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methodology but that it would also stimulate statisti-
cians to make improvements so that it can bear com-
parison with the best statistical practice.

These, and many examples like them, might well be
held to support the proposition that although social

science has produced a considerable amount of statisti-
cal methodology it has not sufficiently influenced the
thought or direction of mainstream statistics. If this
discussion helps to bring that about it will have been
well worthwhile.

Comment: It's the Interplay That's Important

Paul W. Holland

While he hides it well behind the mask of scholarly
indifference, Clogg is hopping mad. He has had it up
to here with effete mathematical snobs (couldn’t data
analyze their way out of a paper bag) telling him that,
at bottom, all the really good ideas, even in statistics,
come from mathematics and the physical sciences. The
last straw was reading the same bilge in, of all places,
R. A. Fisher! An understandable fury, but two things
that it is good for applied statisticians to develop are
a tolerance of foolishness and a very thick skin.

I have been “doing statistics” in the social sciences
for most of my life, but on occasion the opportunity to
examine raw data from the physical sciences arises,
and it has always struck me on these occasions just
how familiar they appear, even though they hail from
an allegedly distant part of the scientific landscape. At
the forefront of research, the high signal-to-noise ratio
that some associate with physical science data simply
isn’t there. If it is, then we aren’t seeing the new stuff,
just the well-established old stuff. What does seem to
distinguish the social from the physical sciences is
that, in the latter, progress is always being made in
instrumentation and the noise levels eventually get
lower. Signals eventually stand out with great preci-
sion, but when they do, it is old news; it’s just Kuhn’s
“normal science.”

Most social scientists get used to the fact that,
generally speaking, the noise level does not decrease
(increasing n just introduces new ways to slice up the
data, and we are then often back to our noisy little
samples again). In this respect, progress in the social
sciences is hard to make. Learning to live with this
fact is part of the early socialization of social scientists
and of the statisticians who work with them. Most
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learn the hard way that a correlation over 0.8 is proba-
bly an error, and one exceeding 0.95 is an error for
sure. (These limits must be modified somewhat for
those who routinely correlate a variable with a slightly
modified version of itself, but the same basic fact must
be learned even there.)

The ubiquity of noise is why statisticians and statis-
tics are useful to science—if there is no noise, no uncer-
tainty, then there is no need for us or it.

Oh Statist! seek Unruly’s feast,
and shun Perfection’s meagre fare.

Human variability is a root source of the wide appli-
cation of statistics to social, behavioral and medical
science, and the lack of such a reliable source of noise
is why statistical science has a more limited role in
routine, empirical, physical science.

Aside from these comments, I have little to say
about the endless and, to me, the totally sterile “social
versus physical science” debate. I do have opinions
about some of the points and examples that Clogg
mentions in his interesting paper, so Ill concentrate
the rest of my comments on them.

There is no question in my mind that real problems,
based on real data, influence the development of statis-
tical procedures. How can it be otherwise? Example:

" structural zeros in multi-way contingency tables. Cate-

gorical variables can have impossible combinations —
for example, male hysterectomies. Ignoring the fact
that there will never be a non-zero entry in such a cell
can lead to a false impression of the association in such
tables, but I doubt if anyone ever thought much about
the implications of structural zeros until they saw
them in real data. However, structural zeros have long
appeared in continuous distributions, for example, the
uniform distribution on the unit disk, but not much is
usually made of this, essentially mathematical, exam-
ple except to counter the proposition that a zero corre-
lation implies independence. This is a continuous exam-
ple of the “quasi-independence” that Clogg discusses
because the two variables are as independent as they
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can be, given that there are structural zeros. Structural
zeros are an example of mathematics following data,
but partly anticipating it as well. It’s the interplay
that’s important.

