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Comment

Clive W. J. Granger

There is a great deal to be admired in the exten-
sive work on chaos that has appeared in recent
years, including some startling but simple theo-
rems, and also the best art work produced by
mathematics. However, in my opinion, it is often
surrounded by an unnecessary amount of hype,
considerable zeal and possibly some illogical argu-
ments and confusion.

To simplify this discussion, I will consider only
series that are “white chaos” and compare them
with iid series. A process will be called “white” if
its (estimated) autocorrelations are all zero and
thus the (estimated) spectrum is flat, with esti-
mates based on a long realization of the process.
White chaos is a deterministic process with these
white properties. As an example, I will consider the
process generated by

(1) Xpp1 = 42,1 - x,)

with starting value x,=s, s being the “seed”
value. I will also assume that truly stochastic pro-
cesses exist—an assumption that I think most sci-
entists will accept with probability one. Thus, an
iid series y, exists, and such a series is also obvi-
ously white.

Let G,, G, be a pair of generating mechanisms,
producing series x,,, x,,; then, it is obviously possi-
ble that the two series will have some properties in
common, such as zero means and identical (esti-
mated) spectra. Many generating mechanisms can
produce series having the white properties, as
pointed out in Granger (1983). An example is the
bilinear process generated by

(2) Ye= Y182t &,

where ¢, is zero mean iid. It is clearly possible for a
(deterministic) white chaos to have many proper-
ties of an iid process. Statisticians are familiar
with pseudo-random numbers (prn) generated on
computers by a somewhat complex deterministic
model. These numbers are chaos of ‘“high dimen-
sion,” as defined in the papers being discussed, or
“space-filling.” It is generally agreed that it would
take an enormous amount of data—a sample size of
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billions—to distinguish prn from a true iid. The
only questions then worth considering is how to
distinguish between a low-dimensional white chaos
and an iid series, and thus whether or not white
chaos occurs in reality rather than in computer
simulations or physics laboratory experiments.

The papers emphasize the similarities between
white chaos and iid series, such as the similar
appearance of their plots through time or the val-
ues taken by statistics such as autocorrelations.
The fact that white chaos can look like iid, which
can be restated as an iid series that looks like
white chaos, has no implication. If two generating
mechanisms produce series, each of which has some
properties, P, it does not mean that the mecha-
nisms are identical or similar. There is a danger of
falling into the famous logical fallacy that says, “If
A then B, observe B therefore A.” An example
would be, “If chaos (A) then positive Lyapunov
exponent (B), if data has a positive Lyapunov expo-
nent then it must be chaos,” which is seen occasion-
ally in chaos literature but is, of course, false
because some stochastic processes, such as an
AR(1) with the coefficient larger than one, also
have positive Lyapunov exponents. It follows that
this exponent cannot be used as a “popular mea-
sure of chaos” (Berliner, Section 3) without the
added assumption that the process is chaos.

A similar problem arises with the interpretation
of ergodicity. Let the proportion of time that a
series lies in some region R asymptotically tend to
a constant, for every R. This asymptotic proportion
could be called the likelihood that the series is
(eventually) in R. The fact that chaotic series have

“such likelihood is interesting but not especially

surprising. If the series are also assumed, or known,
to be stochastic, then these likelihoods can be called
probabilities and interpreted in the usual fre-
quency count manner. There is no philosophical
problem in doing this. Without the assumption of
stochasticity, the likelihood need not be called a
probability and then no unnecessary confusion oc-
curs. The likelihood can be put together for differ-
ent sets R to derive a marginal “distribution” for
the series. However, of much greater interest is the
joint distribution of a set of adjacent values of the
series, which can be derived in a similar manner.
Consider a pair of random variables X, Y, with a
joint distribution f(x, y). They can be called “sin-
gular” if there exists some combination X — g(Y),
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say, which is nonrandom, so that prob(X — g(Y) =
0) = 1. If one considers the joint distribution of
%,,1, %, for x, generated by (1), then their joint
distribution will be singular. This is an enormously
different property of a white chaos series compared
with an iid series that will not be singular. Other
chaotic processes will also be singular, possibly
using several lags.

