibiting short-range dependence
leading to clustering of high-level exceedances. As we
saw in Section 2, both of these features are very
strongly present in the data set under discussion. The
remainder of this section is devoted to a brief discus-
sion of how the ideas presented here may be modified
to take account of these features.

The theory of extreme values in dependent stochas-
tic processes has been very extensively developed
and is summarized in the book of Leadbetter,
Lindgren and Rootzén (1983) and the review article
of Leadbetter and Rootzén (1988). For stationary
processes, the classical extreme value laws (3.3) re-
main valid under a mild mixing condition (Leadbet-
ter’s condition D) which covers a very wide range of
processes. There is then a general relation of the form

(3.8) Pr{M, < x} = [F(x)]™

where 0 < § < 1 is a parameter called the extremal
index for the process. This is a measure of the amount
of clustering in the process, 1/6 being the limiting
mean cluster size. When 6 > 0, knowledge of 8 together
with F is all that is needed to determine the limiting
distribution of sample maxima.

Given a specific model, it is often possibly to verify
(3.8) and to calculate 6. In cases such as ours, in which
no specific model for the dependence is being consid-
ered, it seems reasonable to proceed directly by iden-
tifying clusters of exceedances and studying the
distribution of cluster maxima. The general theory
supports our approach by showing that the idea of a
limiting Poisson process of cluster maxima is valid
under very broad assumptions.

So much for stationary processes. What about non-
stationary sequences? In this case, the general theory
is much less helpful. Extreme value theory of inde-
pendent, non-identically distributed summands was
developed by Mejzler in the 1940’s (Galambos, 1987
reviewed this topic well), but the class of limiting
distributions is much too wide to be of use in identi-
fying parametric statistical models. Modern develop-
ments are due to Weissman (1975) for the point
process approach, and Husler (1986) for nonstationary
stochastic processes. In practical statistical terms, two
approaches have been considered for seasonal series.
One is to decompose the whole series into a sum of an
effectively deterministic seasonal component and a
random noise, the latter being assumed stationary.
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This idea was developed under the name of “joint
probability method” for separating out tidal and surge
effects in sea level studies (Pugh and Vassie, 1980); in
a different form it was also used by Smith (1984). A
recent extension of the joint probability method, in-
corporating modern developments in extreme value
theory, is due to Tawn and Vassie (1989). This ap-
proach seems reasonable when there is a strong phys-
ical mechanism underlying the seasonal variation, as
is obviously the case with tides. In other cases, how-
ever, including the example under discussion here,
there is no reason to suppose that a simple decompo-
sition will work. The second approach which has been
tried, and is of broader utility at the cost of more
parameters, is to allow all the parameters of the proc-
ess to be seasonally dependent. This approach is the
one adopted here.

4. STATISTICAL PROCEDURE

In this section a detailed procedure is described,
which is motivated by the general discussion of Sec-
tion 3.

It is assumed that the data have already been
declustered using a procedure similar to that in Sec-
tion 2, so that the data under study are maxima of
clusters of exceedances over a high threshold. The
year is divided up into M-day periods where, for in-
stance, M = 31 for (approximately) monthly sections,
and a separate model fitted to each period. Thus, no
specific form of seasonal variation (such as a sinusoid)
is being assumed. Let N;; denote the number of cluster
maxima in period j of year i, and let Y;;, (for m
between 1 and N;;) denote the individual excesses.
Let p;; denote the length of observation (in years) in
period j of year i. The p;;’s are not all equal, because
of the missing data.

For period j of year i, let the extreme value param-
eters be u;j, o;, k. In the following discussion we
shall only consider models of form

(4.1) wij=o;+1f;, o;=0;, kj=k,

so that the parameters depend on i only through a

possible linear drift 8;, and in many instances this
will also be ignored. It is of course possible to test
other hypotheses, such as whether the k;’s are all
equal, within the general context of model (4.1).

For the data within period j of year i, the exceedance
times and excesses are taken to form a nonhomoge-
neous Poisson process with intensity measure given
by (3.6) with pu;;, o, k; substituted for u, o, k. With
the threshold taken as 0, the likelihood function is

L= H [exp{—pij (1 + Ejpij/a; )% }
i

4.2) N,
' mlll {1 =& (Yijm — i) /0, )% o }:l

Special cases such as k; = 0 (the Gumbel model) or
B; = 0 (no drift) may be derived from (4.2).

