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tingency tables are: (i) jackknife-type perturba-
tions that decrease each count by one in turn, (ii)
perturbations that involve increasing or decreasing
each count by one in turn, (iii) perturbations loosely
based on a notion of misclassification that pre-
serves the total sample size but reallocates up to a
certain fraction of the observations, and (iv) more
general perturbations that need not preserve total
sample size and also permit more than one cell
count to alter. Schemes such as (i) and (ii) have a
certain natural appeal in moderate-to-large size
contingency tables—one would like to think that
changing just one cell by one count could not seri-
ously effect the p-value. In a context where protec-
tion against misclassification is desired, a scheme
of type (iii) is appropriate. A misclassification-based
scheme may differ depending on what, if any, mar-
gins are fixed by the sampling design. For example,
in a 2 x 2 table with fixed column margin, one may
be primarily concerned with potential errors in row
classification. In other words, one could want a
perturbation scheme that preserved the column
margin.

Working with a set of approximately one dozen
real examples of 2 X 2 tables culled from assorted
textbooks, the effects of perturbation schemes of
types (i), (ii) and (iii) on Fisher’s exact test were
studied. Denote the actual p-value by P and the
minimum and maximum p-values achieved over
the set of perturbations by P; and Py, respectively.
The following tentative conclusions rest on this
limited experience; in the interests of space, I will
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illustrate the points exclusively with respect to the
table given by Agresti in Section 2.1 having counts
by row (10,90/20,80). Scheme (ii) may be prefer-
able to scheme (i), as there are cases where scheme
(i) alters the p-value in only one direction so that
one of P; or P, equals P, while scheme (ii) has
P, + P and P, + P. For (10,90/20,80), P = 0.073;
under scheme (i), P, = 0.043 and P; = P = 0.073;
under scheme (ii), P; = 0.043 and P, = 0.082. Un-
der scheme (ii), it is frequently, but by no means
always, the case that P, and P, are achieved by
increasing and decreasing the same cell. For
(10,90/20, 80), this is the case with P, arising from
the table (9,90/20,80) and P, arising from the
table (11,90/20,80). Scheme (iii) often leads to a
much wider range of p-values. For (10,90/20,80),
moving one count under scheme (iii), P, = 0.028
for (9,90/21,80) and P, = 0.117 for (11, 89/20, 80).
In the event that scheme (iii) is restricted to pertur-
bations that preserve the row margin, P, = 0.043
for (9,91/20,80) and P, = 0.117 is unchanged.

It is possible that further work on the sensitivity
of exact inference may lead to rough guidelines on,
say, the percentage change in p-value correspond-
ing to some set of perturbations for the data (see
Dupont, 1986). For the present time, however, it
would be helpful if software packages were setup to
easily permit sensitivity analysis based on these or
other perturbation schemes. Developing techniques
to permit efficient sensitivity analyses (i.e., with-
out repeating the computation for each perturbed
table) would be a useful area for research.

" ing that may not coincide with its technical mean-

ing in the present context. It is also a value-laden
descriptor that suggests that any statistical method
that is not exact may not be very good. As
the following comments imply, nothing could
be further from the truth.

The most widely studied problem involving cate-
gorical data, and seemingly the simplest, is that of
drawing inferences for the risk ratio and risk differ-
ence in 2 X 2 contingency tables. Yet, this simple
situation highlights many of the most controversial
aspects of statistical methodology and theory. Be-
fore discussing these issues, we note that there are
few practical statistical problems that come in the
simple form of a 2 X 2 table. Most investigations
involve a large number of variables, both continu-
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ous and categorical, and the 2 x 2 table that inves-
tigators claim to be concerned with is actually a
collapsed version of the actual data array, and
inferential issues in the 2 x 2 table must be looked
at as they are imbedded in the broader inference
context. Agresti’s paper does go beyond the 2 x 2
setting, but in doing so it shows the murkiness of
inference issues in the real-world settings that most
practicing statisticians face on a day-to-day basis.
We now turn to some of the more technical and
focused issues of inference.

What do we mean by exact inference? The word
“exact” in the context of statistical methodology
has come to take on a pair of intertwined but
specific meanings, i.e., small (as opposed to large)
sample distributional features on the one hand, and
conditional (as opposed to unconditional) inference
where the role of conditioning on “‘other” sufficient
statistics is justified on various grounds. We be-
lieve that these issues need to be separated and
that each needs to be addressed as to its relevance.

