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lar treatment and the points at which the curve
bifurcates are precisely those at which the treat-
ments begin to differ. Again, it would be hard to
estimate such a bifurcating curve using kernel
methods, but a way of thinking based on penalized
least squares and spline smoothing gives a natural
way to proceed.

Rejoinder

C.-K. Chu and J. S. Marron

We are very grateful to the discussants for their
interesting and thoughtful additions to the points
we made in this paper. We also thank the editor for
many helpful comments, and for the nontrivial task
of organizing the discussion.

Our response is organized into sections, with the
first three concerning topics raised by more than
one discussant, followed by some individual re-
sponses in alphabetical order.

1. PHILOSOPHICAL ISSUES

Useful elaboration of our P1-P2 formulation of
the viewpoints that have been adopted to consider
smoothing, has been provided by Grund and Hiardle
and by Silverman.

We agree with Grund and Hérdle that computa-

tional issues are very important and welcome the
addition of their P3 as a general principle. How-
ever, in the present context, we do not view proper
incorporation of this factor as having a major im-
pact on the ideas indicated here. The reason is that
both i, and My, when properly implemented, for
example, as described in Section 3 of Grund and
Hardle, have roughly comparable computation
time. On the other hand, this P3 could easily be-
come vital in, for example, a comparison of splines
versus kernels as suggested by Silverman.
" We also find Silverman’s P4 and the surrounding
discussion very useful. This is a very nice extension
of the points we were trying to make. One small
point we would like to clear up is that when we
attached the phrase ‘“nonparametric regression es-
timation” to P2, we were referring to the phrase,
not the methodology. Our intention was to convey
the point that most people who have used this
phrase in the literature tend to lie in the P2 camp.
However, we wholeheartedly endorse Silverman’s
main point (also expressed well by Grund and
Hirdle) that there needs to be more combined use
of P1 and P2.
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In conclusion, it would be facile to suggest that
any particular method will yield answers to all the
problems one might encounter. But I do believe
that if we are making detailed comparisons be-
tween different approaches, the spline smoothing
method as a general approach has a great deal to
commend it.

2. ADDITIONAL COMPARISON

Some interesting and carefully considered alter-
native ways of comparing ., and my are pre-
sented by Grund and Héirdle and by Hart. We
welcome these deeper analyses and are happy that
the main conclusions are not much different from
what we saw by simpler methods.

The figures of Grund and Hérdle are very inform-
ative and provide excellent visual quantification of
the points we were driving at in the paper. How-
ever, we caution against trying to infer too much
from these examples. We are hesitant to make a
recommendation as to which estimator is better on
the basis of the size of the region where the ratio is
bigger than one, because this is only one example.
Even if one looked at several such examples, there
are doubtless other examples that give the opposite
conclusion. Furthermore, even in the presented ex-
ample caution is indicated, because these sizes of
regions are also dependent on the parameterization
that has been chosen for the example. For example,
the regions seen in Figure 4 could look quite differ-
ent if this picture were based on the logarithms of
these two parameters. But, of course, the main

. point here is that 1, and 7y are not really compa-

rable in terms of one being always preferable, and
the figure illustrates this in a compelling fashion.

Hart’s idea of looking at the joint probability
structure of i, and My is excellent. He admirably
illustrates that this is an important issue, and
things are not as one might expect at first guess.
This clearly needs to be borne in mind in future
comparisons of estimators.

3. OTHER KERNEL ESTIMATORS

Hart and Jones discuss alternative kernel
smoothers to i, and 7, and make some interest-
ing cases for their serious consideration. We were
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aware of these others, but chose to focus only on
mc and ry because they are the two most often
featured in the current literature. Our intuitive
feeling about the Priestley-Chao estimator had
been that it was “roughly the same as ., but
sometimes a bit worse,” although Jones makes it
clear that this idea needs some careful reconsidera-
tion. We ruled out the Yang estimator brought up
by Hart on the grounds that once we opened the
door to what we viewed at the time as “obscure
alternative methods,” we then needed to also con-
sider a host of other possibilities, such as nearest
neighbor estimators, local polynomials and a large
family of hybrids. Our feeling was that considera-
tion of too many estimators would have obscured
the main ideas. This may have been a mistake in
view of the nice points made by these discussants,
but it seems best at this point to put this topic into
the category of future work to be done.