Estimation proceeds by minimization of —log L
using a Newton-Raphson or quasi-Newton iteration,
a routine for the latter being taken from Nash (1979).
Note that L factorizes on j, so it is possible to minimize
separately for each of the M-day periods. Even so, the
numerical minimization is nontrivial, and it was found
that the quasi-Newton method (in which second-order
derivatives are not calculated explicitly but an ap-
proximation produced by the algorithm) performed
better than a Newton-Raphson method based on exact
first- and second-order derivatives. It is not clear why
this should be the case, but there is certainly a diffi-
culty in that there are large regions of the parameter
space where the log likelihood is not concave, and it
is possible that in this region the performance of the
quasi-Newton algorithm is superior. Starting values
were obtained by using the method of moments to fit
a Gumbel distribution to the M-day maxima. The
maximized likelihood was then used to produce pa-
rameter estimates, with standard errors from the in-
verse of the observed information matrix, and
likelihood ratios for discrimination among different
models.

As a final part to this procedure, it is possible to
use the fitted model to estimate the mean rate of
exceedance in year i over a specified high level y. This
is given by

4.3)  7(y)=(M/365) T {1 —k;(y — i)/ o;}""

where the summand denotes the mean rate of exceed-
ance in period j. This, in turn, is multiplied by M/365,
the length in years of each period. An estimate of 7 (y)
and its standard error may be obtained directly from
the fitted model.

5. RESULTS

The model of Section 4 will now be applied to the
ozone data. There are still many decisions to be made
concerning the initial specification of threshold and
cluster interval, the length of the periods into which
the year is broken, and the relations among the various
extreme value parameters.

A first analysis was based on threshold 8, cluster
interval 72 hours and period M = 31 days, so that the
year is in effect being broken up into months. Table 1
shows the results of fitting model (4.1) with 8; = 0,
i.e., no trend. No fit was obtained for periods 1 and
12, but this is not surprising as the number of exceed-
ances in these periods was very small. For the remain-
ing periods, there is a strong seasonal pattern in the
location parameter «, but the other two, ¢ and k&, vary
haphazardly. Also shown is a + o(1 — 0.1%)/k, which
represents the value that would be attained once every
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TABLE 1
Parameter estimates for 31-day periods with no trend

Number of
Period observations a I3 k a+a(1-0.1%)/k

1 10 - - - —
2 12 15.0 (0.8) 1.0 (0.7) .66 (.46) 16.2
3 24 16.1 (0.7) 0.9 (0.4) 54 (.19) 17.3
4 28 23.5 (2.4) 2.7 (1.5) .29 (.24) 28.0
5 31 26.3 (1.8) 24 (0.8) 39 (.14) 29.9
6 33 25.8 (2.0) 2.7 (0.9) 31 (.14) 30.2
7 39 27.3 (1.4) 2.0 (0.6) 44 (.11) 30.2
8 35 25.3 (0.9) 1.1 (0.7) 64 (.19) 26.7
9 34 26.8 (3.5) 4.6 (1.8) 07 (.14) 36.5

10 31 25.3 (2.3) 3.0 (1.3) .28 (.19) 30.4

11 11 16.7 (2.5) 3.1 (1.4) 14 (.29) 22.8

12 6 — — — —

Standard errors in parentheses.

10 years on average, if the fitted model were valid over
the whole year. This and the value of a follow the
pattern expected from Figures 3 and 4, i.e., of a strong
seasonal pattern with a peak in the summer months
extending through to October. All the values of the
shape parameter & are positive and three are over 0.5,
the value at which the regularity of maximum likeli-
hood fails. The wide variation among the estimates
may reflect statistical variability more than anything
else, but the estimates do correspond to a short upper
tail to the distribution. It may be that this in itself
reflects efforts being made by the authorities to limit
the occurrence of very high levels.

As mentioned earlier, there is considerable interest
in whether there is trend in the data, so the models
were re-fitted including the §; parameters. Only in two
cases—periods 2 and 6—was a significant 8; found, in
both cases negative.