Now a little history. An early major application of
log-linear models for multi-way contingency tables was
directed by Fred Mosteller in his contribution to the
National Halothane Study which took place from 1963
to 1969 (Bunker et al., 1969). Yvonne Bishop developed
her thesis out of that work which involved the full pano-
ply of log-linear model fitting (estimation by maximum
likelihood, structural zeros, likelihood ratio goodness-
of-fit tests and the use of Freeman-Tukey residuals to
assess model fit). This was a complex study in which
notable statisticians (including J. Gilbert, L. Moses, F.
Mosteller and J. Tukey) either directed or performed
data analyses in which death rates associated with
various anesthetics were adjusted in several ways for a
variety of patient characteristics. Mosteller and Bishop
were certainly aware of Goodman’s work on log-linear
models at that time (he is listed in the Foreword of the
final report as one of several “statistical colleagues”
who had been “generous with their advice”) so this
might be construed as one of Clogg’s examples of
the influence of sociological research on statistical and
biometric research. Of course, at the time it was proba-
bly viewed, by the parties involved, as various statisti-
cians working on related problems in different fields.
It should also be mentioned that Birch (1963) was very
influential on this work. The Halothane study had a
strong influence on statistical research at Harvard, a
direct result of which was the book by Bishop, Fienberg
and Holland (1975).

For several years after the study, Bishop’s computer
program for fitting log-linear models by iterative scal-
ing was the main computational tool available to inter-
ested researchers. Furthermore, I would not be the
first in line to congratulate the developers of statistical
packages for their help in disseminating the software
necessary to fit these models. For years after the Halo-
thane study the packages were great at noniterative
linear methods involving nothing more complicated
than a matrix of sums and cross-products, but they
could not even manipulate a three-way array of counts
let alone fit @ model to one. To the statistical packages,
categorical data just meant two-way tables and an ever
expanding list of measures of association. The notable
exception was the BMD package that always seemed
to lead the others, but even BMD took quite a while
before log-linear models were standard fare. Because
BMD was heavily influenced by the work of biostatisti-
cians, while the other packages were more influenced
by the work of survey takers and psychologists, I wonder
just how accurate Clogg is in his view of the influence
of all the survey work on the further development of
log-linear models. Of course, all this methodology is

now a routine part of any good, general statistical
package.

It is interesting that Clogg chose to emphasize the
concept of a latent variable as one without which “it is
impossible to appreciate modern quantitative sociol-
ogy.” I think that his definition of a latent variable is
much too loose. It is not simply that a latent variable
is one that can’t be measured directly. If you think
about it, most variables are hardly ever observed.
Rather, a latent variable is unobservable in principle,
but it influences the values of the variables that can
be observed, the manifest variables, in important and
powerful ways. The whole purpose of a latent variable
is to “explain” certain aspects of manifest variables.
This notion of explanation is worth mentioning. Early
on it was observed that if one obtains responses to a
series of questions all bearing on a single theme (e.g.,
a series of vocabulary questions or a series of attitude
questions about race relations) the responses to these
questions all tend to be positively correlated. A latent
variable named “vocabulary skill” or “degree of preju-
dice” is then hypothesized to explain these correlations.
Such explanations can often be quite parsimonious;
that is, using just a few parameters a whole matrix of
correlations can be accurately reproduced. Formally,
latent variable models always assume two things.
First, given the values of all the latent variables, all of
the manifest variables are statistically independent;
that is, all their (conditional) correlations vanish. Sec-
ond, the conditional distribution of any manifest vari-
able given the latent variables depends strongly, but
in simple ways (often linearly or at least monotoni-
cally), on the latent variables. The form of this depen-
dence on the latent variables varies with the type of
application. It is important to remember that without
the second part of a latent variable model the first
part, though apparently a strong assumption, is, in
fact, completely vacuous in the sense that it places no
testable restrictions on the data (Suppes and Zanotti,
1981; Holland and Rosenbaum, 1986).