4. INDIVIDUAL RESPONSES

Gasser, Jennen-Steinmetz and Engel

This discussion is critical of our use of the word

“efficiency” in Section 3. Of course, we agree that
MSE should be the central issue here, and not
variance alone. However, note that MSE is the sum
of variance and squared bias, so it can be well
understood by analyzing each of these in turn,
which we did in Sections 3 and 4, respectively. In
Section 3, we carefully chose some settings where
the bias was essentially the same for the two esti-
mators. Hence, differences in MSE are directly de-
termined by differences in variance, so our use of
the phrase efficiency seems justified. However, we
do agree that “Variance Issues” may have been a
better title for Section 3. We agree that a more
careful analysis than ours would look at error,
where each estimator uses its best possible band-
width. However, the analyses of Grund and Hirdle
and of Hart show that our analysis did succeed in
conveying the important ideas.
* Gasser and others were also critical of our occa-
sional realization-wise study. While we agree that
expectation should play an important role, we sub-
mit that it is very useful to consider individual
realizations as well. Both viewpoints are impor-
tant, and we feel it is not enough to restrict atten-
tion to either one alone. We believe the insights
that we pointed out in the paper make this clear,
but note also Silverman’s excellent additional
points about the attractive feature of “continuity of
estimators” that is satisfied by 7y but not g,
which is certainly a realization-wise property.

These discussants also objected to some of our
examples, especially the contrived ones. Our gen-

eral feeling on this topic is that main points are
best supported through a variety of methods. While
one should never rely completely on artificial ex-
amples, they can aid in the presentation of ideas.
We consider them to be quite useful as illustrative
tools, especially when used in combination with
other methods, such as real data examples and
asymptotic analysis as we have done here. For
example, the variance comparison in our (3.1) and
(3.2) has been known for some time, but we believe
that the first real intuitive understanding of what
drives this difference is provided by our Figures 4,
5, 6 and 7 and the surrounding discussion. Note
that this careful realization-wise study has given a
clear understanding of the forces behind what can
be seen in the expectation sense.

We generally agree with the points made in the
Bias part of this discussion, and consider them a
worthwhile amplification of what we had to say in
our Section 4. Their Figure 1, which also appeared
in Gasser and Engel (1990), is an important and
clever addition to the examples in our Figure 11.
The one controversial point here is what is the
“natural” way to handle random design data. We
respect the discussant’s view on this, but stress
that much different ones have been considered rea-
sonable as well. Our personal feelings on this are
more along the lines indicated in the discussion of
Jones.

A very good point is made here about boundary
effects. It is true that our presentation unfairly
penalizes m by not doing boundary adjustments
(since it has a much stronger need for these). We
did consider doing boundary adjustments in our
examples, but, mostly from laziness, gave up when
it became clear it would take a large amount of
effort to implement the complicated methods (note
that this is our personal view, for instance Hart
expresses quite a different one) that are usually
suggested. This seems partially justified by the fact

. that such adjustments are also unappealing be-

cause they detract from what we view as the major
strengths of the kernel method: simplicity and
interpretability. We do not agree with the discus-
sants that there are no methods for boundary ad-
justing My (in the equally spaced fixed design
case). See Rice (1984) and also two unpublished
proposals involving “data reflection” by Wu and
Chu (1990) and by Hall and Wehrly (1991).

These discussants make some good points about
convenience of construction of plug-in bandwidth
selectors. We do not see for sure that the bias of iy
is harder to estimate, but algorithms of this type
will certainly be quite a lot more complicated. How-
ever, there are important competitors to the plug-in
approach, such as the double smoothing idea dis-
cussed recently in Hérdle, Hall and Marron (1991),
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for which the two methods are quite comparable in
this sense.

Gasser and others take issue with our skepticism
concerning the Gasser and Engel (1990) minimax
result, but only choose to address the first of our
three reasons. Their criticism of this point is based
on the fact that we here allow f to take on values
close to 0, but not in our assumption (A.4). We
would like to repeat that the case of f close to 0 in
some locations should not be ruled out, as it in-
cludes important situations such as Gaussian f. We
see no irony in our assumption (A.4), as no attempt
is made at that point to be general. As indicated
before assumption (A.1), all of these assumptions
have been chosen for simplicity and clarity of pres-
entation. They can be weakened a lot, but the
added complication in terms of presentation seems
unjustified in the present paper. We find it clear
that our main ideas will still hold up for f Gauss-
ian, but this is not the case for the Gasser and
Engel minimax result.

