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Comment

Lawrence D. Brown

It is a pleasure and an embarrassment to read a
historical story in which one plays an integral role.
From my perspective the story has been accurately
related, but I do have some miscellaneous comments
to make which are related to the general topic.

THE LOSS FUNCTION

The point estimation segment of this article
deals exclusively with the loss function (1.5)—i.e.,
L(6, 0®) = ((6/0?) — 1)% Although this loss is relatively
easy to handle analytically it seems somewhat inap-
propriate for a broad range of applications. Let me
repeat informally some thoughts I tried to convey
formally in Brown (1968).

Strictly from a qualitative point of view, the loss
(1.5) is very skewed. Note that lim; .. L (8, ¢%) = « but
lim;_oL(5, 0?) = 1. Hence overestimation of o2 is
much more severely penalized than underestimation.
Furthermore, the best invariant estimator for this loss
is S%/(v + 2), which is smaller than the maximum
likelihood value of S2/(v + 1), or the intuitively ap-
pealing and best unbiased estimator, which is S?/».
One rationalization for this discrepancy could be that
the intuition supporting use of S2?/v is in error; that
(1.5) is the actual loss and that therefore S2/(v + 2) is
to be preferred to S2/v (and Brewster and Zidek’s
(2.20) is then to be preferred to S%/(v + 2)).

However, another interpretation is possible. Note
that historically use of S2?/v was proposed and, pre-
‘sumably, found generally satisfactory without elicita-
tion of or reference to a specific loss function. If indeed
S2/v is satisfactory among invariant procedures per-
haps that is because it matches the actual (but sub-
conscious) loss function measuring the experimenters’
preferences. Thus one asks, “For what loss is the best
unbiased estimator, S%/», also best invariant?”.
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Stein (1964) found a loss function for which S%/» is
best invariant. It is

(1) Ls(5, ¢2) = 6/6¢% — In(8/0?) — 1.

Note that Lg(5, ¢2) = 0 and attains the value 0
uniquely at & = 2. Also, Ls(6, o®) is strictly convex in
6 and lim;_oLs(8, 02) = lims_.(Ls(d, 02) = . Thus
Lg has a number of pleasing qualitative properties.

In Brown (1968) more was established about Ls. It
was shown that for virtually any problem of estimating
a single scale parameter the best unbiased estimator
is also best invariant for this loss, and the loss function
Lg is the only loss function possessing this global prop-
erty (up to affine transformations, which do not affect
admissibility). Thus a belief in the suitability among
invariant estimators of the best unbiased estimator is
equivalent to a belief in the suitability of Ls. In sum-
mary, my own feeling is that the loss Ls is the most
appropriate for general studies of estimation of scale
parameters. (Of course, other loss functions may be
appropriate in specific applications.)

The story related for loss (1.5) by Maatta and Ca-
sella applies equally to the loss Ls. The analog of
Stein’s estimator, (2.4), is §(X, S2) = ¢(Z2)S?, where

1+ 22
v+1)/)

@ 3= min(%,

" Under Ls this estimator dominates the usual S2/».

Loss Lg is explicitly considered in Brown (1968)
where it is shown (as in (2.16)) that the choice

% 2y _ 60,1(7'2,) ifZZSrz,
@) $*(2%) = {1/y it 22> r?
yields an estimator better than S?/» when

Go1(r?) = 1/Eo 1 (S?| Z% = r?).

The algorithm of Brewster and Zidek then applies,
and shows the estimator with

(4) **(27) = 6.(27)
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to yield a further improvement on (3). As with (2.20)
this is (probably) as far as one can go. The estimator
involving (4) is again generalized Bayes with respect
to the prior (2.23). There are strong reasons to suspect
that, like (2.20), (4) yields an estimator which is
admissible, although a detailed proof of such an asser-
tion remains to be worked out. See Dey and Srinivasan
(1985) for some more recent work related to the
loss Lg.

~ MINIMUM LENGTH INTERVALS

One assertion in the paper with which I do disagree
is that which says, “It is generally accepted that length
is the overriding criterion when interval estimation is
concerned.” There are situations where the minimum
length criterion leads to patently unacceptable proce-
dures. For example, let X be exponential with preci-
sion 6. (Le., 2X is x? with n = 2 degrees-of-freedom
and scale parameter ¢> = 1/6.) Then the minimum
length (invariant) interval for 6 is [y, = {§: 0 < 0 <
co/X} where ¢, = —In «. These intervals are of course
what result from inverting the U.M.P. tests of the
one-sided hypotheses Hy: § < 6, versus H;: 0 > 6,. The
intervals are as strongly biased as possible in the sense
that Py (0, € IH)>1-aforb < 6o; and, in fact,
Py (0, EI) < Py (6, € I) for any system, I, of intervals
having coverage probability at most (1 — «). The best
unbiased interval for this problem is a much more
appealing general answer. It is Isy = {0: (a/X) =0 =
(b/X)} with a, b determined by (3.4).

Casella, Hwang and Robert (1989) in a very inter-
esting recent paper also make the point that it may
be desirable to consider minimizing the expectation of
some (concave) function of the length rather than the
length itself.