Latent variable models were originally designed to
“explain” the associations among a set of manifest
variables rather than the values of these variables
themselves. Some of the models that Clogg describes,
and seems to extoll, go beyond these modest attempts
to explain a set of associations and begin to relate
various latent variables to each other. The error of
reification is to believe that a name necessarily refers
to something in the real world, even if the name is
simply the product of an active imagination. For some,
latent variables are even “more real” than the observed
data that they are created to explain. For some, latent
variables can be connected to each other by “causal”
relations. They cast some of the shadows that dance
on the wall of Plato’s cave. In the theory of mental
tests, a “true score,” the name of the latent variable, is
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sometimes regarded as a better measure than mere
observed test performance, because it has been
“purged” of measurement error. I have found some of
the enthusiasm for latent variables difficult to under-
stand because, from a technical point of view, all that
can ever be known about the value of a latent variable
are some aspects of its posterior distribution in some
population given the manifest variables. In principle,
the values of latent variables can’t ever be known. In
the case of mental testing, it often happens (for long
tests) that the posterior distribution of the latent vari-
able is very nearly concentrated on a single point. In
this case we don’t go far wrong by pretending that
the distribution is a point mass. However, in most
sociological examples, there are only a few indicators
of the latent variable, and consequently the posterior
distributions exhibit substantial variation. There are
often barely enough relevant manifest variables to
identify the model, that is, to be nonvacuous. I have
very mixed feelings about the real value of latent vari-
able models. On the one hand, I'm all for models that
capture intuitions about data and that parsimoniously
fit the details of real data sets, and it would be mis-
leading if I gave the impression that these models
never do either. On the other hand, so little separates
these models from simply being vacuous that I think
it is easy to overlook this fundamental point and to
make more out of them than they warrant. The latent
class models that Clogg mentions illustrate two related
points. The first is what I call the discrete-continuous
duality of latent variables. It is probably impossible in
principle to decide whether a latent variable is continu-
ous or discrete. It is not unusual for identical fits to
data to be obtained by a latent class model and by
another model that has a continuous latent variable.
This is not all that surprising because finite mixtures
often span or, at least, are dense in a space of infinite
mixtures. Second, in the original use of latent class
models, nothing was assumed about the relationship
between the latent variable and the manifest variables
except what I've called the first part of a latent variable
model —the conditional independence part. The only
reason that these models were not vacuous, that is,
could not represent any set of data exactly and in more
than one way, was the fact that the latent variable was
assumed to be discrete, taking on only two or three
values. It is almost an accident that such models are
identifiable, and if the number of values of the latent
variable is allowed to be a free parameter, then they
cease to be. I think that good advice to a user of latent
models is to “make latent variables powerful,” in the
sense that they should have as many empirical conse-
quences as possible, even to the point of trading off
model fit for model simplicity. This is contrary to much
of the sociological use of these models, in which a
better fitting model might be achieved by weakening

the assumptions about the correlations between the
unobservable latent variables.

I want to make a final point about latent variables,
but before I do I need to make some preparatory
comments about Clogg’s discussion of causal inference.
It is, to me, a mistake to view the approach to causal
inference in nonexperimental research advocated, say,
in Rubin (1974) as essentially different from that which
lies behind the causal model literature, for example,
Blalock (1962). Clogg seems to say that they are essen-
tially different. The data are the same, and the goal in
both is to estimate causal effects. Elsewhere (Holland,
1988), I attempt to show the connection between these
two approaches in a problem that involves both “direct”
and “indirect” causation. In my opinion, Rubin’s ap-
proach is more detailed and principled than the causal
model approach that begins directly with “error term”
models. Sometimes, error term models can be deduced
from Rubin’s approach, and then causal effect parame-
ters can be identified with certain coefficients in the
equations of these models. In other cases, it may be
shown that the coefficients of a linear model do not
have a causal interpretation. An important guiding
principle of Rubin’s approach is to use comparative
experiments as a model for thinking about problems
of causal inference in nonexperimental studies. This
leads us naturally to ask: What can be a cause in such
a study? More precisely, what can have a causal effect?
The answer is that if it can’t even be thought of as a
treatment in a hypothetical comparative experiment
then it is probably not a good idea to talk about
its causal effects. In sociological studies, gender and
ethnicity are usually non-causes in this sense, while
education and occupation probably do have causal
effects. One must always be careful in nonexrerimental
research to distinguish our ability to define causal
effects from our ability to measure or estimate them
in a specific case.

