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intercept). One can therefoére remedy the mismatch
of these lines by simply correcting for the variance
inflation. However, this discussion is very closely
tied to this particular situation: Variance correc-
tion is by no means a panacea, and its effects away
from the normal design are (a) less considerable
and (b) not necessarily beneficial (Jones, 1991) in
other cases (such as the remainder of C&M’s
Figure 11).

5. CONCLUSIONS

It is not so long ago that the version of the
“folklore” that I was contented with (without much
thought!) was that one used G-M for fixed designs
and N-W in the random case (e.g., Cheng, 1990).
This now seems somewhat dubious.

I have a particular liking for (1) in the fixed
uniform design context. So far as N-W and G-M go,
however, I am happy that one could afford to use
either of these instead in this case without really
changing anything. A verdict on the fixed but
nonuniform design case is given in Jones and Davies

(1991). But none of the existing versions of kernel
regression are the last word in the random design
case. There, both N-W and G-M /P-C have disadvan-
tages, as C&M make clear, yet it does not appear to
be impossible to get the best of both internal and
external estimation worlds with new—but not
overly sophisticated—methods; it is also sensible to
apply such estimators back to the fixed design case.
Hopefully, the authors might agree that thinking
in such a framework helps to clarify the issues
involved and illuminate a way forward.

I am very pleased to have been afforded the
opportunity to append some comments on this most
interesting paper.
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Comment: Should We Use Kernel Methods

at All?

B. W. Silverman

I would like first of all to thank the authors for a
most interesting, thoughtful and provocative paper.
I think it is important to broaden out the discussion
to consider other possible estimators in more detail.
The authors’ attempt to be even-handed is particu-
larly to be welcomed, and if my own contribution
does not immediately appear to be in the same vein
it is only because the authors have already them-
selves dealt with the two kernel estimators.

1. SOME PHILOSOPHICAL REMARKS

The authors have set out an interesting di-
chotomy between two different viewpoints, P1 and
P2, that might be adopted. I wonder, though,
whether a synthesis of these approaches gives the
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real clue to what smoothing methods might ideally
be aiming at. Certainly my own view would be
more like a philosophy P4: We are looking for struc-
ture in this set of numbers, without imposing rigid
parametric assumptions, but still within a statisti-
cal framework of some sort.

The statement P1 is very much along the lines of
the “exploratory data analysis” approach of Tukey
(1977). This was a very welcome reaction to the
overemphasis on uncritical model fitting as exem-
plified by P2, and in order to clear the air it needed
to turn its back on several decades of statistical
thinking. For example, Tukey’s original book—
always intended as an introductory text—nowhere
even mentioned the idea of calculating the average
of the data set. But, of course, the classical statis-
tics that had become so constraining had itself
originally developed in order to answer questions
raised by data analytic approaches. Thus, in set-
ting out a dichotomy of the P1/P2 kind, we can
either give ourselves two different extremes be-
tween which to oscillate or else two different ingre-
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dients that have both been found to be valuable
and that might, if combined properly, reinforce one
another. I think that the authors agree with me in
taking the latter view.

I would disagree strongly with the assertion that
nonparametric regression estimators fall into the
P2 philosophy. They ought to be attractive in prac-
tice because they can provide what one might call
a model-based exploratory approach that therefore
has elements of both P1 and P2. So I very much
welcome the authors’ reminder that both P1 and
P2 should be borne in mind, and would add that
a combination of the two is both desirable and
possible.

2. KERNEL REGRESSION ESTIMATES

The authors have made it very clear that they
are trying to be even-handed in setting out the
competing advantages of the two different kernel-
based approaches. However, they point out some
properties of the convolution-weighted estimator
that seem to be very disturbing, notably the un-
pleasant behavior demonstrated in their Figure 5.
One of the important properties of almost every
statistical technique is reproduceability, so that the
same analysis carried out on the same data gives
the same results. Reproduceability at least assures
the user that if the analysis of data from two
experiments produces different results, the experi-
ments haven’t produced exactly the same data.
(Bootstrappers had better stick to repeatable ran-
dom number generators!) At an elementary level,
this a strong argument in favor of techniques like
linear regression over fitting lines “by eye.”

The authors’ Figure 5 and its accompanying dis-
cussion highlight the desirability of a property that
somewhat extends the idea of reproduceability, that
of continuity in all the data inputs. This property
would ensure that if the y or the x component of
any data point was perturbed a small amount, the
resulting curve would only be altered by a small
amount. )

To see why this is related to reproduceabil-
ity, and to Figure 5, suppose that three statisti-
cians were given a scatter plot of the data points
plotted in Figure 5. Statistician A makes careful
measurements and records the points in exactly
the configuration shown (i.e., in the sequence low-
high-high-low in the region near 0.5). Statistician
B rounds the data a little and records the x-coordi-
nates near 0.5 as two coincident pairs, at each of
which there is one high and one low data point.
Finally, Statistician C, who only has a dirty and
small scale picture to work on, moves the points
around a little into the order high-low-low-high.