UNBIASED INTERVALS AND LIKELIHOOD RATIO
TESTS

Before discussing in general what I think are desir-
able criteria for confidence intervals, I would like to
briefly digress and mention one other appealing fea-
ture of the intervals Igy defined in (3.4). Consider the
generalized likelihood ratio test of Hy: ¢ = o3 versus

H,: ¢® # ¢§. This test rejects for large values of

_ sup20 £, (8%/6%) _ k()
0_62fv(82/0(2)) fv+2(SZ/U(2))

where k(») is independent of S2, 3. When these tests
are inverted to form confidence intervals one gets

Ligr = {0’22 aS? << sz}

where a, b satisfy (3.4)—i.e., f,+2(1/a) = f,4+2(1/b).
Thus

%) Iigr = Igu.

A

The identity of likelihood ratio confidence intervals
and best unbiased ones does not hold in all situations.
However, it does hold in a number of normal theory
problems involving scaled chi-squared or scaled F-
distributions, including the problem discussed above.

CRITERIA FOR CONFIDENCE INTERVALS

The source of the judgment that shorter (in some
sense) confidence intervals are better is probably the
intuitive feeling that shorter intervals have generally
lower overall probability of covering false values. That
is, the criterion actually operating is the classical one
which says that one procedure, I;, say, dominates
another, I, if

(6) P, :{c* € I,} = P, 2{c® € I,}
and
(7) P, e{r*’€lL}=P,{r*€L} forr®#d?,

with strict inequality for some u, o2 (An alternate
valid set of criteria would be just (7) plus the validity
criterion 1 — a; = 1 — a; where

(8) 1—a1=in£P,WZ{02€I,-}.)

The standard procedures Iy, Isy or Igr are all
admissible (i.e., cannot be dominated) in the sense of
(6) and (7) or of (7) and (8). This is because they are
formed as inversions of admissible families of tests.
But this by itself does not mean there do not exist
procedures which are mainly preferable to the stand-
ard ones. For example, it may be that the intervals of
Goutis (3.18) generally perform well in relation to Ir,.
By construction they dominate Iy, with respect to
(6), and it could possibly be that (7) is satisfied for a
wide range of values of u, ¢2; and perhaps even that
when (7) fails it does so only by a numerically insig-
nificant margin. Whether this is so appears to require
further investigation, perhaps in the nature of a
numerical study.

It seems plausible that the argument in Proskin
(1985) can be adapted to prove admissibility in the
sense of coverage probability and expected length of
the procedures of Goutis (3.18) and of Shorrock (3.10).
If so then Cohen and Strawderman (1973) shows that
both (3.18) and (3.10) are themselves almost admis-
sible (and, even, admissible) in the sense of (6) and

(7).
INDIFFERENCE ZONES

As a digression, let me note that there are situations
in which standard procedures can be qualitatively
improved as suggested above. This improvement
can sometimes even be formalized mathemati-
cally through introduction of indifference zones.
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For example, consider the standard one sided
t-intervals: I, = {u: u < X + ¢S}. Let ¢ > 0. Brown
and Sackrowitz (1984) construct improved intervals,
I, say, such that

(9) Pﬂ,az{”EIllt}>PIA,02{VEIIL‘} fOl’llSﬂ,
and .
(10) P, »:{vEI]}<P,2{vEI,} wheneverv—u=e.

The region {u, o2, v: u < v < u + ¢} is an indifference
region. (Larger values of ¢ enable greater inequality in
(9), (10).) For the standard two sided ¢-intervals, I, =
{u: | u — X| = cS}, I believe there should be a similar
dominance result when the indifference zone is of the
form {u, 6% v: 0 < |u — v| < ¢, 02 > o3} for any
prechosen constants ¢, ¢3. (It is shown in Brown and
Sackrowitz that I,, cannot be dominated when the
indifference zone is just {u, 6%, v: 0 < |u — v| <e}.)

The above considerations lead to the question of
whether the standard intervals Iy, Isy, or Igr can be
improved on in this sense when there is an indifference
zone of the form {u, ¢% 7%:| 72 — ¢%| > &} or of the
form {u, 6% 7%:|In 72 — In 62| > ¢}. The answer is no,
as can be shown by using the Bayes representation of
Kiefer and Schwartz (1965) for the associated family
of tests. (This representation can be thought of here
as an extension of the representation in Lehmann and
Stein, 1948.)

RELEVANT AND SEMI-RELEVANT SUBSETS

Rejection of the null hypothesis Hy: u = 0 at suit-
able levels is a negatively biased semi-relevant
subset for the two sided t-interval, I,. This means
(for suitable k)

(11) Pk € Lx| | X/S|>k) <1-a

Property (11) is somewhat disturbing for two
reasons.