It is interesting to ask how white chaos and iid
series differ. The similarities have concentrated on
statistics that measure the linear properties of se-
ries, such as autocorrelations and spectra, so that
the extent to which x,,, can be explained linearly
from past x, is considered. Of-course, much more
could be learned from statistics that measure non-
linearity, such as the bispectrum, the maximum
autocorrelation [the correlation between g(x,, ),
h(x,), where the functions g, h are chosen to maxi-
mize the correlation], rank autocorrelation or the
“shadow autocorrelation”

r(xt+h’ x,) = [1 - exp(—2o(x,+h, xt)l/z)]
where ¢ is the relative entropy

f(x, y)

a(x,y) = x, y)log| —————| dx dy,
(2.9 = [[ =) g[fl(x)fz(y) ’
‘f(x, y) is the joint distribution and f;, f, are the
marginal distributions. This measure is discussed
by Granger and Lin (1991) and has the property of
being invariant to instantaneous transformations
of x,,,, x, separately. A white chaos may not have
similar properties as an iid process using such
statistics. For example, corr(xZ,;, x?)= —0.221,
with x, generated by (1), as shown in Liu, Granger

and Heller (1991) by simulation.

Despite the comments in Chatterjee and Yilmaz,
there are big differences in the forecasting of white
chaos and iid processes. Neither are forecastable
linearly, but white chaos is (virtually) perfectly
forecastable nonlinearly in the short run, as seen in
(1), whereas iid is never forecastable.

To achieve perfect forecastability, the generating
map needs to be known, but given sufficient data
from a noise-free, low-dimensional white chaos neu-
ral network techniques can often provide an excel-
lent estimator of the map. Of course, a chaotic
process using seed s is perfectly forecastable from a
process previously generated using the same seed
and generating mechanism. This would not be true
for an iid process.

The question of forecastability in the log run is a
little more complex. Because of round-off errors in
computing, a white chaos is not actually generated
by a map such as (1) but rather by

(3) %1 = 42(0(1 - 2{1),

where x(" is a truncated x,. The difference be-
tween the actual and truncated processes gives a
long-run divergence between future values and val-
ues predicted by (3), the Lyapunov exponent mea-
suring this rate of divergence. Thus, in a sense, a
white chaos is not forecastable, even nonlinearity,
in the long run. However, it is known that eventu-
ally all future x values will lie on the (strange)
attractor A, which will be of limited (and possibly
fractional) dimension. Thus, likelihood (x,,, on
A| x,) =1 for h large, and this is a forecast with
substantial implications that will not hold for a
true iid process.

With the introduction of noise, the situation
becomes very different. Consider a generating
mechanism

(4) Xep1 = f(xt) + e
(5) Ye= %t &,

where e,, ¢, are independent zero-mean iid series.
The noise e, in (4) is inherent and will generally
continue to affect future x’s. In decision sciences,
such as economics, e, will affect current decisions
and so be embedded in future values of economic
variables. The noise in (5) can be thought of as
measurement noise and does not affect current or
future x,. Suppose that x,, ;, = f(x,) generates
white chaos. If ¢2 = variance (e,) is zero, then the
observed series, y,, is a mixture of chaos and iid.
Techniques for distinguishing chaos from stochas-
tic, such as those based on estimates of the correla-
tion coefficient, as in Liu, Granger and Heller
(1991), are likely to “see” the high-dimensional ¢,
rather than the low-dimensional white chaos, un-
less o2 = var ¢ is very small indeed. If o2 is not
zero, one has a nonlinear AR(1) and not chaos, and
in this case all the traditional nonlinear statistical
techniques are appropriate, as discussed by Tong
(1990) for the univariate case, and by Granger and
Terdsvirta (1992) for multivariate situations. If
f () were linear, then x, could be decomposed into
the solution of the deterministic equation and a
stochastic component consisting of e,,,_;, j=0.
Such a decomposition is not usually available for
nonlinear models, although Lord (1979) has some
results that may be relevant. If o2 is not zero or
extremely small, it is unclear why chaos should
even be considered. A further difficulty is that the
series may be unstable if 62 > 0. For example, if an
iid series is added to the right-hand side of (1) the
resulting quadratic AR(1) will be explosive and will
have none of the properties of chaos, other than
positive Lyapunov exponent! Of course, the noise
e,,, could be embedded into the model other than
linearly, but then one ends up with a completely
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different model. I think that intrinsic noise with
02 > 0 leads us immediately to a stochastic world,
and if ¢2 = 0 but ¢2 #°0 and not small, as is often
the case in economics, distinguishing between iid
and low-dimensional white chaos will be extremely
difficult.