The results so far are hard to interpret. One reason
may be that the model is just overparametrized. It is
possible to reduce the number of parameters by break-
ing up the year into larger periods, so a new analysis
based on M = 61 days was tried. There is some doubt
over whether it is valid to combine periods 3 and 4, in
view of the results of Table 1, but otherwise it seems
reasonable. Results are in Table 2. .

To investigate sensitivity of the results to M and to
initial threshold and cluster interval, the same models
were fitted (without trend) to data based on eight
different initial choices, with results in Table 3. This
comparison is based on estimates of return values for
3, 10 and 50 years. The n-year return value is defined
as that value of y for which 7(y) is 1/n. This can be
estimated by evaluating (4.3) for many values of vy and
inverting. Those periods for which no estimates were
obtained were ignored in these calculations, noting
that, because they were in a part of the year when
ozone levels are lowest, it is unlikely that they would
have a significant influence on the calculations. As

can be seen, even for 50-year estimates there is very
little variability due to the initial choice of threshold
and cluster interval.

Table 3 shows good agreement amongst the point
estimates of return values, and this suggests that we
should also try to construct confidence intervals. In
principle, this can also be done from (4.3): we can
obtain a standard error and hence a confidence inter-
val for each 7(y) and can then invert the lower and
upper confidence bounds to obtain a confidence inter-
val for return value. However, this did not yield such
good results: for the model in Table 1, approximate
95% confidence intervals of (25.8, 30.3), (27.1, 32.3)
and (28.0, 40.8), respectively, for the 3-, 10- and 50-
year levels were obtained. These results are not so
satisfactory, which is one reason why in subsequent
analysis attention is focused on exceedance rates
rather than return levels.

So far, the investigation of trend has been inconclu-
sive. Even if there is a trend, however, there is no
reason to suppose that it has to take the form of a
linear additive trend, as required by (4.1). An alter-
native approach is to split the data into two parts and

- fit the model without trend separately to each. The

question is also raised by Table 2 of whether we could
assume a common k for the whole year. This could be
investigated by minimizing the negative log likelihood
under the assumption of fixed &, for several trial values
of k. Minimum values 101.0, 96.0, 92.8, 92.9, 97.5,
106.2 for k=0, 0.1, - - -, 0.5 were obtained, suggesting
strong evidence against k = 0 but little to choose in
the range 0.2 to 0.3. Trying & = 0.25 produced the
slightly smaller value 92.3. Therefore, both the “fixed
k” and “separate k” models were fitted both to the
whole data and separately to the years 1973-1980,
1981-1986 (M = 61) with the following results:

Separate k, full data:
Neg log likelihood 85.4 (18 parameters)
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TABLE 2
Parameter estimates for 61-day periods with no trend

Number of
Period observations a s k a+a(1—-01%/k
1 22 15.0 (0.6) 0.9 (0.4) .76 (.26) 16.0
2 50 21.1 (1.9) 3.2 (1.1) 12 (.14) 37.5
3 64 25.9 (1.3) 2.4 (0.5) .36 (.09) 29.8
4 74 269 (1.0) 1.9 (0.4) .46 (.08) 29.6
5 69 26.0 (2.1) 4.0 (1.0 13 (.10) 34.0
6 17 20.5 (3.1) 53 (2.5) —.05 (.28) 34.0
Standard errors in parentheses.
TABLE 3

Comparison of return values under different choices for threshold, clustering interval and period

Cluster
interval Period
Threshold (hours) (days) 3-year 10-year 50-year
8 72 31 27.4 29.7 334
8 24 31 274 29.9 33.7
10 72 31 27.2 30.0 33.9
12 72 31 27.2 29.8 33.8
8 72 61 27.8 29.5 35.9
8 24 61 27.6 30.5 36.4
10 72 61 21.5 29.9 33.9
12 72 61 27.6 30.3 34.6

All under three-parameter model for each period, no trend.

Fixed k = .25, full data:

Neg log likelihood 92.3 (12 parameters)
Separate k, split data:

Neg log likelihood 77.1 (36 parameters)
Fixed k = .25, split data:

Neg log likelihood 87.4 (24 parameters)

Based on standard likelihood ratio considerations,
there seems no reason to split the data but some
evidence against a common k.