First, the direction of the inequality means that
the usual confidence claim—i.e., P, 2(u € I,) =
1—a—is conditionally false. (For suitable &,
Py 2(n €1, | | X/S| > k) = 0 so the inequality in (11)
can be numerically significant.) On the other hand,
if the conditioning set were positively biased semi-
relevant this would not be disturbing since the usual
confidence claim would still be conditionally valid. If
the set were positively biased and relevant, as is the
set {(X/S): | X/S| = k}, this would be worth noting
but still might not be judged disturbing; it would mean
that the confidence claim could be conditionally ad-
justed upwardto 1 — o +¢. °

Second, and perhaps more important here, is the
nature of the conditioning set. Some statisticians are
in the habit of supplying confidence intervals (or at
least of paying attention to them) only when Hy: u =

0 is rejected. For such statisticians the conditional
calculation becomes an unconditional one. That is,
the intervals they produce and pay attention to have
probability of coverage <1 — «, the nominal value.

In summary, negatively biased semi-relevant sets
are disturbing when the conditioning set has a natural
interpretation. Otherwise they need not be as I shall
emphasize below. Positively biased semi-relevant sets
are never upsetting; occasionally they can be worth
noting. (For example, for the intervals of Goutis (3.18)
and Shorrock (3.10) the entire sample space is posi-
tively biased semi-relevant.) Relevant subsets seem
generally worth noting and, of course, negatively
biased ones are much more disturbing than positively
biased ones.

ONE-SIDED INTERVALS

One-sided intervals virtually always admit semi-
relevant subsets. This emphasizes, I think, that the
nature of a semi-relevant subset is crucial in deciding
on its importance (rather than establishing that one-
sided intervals are virtually never acceptable).

As a canonical example consider the case where
o? = 1 is known, and u is unknown. The uniformly
best one sided intervals for u are of the form I, =
{u: u = X + c}. Then, the set {X: X < 0} is negatively
biased semi-relevant; consequently its complement,
{X: X = 0}, is positively biased semi-relevant.

CONDITIONAL PROPERTIES

The authors have discussed the conditional prop-
erties of relevancy and semi-relevancy. I want merely
to note that there are other conditional properties
which may be of interest. For example, Robinson
(1979a) discusses a concept of estimated conditional
coverage which leads to an admissibility criterion
somewhere between nonexistence of relevant subsets
and nonexistence of semi-relevant subsets. See Kiefer
(1977) for various other ideas including a different

_ discussion of estimated conditional coverage. These

ideas can also be supplemented by those of guaran-
teed conditional coverage, or frequentist validity, as
presented, for example, in Brown (1978) or Berger
(1985b).
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Comment

Arthur Cohen

A historical perspective on one of the more fasci-
nating and intriguing theoretical results of statis-
tics is most welcome. I have some comments
that are concerned with rounding out the story and
generalizations.

If one requires an estimator which is both location
invariant and scale equivariant, then the best equi-
variant estimator of ¢2 with respect to squared error
loss is S?/(n + 1), and of course it is admissible within
its class. For the confidence interval problem, if the
vector loss L; = (0-1 for correct coverage or not,
length) is replaced by the vector loss L, = (0-1 for
correct coverage or not, 1-0 for covering false values
or not), then the “usual” confidence interval is admis-
sible. This latter fact follows from the duality of
hypothesis testing and confidence intervals. In this
problem and in several other interesting problems, the
following pattern holds for the “usual” procedure:
admissible as a test and hence admissible as a confi-
dence interval for the vector loss L,; inadmissible as
a confidence interval for the vector loss L; and inad-
missible as a point estimator for squared error (or
other) loss. Table 1 indicates some problems where
this pattern holds. A stands for “admissible” and I for
“inadmissible.” For the problem of estimating the

normal mean vector see Stein (1956) and Brown -

(1966). For the common mean problem see Brown and
Cohen (1974) and Cohen and Sackrowitz (1977). For
the normal quantile problem see Zidek (1971), and for
the Poisson problem see Clevenson and Zidek (1975).

There is a substantial amount of work in decision
theory on estimating a normal covariance matrix or
generalized variance. Again the “usual” estimators are
inadmissible for reasonable loss functions. In some
cases, the sample mean can be used as in the univar-
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iate case to get “help.” This is the situation in papers
by Sinha and Ghosh (1987) and Sarkar (1989). In
other cases there is a “Stein” or dimensional effect
and improvements can be made even without using
information from the sample mean (see the survey
paper of Lin and Perlman, 1985).

The statement in the paper that Stein knew his
estimator was not admissible is a bit confusing. Stein
may have speculated that the generalized Bayes esti-
mators form a complete class as is the case of some
one parameter exponential family models (see Sacks,
1963). The basis of the conjecture then is that, since
it cannot be generalized Bayes because it lacks
smoothness properties, it is inadmissible. As it turns
out Stein’s estimator is easily beaten and that is why
it is inadmissible. It is not known whether the class
of generalized Bayes estimators for problems with
unbounded nuisance parameters is a complete class
except in isolated examples where it is not true.

Although Brown (1968) is already referenced, it is
important to note that his paper contains many results

TABLE 1
Admissibility status of “usual” procedure

Type of inference
Confidence set Point
Problem estimation
Testing Loss L, Loss L, squared
error loss
Normal variance A A I 1
Normal mean vector A A I 1
of dimension 3 or
more
Common mean of A A I 1
two independent
normals
Normal quantile A A I
Independent Pois- A A I

son parameters of
dimension 2(3)