Continuity would imply that all three statisticians
got almost exactly the same result; this example
demonstrates that in order to be truly reproduc-
ible in practice, a technique should as far as possi-
ble be continuous in all its inputs. Figure 5 quite
clearly shows that convolution weighted kernel re-
gression doesn’t have this property.

Let us now turn to the authors’ Figures 3 and 9,
because these highlight another property, that of
being able to detect simple structure when it is
present. If one were fitting a parametric regression
model to data with abscissae as shown in these
figures, there might be some argument as to
whether the values should be equally weighted.
But I find it hard to believe that a scientist would
be satisfied by a method that failed to draw an
exact straight line though these points! Scientific
models are often based on linear relationships—
perhaps achieved by suitable transformations—so
if an experiment is so good that it produces a linear
relationship without noticeable error the least one
could ask of a fitting method is that this should be
picked up.

One way of saving the situation would be to fit
an ordinary linear regression, to apply kernel re-
gression to the residuals and to add the resulting
curve to the linear regression fit. This would seem
a very natural precaution to take to ensure that
linear or near-linear structure was always de-
tected. But Figures 5 and 9 taken together cast
doubt on both forms of kernel regression and
demonstrate a need to consider other approaches.

3. SPLINE SMOOTHERS AND THE CONCERNS
DISCUSSED IN THE PAPER

The authors of course mention spline smoothing
and refer to Eubank (1988) and Wahba (1990). For
a more succinct survey, see Silverman (1985). The
terminology “spline smoothing” is unfortunate be-
cause it is in a sense fortuitous that spline
smoothers are splines, and confusion with certain
other aspects of splines may have led to the relative
unpopularity of spline smoothing. A better termi-
nology in the statistical setting would have been
penalized least-squares smoothing since the spline
smoother in its usual form is just the minimizer of

S(m) = SAY, = m(x)}" + a/abm”(x)zdx,

where [a, b] is any interval containing all the x,.
The minimizing curve rig is easily calculated and,
just as is the case for the kernel estimators de-
scribed by the authors, mg(x) is for each x a
weighted linear combination of the Y.

12



432 C.-K. CHU AND J. S. MARRON

The spline smoother will behave perfectly in both
the respects discussed above. It can be shown that
perturbing the x; (even if this results in values
coinciding or crossing over) will affect Mg in a
continuous fashion, so in this respect rg shares
with My the property of dealing properly with the
situation of Figure 5. On the other hand (no matter
what value of the smoothing parameter o is used)
mg will yield an exact straight line when applied to
the data of Figures 3 and 9. Spline smoothers have
other advantages too, and we shall briefly consider
these in the next section.

4. OTHER PROPERTIES OF SPLINE
SMOOTHERS

4.1 Adaptivity to Uneven Data

An important matter to consider when dealing
with unequally spaced data is the question of the
relative amount of smoothing applied in different
parts of the same sample. For the kernel regression
estimators, this question is addressed by the plots
given by the authors in their Figure 10. Suppose
we have a relatively large sample, and that the
points x; are not evenly spaced. Suppose that x;,
is a point in a region where there are not many
points x; while x,,, is in a region with a large
number of x;. How many data points Y, would we
wish to have a substantial influence on m(xy,;,)
and m( %y, ), respectively?

For both the estimators discussed in the paper,
the estimator at any given point x will be mainly
based (for a normal kernel) on the data falling
within 2k of x. Using a broad definition of the
design density f, the number of influential data
points will be approximately proportional to f(x).
Thus, M(x,,;,) will be based on far fewer data
points than M(x,,,). There are approaches, not
discussed in detail by the authors or in the present
comment, that always base the estimate on about
the same number of data points, but these can be
substantially biased. .

" It is shown in Silverman (1984) that the spline
smoother steers an attractive middle course be-
tween these two extremes and automatically uses
weights that allow substantial influence from a
number of data points approximately proportional
to f(x)*. Working from an equation essentially
the same as the authors’ (5.1), Silverman (1984)
showed that this kind of adaptation to different
local densities of data is for practical purposes ideal.
I do not think it is helpful to place too much
emphasis on the very detailed asymptotic behavior
of the various estimators, but the automatic adap-
tivity of the spline smoother—combined with its

linear dependence on the data—certainly seems
worth bearing in mind.

4.2 Applicability to Generalized Linear Model
Dependence

One of the major developments in statistics in
recent years has been the systematic approach to
generalized linear models pioneered by McCullagh
and Nelder (1983). This extends enormously the
whole idea, and applicability, of linear regression.
Because the spline smoothing method works by
explicitly trading off a measure of fidelity to the
data, the residual sum of squares, against a meas-
ure of roughness, [ m”2, it can immediately be
extended in a corresponding way to problems where
there is more general dependence of the observa-
tion Y; on m(x;) than EY, = m(x;). If each Y] is
assumed to depend on its predictor m(x;) through a
model with log likelihood L(y;6), then a very natu-
ral approach is to estimate m by maximizing the
penalized log likelihood

S(m) = 3 LY, m(x)} - a/bm” *) dx.