It is also possible, however, to investigate estimated
exceedance rates under these models. These are shown
in Table 4 for three moderately high thresholds and a
number of different models. The results here are qual-
itatively quite different from those given for the pa-
rameter estimates: the distinction between “fixed k”
and “separate k,” for instance, does not now seem so
important, but it is remarkable that all the models
allowing for a trend (whether linear or by splitting
data) make substantially lower estimates for 1988 than
for 1973. It appears that the evidence for or against a
particular model is stronger when attention is focused
on a particular quantity of interest than when consid-
ered on the basis of the overall fit to the model.

Table 4 also raises the question of whether, in the
“fixed k” case, different values should be taken for
the two halves of the data. This was tried but with no
significant result.

To summarize our conclusions so far:

1. The initial analysis, based on 31-day periods,
showed clearly that & > 0 but gave no conclusive
evidence about trend. The wide variability of the
estimates suggests that the model is overpara-
metrized.

2. Investigations of a range of models showed no
strong sensitivity to the choice of threshold, clus-
ter interval or period (i.e., 31 or 61 days) within
the values considered, but an attempt to provide
confidence intervals for return values was not
successful.

3. Further analysis based on 61-day periods and
allowing for trends showed no significant differ-
ences based on the overall fit, but there were
significant differences in computed crossing rates
of high levels. This conclusion is obtained for
both the “fixed k” and “separate k” models.

Thus our overall conclusion is that there is a signif-
icant downward trend in the crossing rates of high
levels. A natural question is to what extent this can
be observed in a purely empirical analysis of the data.
In Table 5, crossing rates by cluster maxima over
several high levels are given separately for the two
halves into which we have split the data, and it can
be seen that they do confirm the picture that at the
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TABLE 4
Calculations of exceedance rates for “separate k” and “fixed k” models based on full
data and on split data
Level 26 28 39
Separate k, M = 31, no drift 056 (.17) 0.23 (.11) 0.08 (.07
Separate k, M = 31, linear drift® 1.27 (52) 0.65 (.34) 0.24 (.18)
: Separate k, M = 31, linear drift® 0.39 (.30) 0.15 (.17) 0.06 (.08)
Separate k, M = 61, no drift 067 (.18) 0.30 (.12) 0.12 (.08)
Separate k, M = 61, linear drift® 1.05 (40) 0.51 (.24) 0.20 (.13)
Separate k, M = 61, linear drift® 0.31 (.20) 0.15 (.10) 0.08 (.07)
Fix k = 0.25, M = 61, no drift 0.73 (19) 0.39 (14) 0.19 (.09)
Separate k, M = 61,1973-1980  0.96 (.31) 042 (20) 0.13 (12
Fix k =0.25, M = 61, 1973-1980 1.07 (.34) 0.65 (.26) 0.13 (.10)
Separate k, M = 61, 1981-1986  0.26 (17) 0.12 (12) 0.6 (.09)
Fix k=0.25, M = 61,1981-1986 0.33 (.18) 0.13 (.10) 0.04 (.04)
Standard errors in parentheses.
2 Estimates made for year 1973.
® Estimates made for year 1988.
TABLE 5 h
Empirical exceedance rates for split data e
Ve
Level 8 12 16 20 26 S -/-/-'/“
Frequency 1973-1980° 175 96 56 21 5 2 7
Rate/year 228 125 7.3 27 07 ¢ T e
Frequency 1981-1986 161 79 29 10 3 g0 N -
Rate/year 268 132 48 17 05 3 R
g //-_,ﬂ""'"
¢ From April 28, 1973; 7.68 years. S~ I
2 Yo
highest levels (though not elsewhere) there is a down- 7
ward trend. However, there are very few exceedances Y-/
at the levels considered in Table 4, so some form of © . ; 2' ; ; X
model-based analysis is essential if quantitative esti- Expected value of resdual under exponential distrbution
mates are to be given at such high levels. It might also Normalised residuals for each of 61-day periods
be pointed out that the levels being studied are much A
higher than the official standard of 12 parts per
hundred million. @
The last question I shall address here concerns
testing the fit of the extreme-value distribution. Mo- ar /
tivated by the relations among the various extreme T . R
value properties in Section 3, two studies are proposed: % “ /7//
(a) how closely the excesses over the threshold fit a 2ol 5—,'_/_ e
Generalized Pareto distribution and (b) how closely E N /."f
the period maxima follow a Generalized Extreme $wl ,_ﬁ;;f—'—/
Value distribution. In Figure 7, a plot of observed § e A /
versus expected values is shown for excesses over a 2 2r = ""’:, —
threshold, for each of the six periods of the year ° P bl L
(superimposed). This is done: (a) fitting the exponen- 3r ot ,F_:_T*"r'
tial distribution (i.e., & = 0) and (b) fitting the Gen- o = ‘ . ' ' ‘
eralized Pareto distribution with separate k. In each oo 05 10 s 20 25 20
case the values were standardized, via equation (3.7), Expected value of residual under Gen, Pareto distrbution
. Normalised residuals for each of 61-day periods
to have scale parameter 1 before plotting. Of course,
it is expected from the previous analysis that the B
Generalized Pareto fits better than the exponential, FIG.7. (A) Residual plot under exponential model, and (B) residual