This leads to the question of whether the real
world, such as an actual economy, contains chaos.
Chatterjee and Yilmaz take the position that it is
ubiquitous, finding examples in “such diverse fields
as physiology, geology,..., economics...” and
“theoretical models of population biology.” There
are also theoretical models in economics that pro-
duce chaos, but that does not imply that it occurs in
practice. I would prefer to suggest the opposite
view that there is no evidence of chaos outside of
laboratories. My reason is that there exists no sta-
tistical test, that I know of, that has chaos as its
null hypothesis. There are plenty of tests that have
as a null Hy:id (or linear) and are designed to have
power against chaos. However, as is well known by
all statisticians, if one rejects the null a specific
alternative hypothesis cannot be accepted. If a null
of linearity or iid is rejected, one cannot accept
(white) chaos, as nonlinear stochastic models are
also appropriate. For example, the test (based on
the correlation dimension) by Brock, Dechert and
Scheinkman (1987) (the BDS test) that was applied
in Brock and Sayers (1988) often finds evidence of

nonlinearity but not of chaos. Until a property P
can be found that holds only for chaos and not for
stochastic series, and a test is based on P with
chaos as the null, can there be a suggestion that
chaos is found in the real world.

Finally, I would suggest that bifurcation and
fractional integrated models are irrelevant for the
main topic discussed in the articles, but space limi-
tations prevent me from expanding on this point.

In conclusion, I think that scientists working on
the area of chaos are doing a disservice to this
important area of research by overselling its rele-
vance, by trying to equate it with randomness and
by using concepts (such as probability) that are
unnecessary and only lead to confusion. The tech-
niques being developed for analysis of chaotic pro-
cesses, such as the BDS test or estimates of the
Lyapunov exponent, or methods of forecasting us-
ing o2 = 0, are potentially powerful and useful
when applied to truly stochastic, real-world series.
There is a need for statistical methods to investi-
gate the properties of these techniques in this case,
and this, in my opinion, is the natural link between
chaos and statistics.
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Comment: Randomness in Complex Systems

David Griffeath

1. WHAT IS RANDOM?

Professors Berliner, Chatterjee and Yilmaz are to
be commended for their thoughtful overviews of the
recent explosion in experimental and theoretical
research on chaos. They identify a host of challeng-
ing statistical questions fundamental to the subject
and make timely appeals for the readership of Sta-
tistical Science to join the fray. Over the past
decade, I have tried to track the major currents of
chaos, studying many of the articles and books
mentioned in the authors’ fine reference list. I
strongly urge others to peruse those sources and
seek out a few.
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Berliner and Chatterjee and Yilmaz note that the
term “chaos” is not used in a consistent manner by
the scientific community; for example, there is no

‘universally accepted mathematical definition. In

my experience, the word means so many different
things to different people that it threatens to be-
come scientifically dangerous. Apparently,
Bernoulli shift, the most basic stochastic process, is
deemed chaotic. But how is it distinguished from
those strange attractors, delicately perched on the
boundary between order and randomness, that have
dramatically captured the imagination of both sci-
entists and the general public? The phenomenology
of chaos is leaving its mark across a broad spec-
trum of contemporary culture: from physics to phi-
losophy to recreational computing to textile design.
At the hairdresser, I discovered an article in a
summer issue of Gentleman’s Quarterly linking
mathematical chaos, Silicon Valley nerds and late-