A typical example is logistic regression. Suppose at
time (or dose level) x; we observe Y, ‘successes’ out
of n; trials. Then a natural way of constructing the
penalized log likelihood is to write

L{Y;; m(x;)} = Ylog m; + (n, — Y;)log(1 — =),
where

= exp{m(x;)}
" 14 exp{m(x;)}"

An early (and in many ways defective) paper along
these lines is Silverman (1978). A much more satis-

- factory reference is Green (1987), who investigates

many operational matters and pursues detailed
connections with generalized linear models. It is
hard to see how one would even start to tackle this
sort of problem in any natural and general way
using kernel regression methods.

4.3 Unusual Problems

The penalized likelihood idea can be extended to
deal with problems that are very nonstandard. For
example, Silverman and Wood (1987) consider an
experiment in which the treatment groups remain
identical up to various known points in time and
then diverge. A natural way to investigate and
present the data is to draw a branching or bifurcat-
ing curve, where each branch represents a particu-



CHOOSING A KERNEL REGRESSION ESTIMATOR 433

lar treatment and the points at which the curve
bifurcates are precisely those at which the treat-
ments begin to differ. Again, it would be hard to
estimate such a bifurcating curve using kernel
methods, but a way of thinking based on penalized
least squares and spline smoothing gives a natural
way to proceed.

Rejoinder

C.-K. Chu and J. S. Marron

We are very grateful to the discussants for their
interesting and thoughtful additions to the points
we made in this paper. We also thank the editor for
many helpful comments, and for the nontrivial task
of organizing the discussion.

Our response is organized into sections, with the
first three concerning topics raised by more than
one discussant, followed by some individual re-
sponses in alphabetical order.

1. PHILOSOPHICAL ISSUES

Useful elaboration of our P1-P2 formulation of
the viewpoints that have been adopted to consider
smoothing, has been provided by Grund and Hirdle
and by Silverman.

We agree with Grund and Hérdle that computa-

tional issues are very important and welcome the
addition of their P3 as a general principle. How-
ever, in the present context, we do not view proper
incorporation of this factor as having a major im-
pact on the ideas indicated here. The reason is that
both M, and 7y, when properly implemented, for
example, as described in Section 3 of Grund and
Hérdle, have roughly comparable computation
time. On the other hand, this P38 could easily be-
come vital in, for example, a comparison of splines
versus kernels as suggested by Silverman.
" We also find Silverman’s P4 and the surrounding
discussion very useful. This is a very nice extension
of the points we were trying to make. One small
point we would like to clear up is that when we
attached the phrase ‘“nonparametric regression es-
timation” to P2, we were referring to the phrase,
not the methodology. Our intention was to convey
the point that most people who have used this
phrase in the literature tend to lie in the P2 camp.
However, we wholeheartedly endorse Silverman’s
main point (also expressed well by Grund and
Hardle) that there needs to be more combined use
of P1 and P2.

In conclusion, it would be facile to suggest that
any particular method will yield answers to all the
problems one might encounter. But I do believe
that if we are making detailed comparisons be-
tween different approaches, the spline smoothing
method as a general approach has a great deal to
commend it.

2. ADDITIONAL COMPARISON

Some interesting and carefully considered alter-
native ways of comparing m, and riy are pre-
sented by Grund and Héirdle and by Hart. We
welcome these deeper analyses and are happy that
the main conclusions are not much different from
what we saw by simpler methods.

The figures of Grund and Hérdle are very inform-
ative and provide excellent visual quantification of
the points we were driving at in the paper. How-
ever, we caution against trying to infer too much
from these examples. We are hesitant to make a
recommendation as to which estimator is better on
the basis of the size of the region where the ratio is
bigger than one, because this is only one example.
Even if one looked at several such examples, there
are doubtless other examples that give the opposite
conclusion. Furthermore, even in the presented ex-
ample caution is indicated, because these sizes of
regions are also dependent on the parameterization
that has been chosen for the example. For example,
the regions seen in Figure 4 could look quite differ-
ent if this picture were based on the logarithms of
these two parameters. But, of course, the main

. point here is that m, and 7y are not really compa-

rable in terms of one being always preferable, and
the figure illustrates this in a compelling fashion.

Hart’s idea of looking at the joint probability
structure of /. and iy is excellent. He admirably
illustrates that this is an important issue, and
things are not as one might expect at first guess.
This clearly needs to be borne in mind in future
comparisons of estimators.

3. OTHER KERNEL ESTIMATORS

Hart and Jones discuss alternative kernel
smoothers to 7, and 7y and make some interest-
ing cases for their serious consideration. We were