but Figure 7 provides visual confirmation that the

plot under GPD model.
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Fi1G. 8. (A) Probability plot of 61-day maxima (Gumbel model), and
(B) probability plot of 61-day maxima (GEV model).

exponential is indeed a poor fit in the upper tail,

whereas the Generalized Pareto distribution seems

quite adequate. Figure 8 shows a differently con-
, structed plot for the period maxima, in which the
probability integral transform is used to transform to
uniformity before plotting the empirical distribution
function. Again two plots were constructed, one based
on k = 0 and the other on k varying. Again the second
plot is much better in the upper tail. Neither plot is a
very good fit in the lower tail, but this is of less concern
in view of the emphasis on upper extremes in our
analysis. Smith (1986) showed how to construct sim-
ilar plots for the marginal distribution of the jth
largest order statistic for fixed j = 2. This was also
tried here but with results similar to Figure 8.

Overall, these plots provide confirmation that the
models fitted are sensible.

6. CONCLUSIONS AND SUMMARY

Classical extreme value theory has suggested a num-
ber of techniques for statistical modeling. These have
been widely applied but are deficient at handling the
more complicated features of practical data. The mod-
eling approach proposed here uses the ideas of point-
process theory to suggest a very general strategy.

The analysis of the ozone data included the com-
parison of numerous different models within the gen-
eral structure proposed in Section 4 and led to the
conclusion of a downward trend in crossing rates at
the very highest levels. This would seem to be some
indication that the work of the regulatory bodies is
having some effect in at least limiting the frequency
of very high emissions, and indeed one could argue
that without such regulation there would have been a
clear increasing trend. As far as the impact of the
suggested downward trend is concerned, one interpre-
tation of Table 4 is that the crossing rate of level 26
found at the end (in the range 0.3-0.4) corresponds to
a level between 28 and 30 at the beginning; it seems
justified, therefore, to say that the most extreme emis-
sions have been reduced by about 3 parts per 100
million over the period of the study. They are still
well above the federal standard, but it does indicate
some measure of improvement. It should be pointed
out, however, that the present study is only for one
site, and it would be necessary to repeat the analysis
with data collected at other sites to get a firm indica-
tion of this.

The other noticeable feature of our analysis is that,
in contrast to many extreme value problems in which
the shape parameter k is estimated to be near 0, in
this case k had significant positive values. It should
be pointed out, however, that in many cases where &
turns out significantly negative, the analysis is much
harder since the tail is very long, and it becomes very
hard to give anything like precise estimates of quan-
tiles. This difficulty is discussed at some length by
Davison and Smith (1989).

A final comment is that the analysis has only con-
sidered a single long time series, with no attempt to
relate ozone emissions to other covariates (e.g., tem-
perature) or to relate values at different sites. The
former gives rise to regression-type problems, the lat-
ter to problems of multivariate extremes. Davison
(1984) and Davison and Smith (1989) have discussed
the use of regression in this kind of analysis, but there
have still not been many practical applications. Con-
cerning multivariate extremes, this is the subject of
much current research, and extensions of the meth-
odology proposed here are anticipated.
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