As Agresti makes abundantly clear, once we get
beyond the 2 x 2 table, we almost always resort to
approximations, usually of a large sample nature.
Agresti notes the relevance of alternative assump-
tions for large, sparse contingency tables, where
the number of parameters increases with the sam-
ple size; but he dismisses this alternative a bit too
quickly. For example, the results of Haberman
(1977) on conditional likelihood ratio tests involv-
ing small numbers of degrees of freedom, in this
large, sparse asymptotics, suggest that influence
for a single parameter might be well handled in
this alternative framework. We also come away
from our rereading of the literature cited by Agresti
on this issue feeling more optimistic about the
adequacy of large-sample approximations, espe-
cially if we leave aside the conditioning on marginal
totals.

Next, we turn to the issue of conditioning. The
weaknesses of conditioning on an ancillary statis-
tics, when such a procedure is conceived either as a
principle or as a helpful technique, is a controver-
sial matter. Fisher’s exact test for independence
and other procedures for exact inferences regarding
the odds ratio condition on the marginal totals of
the 2 x 2 table; however, for the risk ratio and risk
difference, the marginal total is not an ancillary
statistic, and exact procedures are unavailable
(Thomas and Gart, 1978; Santner and Snell, 1980).
Bandorff-Nielsen (1976) shows the same result for a
related concept of M-ancillarity. This actually
points to serious difficulties underlying the imple-
mentation of procedures that condition on an ancil-
lary statistic. For example, the existence of an
ancillary statistic depends on the parametrization

being used. Also, even if an ancillary statistic does
exist, it may not be unique, and thus the “theory”
does not provide and infallible guide. Furthermore,
alternative attempts at providing a “logical justifi-
cation” of conditional tests for 2 x 2 tables [e.g., by
Greenland (1991)] are heuristic at best.

Plackett (1977) addressed an issue assumed by
Fisher (1935) when he originally developed the
exact test for 2 x 2 tables. As Plackett notes, Fisher
did not actually say that one should condition on
the marginal totals because they are ancillary and
contain no information regarding the odds ratio.
Rather, Fisher asked the reader to assume that this
were the case. Plackett shows that, for finite sam-
ples, there is some information in the margins,
in effect because of “boundary effects.” As a con-
sequence, the appeal to ancillarity, even when
interest is focused on the odds-ratio, does have an
element of approximation normally ignored by those
who favor conditioning.

In addition to questioning the general applicabil-
ity of conditioning on ancillary statistics, we
believe that questions should be asked about hy-
pothesis tests in general, and p-values in particu-
lar, and whether they provide, even in the best of
cases, a sensible approximate measure of the ade-
quacy of a null hypothesis vis-a-vis an alternative.
These questions carry over to confidence regions
derived by inverting exact hypothesis tests. Below,
we discuss these points in mode detail.

Tests constructed on the basis of efficient scores
are approximate, even if all the involved computa-
tions are exact. We follow Cox and Hinkley (1974,
page 106). Suppose a random variable Y has den-
sity f(y/0), where 6 is unidimensional. We write
the likelihood function for data y as [,(6). The
likelihood ratio, Ir(6, 0)(y) = 1,,(6,)/1,(6), is used
to test the simple null hypothesis H,: § = 6, versus
the simple alternative H;: 6 = 0,. The likelihood
ratio critical region is obtained from large values of

“Ir(0,, 0,)(y). Suppose, however, that our interest is

focused on testing H,: 6 =60, versus H,: 6 > 0,.
Efficient scores are used to approximate the likeli-
hood ratio when the following approach is used for
this testing problem. Writing the particular alter-
native 6, = 6, + 6, where 6 > 0 is small, we have

1,(6, +6) d
———— =6—log (0 d).
og ly(oo) d0 og y( 0) + 0( )

For sufficiently small 6 > 0, an approximate likeli-
hood ratio critical region is obtained from large
values of d/d6 log 1,(6,). The random variable U =
d/db log 1,(6,) is referred to as the efficient score
for Y. Therefore, when in an hypothesis testing
problem efficient scores are used instead of the

(1)
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likelihood ratio, the use of the approximation (1) is
implicit.