Finally, we would like to clear the air concerning
quotes. We apologize for the unnecessarily inflam-
matory construction of our statement, to which they
have objected. The main point here is that Gasser
and Engel place greater importance on bias than
we do in the necessarily personal trade off between
bias and variance. This became clear to us from
their statement, “For random design convolution
estimators have to pay a price in terms of variance.
This can be better tolerated since replications of
studies can control for random phenomena.” While
our own view on how this trade off should be made
is different, we respect theirs. We also hope
this part of the discussion does not detract from
their main point, which is the quote stated in the
discussion.

Jones

This discussion brings up an interesting general
framework for classifying kernel estimators, in
terms of internal and external, which should be
quite useful for studies going beyond this one into
the many other possible types of smoothers.

There is a good point here about calling 7, the
“convolution” estimator, because iy can also be
viewed as a type of discrete convolution. However,
the first thing that jumps to our minds is the
simple continuous convolution, which 7, most
clearly is. Another justification might be the very
simple convolution form of the bias, for 7., rela-
tive to my.

Silverman

Among the many interesting points in this dis-
cussion is a nice motivation for consideration of

smoothers that do not fall exactly into the kernel
framework. Silverman (and a number of other im-
portant researchers as well) has a personal prefer-
ence for the smoothing spline, but there are other
smoothing methods that also have strong advo-
cates, and also deserve mention here, including
B-splines (also sometimes called regression splines,
and much different from smoothing splines), or-
thogonal series and wavelet estimators. Proper
comparison of these methodologies is clearly be-
yond the scope of the discussion here, but we can
not resist adding a few comments.

Silverman’s point about splines providing simple
and appealing approaches to special problems is
well taken. Actually, the second author of this
paper first heard this view expressed some years
ago by Doug Nychka. Nychka made the point espe-
cially dramatically at a conference, where the ma-
terial in the paper by Silverman and Wood (1987)
was presented in a talk by Silverman. At the end of
the talk, there was time for questions, and Nychka
said, “I have a question, not for the speaker, but for
Steve Marron: Can he think of a kernel approach to
this problem?”’ Marron could not think of one on
the spot, and further attempts later only gave solu-
tions that were unsatisfactory because they were
too complicated. Definitely the clever ideas of
Silverman and Wood worked very well in this
case, and it should be stressed that Silverman’s
example is only one of many we have seen.

However, despite the attractive features of
smoothing splines (and the other estimators as
well), and the fact that there have been many
superb data analyses carried out with these, we are
skeptical that they can ever replace the leadership
role of kernel estimators. In our opinion, the reason
that kernel estimators have been and will continue
to be so popular, despite their acknowledged draw-
backs, is that they are so simple. An important
benefit of this is ease of implementation, but we

- believe the biggest payoff for this simplicity comes

in terms of interpretability. Even people with little
education at all, to say nothing of the nontrivial
mathematical background required to understand a
spline, can grasp the visual idea of a moving aver-
age, and understand intuitively the structure that
they see in such a curve. However, even strong
spline advocates themselves have trouble explain-
ing just what their estimator is doing to the data.
When queried on this issue, their first response is
to point out that it is the solution to the appealing
minimization problem underlying smoothing
splines. When pressed by inquirers who are not
satisfied that they understand what is being done
to the data, the next response is: “Silverman (1984)
showed that the spline is often behaving much like
a kernel estimator.” Of course, the natural next
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question is, “If your insight comes from kernel
estimation, shouldn’t that be what you are using to
analyze your data?”’

While we have presented here an alternative
viewpoint to Silverman’s, we should point that this
is far from the last word on the subject. For exam-
ple, Silverman points out some nice properties of
the spline, not naturally shared by kernel estima-
tors, that come from his approximation by a rather
special type of kernel estimator.

In summary, we doubt that either type of estima-
tor will put the other out of business. As with the
comparison of i and riig, both kernels and splines
have their relative merits, and it seems clear to us
that both will continue to attract adherents.

5. CONCLUSIONS

We would like to again thank the discussants for
their fine contributions. While many different opin-
ions have been expressed here, we believe we can
speak for all in saying that nonparametric regres-
sion estimation methods (i.e., scatter plot
smoothers) have been abundantly demonstrated to
provide powerful data analytic tools. Furthermore,
we think that their future is very bright, because
scientists are recently becoming very ambitious in
terms of attempting to gain insights from more and
more complex data sets, often with relatively less
and less a priori information available as to which
models are appropriate.
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