Typical examples of two-sided alternatives are
“the odds-ratio is not one” and “B is not zero,”
where 8 is a parameter in a logistic-linear model.
In such situations, no uniformly most powerful test
typically exists (Cox and Hinkley, 1974, page 105).
This is the case whether one conditions on ancillary
statistics or not. Also, there is no agreement among
practictioners on how to compute p-values when
the alternative is two-sided. For example, many
practitioners would compute the p-value as
P(|T| = |¢t,ps| | Hy), where T is the test statistic.
Cox and Hinkley (1974, page 106), on the other
hand, suggest a slightly different procedure based
on pyy, = P(T = t,,,| Hy) and pg, = P(T =
tops | Hy). They recommend reporting p,,, =
P(M < m,,,| Hy)) as the p-value, where m_,, =
min(p},, Pops) and M = min(P*, P~). For discrete
distributions, this choice leads to a value different
from P(ITl = |tobs| IHO)

The extent to which exact p-values should or
actually do contribute substantially to a statistical
analysis is problematic. Our point is probably best
summarized in a discussion on significance tests by
Cox and Hinkley (1974, page 66), who write, “Fur-
ther, if strong evidence against H, is obtained, the
significance test gives no more than a guide to the
type and magnitude of the departure.”

These difficulties of interpretation are com-
pounded in model building strategies that apply
several tests to the same data. A variety of books
and articles (e.g., Andersen, 1974) recommend and
reinforce building maqdels by applying simultane-
ously several tests using the same «-level, one test
for each parameter present in the current working
model. For example, a frequently used strategy is
to test successively that the parameters in a model
are zero. If the p-value of the least significant
parameter is above 0.05, say, then the predictor
variable corresponding to that parameter is re-
moved from the current working model. There are
several difficulties with the interpretation of p-val-
ues when one uses this or any other procedure that
applies several tests simultaneously or sequen-
tially. First, if one knew how many tests one would
apply and if the test statistics were independent,
then one could obtain the resulting overall p-value,
which will be larger than the nominal p-value for
each of the tests involved. Second, if one knew the
number of tests to be applied but if the test statis-
tics are not independent, the situation is much
more difficult and most of the time one can only
obtain an upper bound for the overall p-value.
Thus, the availability of exact p-values for the

intermediate tests would not be much of a contribu-
tion to the statistical analysis. Finally, and most
importantly, one does not know in advance how
many tests will be performed in building and speci-
fying a model. The uncertainty about the number
of tests to be applied is usually ignored, and the
interpretation of the overall p-value is even more
obscure. This leaves the relevance of exact infer-
ences for individual tests open to greater question.

We end our discussion with an additional word of
caution about the interpretation of statistical tests.
Statisticians have been pointing out for some time
to the inadequacy of statistical tests to obtain mea-
sures of evidence about an hypothesis [for example,
see Berger and Sellke (1987) and references there
for a critique of p-values as measures of evidence,
and Royall (1991) for a general critique of both
Neyman-Pearson tests and p-values from an evi-
dential perspectivel, Berger and Sellke (1987)
argue that, in general, p-values overstate the
evidence provided by the data against the null
hypothesis. Therefore, even if one can compute p-
values exactly, they are interpretable as a measure
of evidence only in a very approximate sense.

This notion of measures of evidence leads rather
naturally to the Bayesian perspective for inference.
Many statisticians acknowledge the foundational
superiority of Bayesian methods; however, they feel
that computational difficulties keep them from ap-
plying these methods in practice. It appears to us
that the computational difficulties involved in im-
plementing exact tests, although of different
nature, are as serious as those involved in imple-
menting Bayesian methods. Today, at least the
most common problems involving discrete data have
been addressed, in one way or another, from a
Bayesian perspective. For a surprising number of
these problems, posterior probabilities and mo-
ments can be computed exactly or up to a prespeci-
fied error bound. Among the relevant recent papers

" on Bayesian inference for loglinear models not ref-

erenced by Agresti are Spiegelhalter and Smith
(1982), Raftery (1986), and Epstein and Fienberg
(1991).

Agresti’s paper reviews and summarizes the re-
cent literature on exact tests and inference. He
focuses in large part on technical aspects, espe-
cially in the discussions of multidimensional tables
and logistic regression. Here, we have restricted
our comments to what we see as the more funda-
mental questions, many of which are also raised by
Agresti. After a careful study of Agresti’s excellent
review, we remain unconvinced by the usual an-
swers to these questions proffered by supporters of
exact inference.