This brings us back to latent variables. Can a latent
variable ever be a cause? In the structural model litera-

" ture, this is no problem. Just define it to be a cause by

fiat and adjust the model accordingly. But could a
latent variable ever be a treatment in a hypothetical
experiment? Because they are unobservable in princi-
ple and only their posterior distributions given the
manifest variables can be known, they don't seem to
me to be good candidates for causes. The key question
is whether or not it makes sense to imagine what a
subject’s outcome would be if the value of the latent
variable were one thing and to imagine another, poten-
tially different, value of the outcome (for the same
subject) if the value of the latent variable were some-
thing different. I don’t believe that this is the same
thing as an experiment in which there is measurement
error in the value of the treatment to which each unit
is exposed, but in the structural model literature a
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latent cause is often treated as a treatment measured
with error. Right now I don’t have an answer as to
whether or not latent variables can be causes. I suspect
that it might depend on other considerations. But I
am sure that it is at least as important to know the
answer to this question as it is to know how to fit a very
complicated structural model by maximum likelihood.

Why go on and on about causal models and latent
variables? Here is my answer. If, as Clogg rightly
asserts, sociological research is influencing statistical
research in the study of causation, what, then, should
this influence be? Should statisticians jump on the
band wagon and develop more and more procedures
for fitting these models, following the path so well
blazed by, say, Anderson and Rubin (1956)? Should the
reaction of statistical research be simply to continue
to add to the list of structural models that can be fit
to data in finite computer time? Or should it spend

Comment

Charles F. Manski

I can easily understand Professor’s Clogg’s frustra-
tion with the belief that advances in statistics “trickle
down” to the social sciences. Statisticians must feel the
same way when it is said that advances in probability
theory trickle down to statistics. Clogg’s account of the
historically productive two-way flow of ideas between
statisticians and sociological methodologists is well
written and instructive. It is easy enough to document
a similarly productive flow of ideas between statisti-
cians and econometricians. Some examples follow.

COLLABORATION BETWEEN STATISTICIANS
AND ECONOMETRICIANS

In the 1940s and 1950s, statisticians and econometri-
cians concerned with the estimation of linear model
systems worked closely together with the support of
the Cowles Commission for Research in Economics.
The statisticians in the group included, among others,
Ted Anderson, Herman Chernoff, M. A. Girshick and
Herman Rubin. The economists included, among oth-
ers, four later winners of the Nobel Prize: Trygve
Haavelmo, Lawrence Klein, Tjalling Koopmans and
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some effort to give these models a better foundation
based on the known past successes of statistical sci-
ence? In my view, the latter is one of the many contribu-
tions of the approach to causal inference that Rubin
started. His approach grows out of work in many fields
all bearing on the problem of causal inference when
there is heterogeneity, variation and noise— Unruly’s
feast—and there is plenty more to do there. Again, it's
the interplay between statistics, science and mathe-
matics that’s important.
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Herbert Simon. The Cowles Commission work revolu-
tionized econometrics. See the seminal volume edited
by Hood and Koopmans (1953). The atmosphere and
substance of the collaboration between statisticians
and econometricians is conveyed well by Anderson
(1991), written on the occasion of Haavelmo’s receipt
of the Nobel Prize.

From the 1970s through the present, Bayesian stat-
isticians and econometricians have met on a regular
basis. An important medium for these contacts has
been the conference series organized by Arnold Zellner,
a prominent econometrician who is currently the presi-
dent of the American Statistical Association. Several
published volumes have emerged from these confer-
ences. See, for example, Fienberg and Zellner (1975).

Over the past 10 years, statisticians and econometri-
cians working in the area of nonparametric and semi-
parametric analysis have developed increasingly close
working relationships. The fruits of collaborative re-
search have appeared in co-authored articles, such as
Heckman and Singer (1984) and Pakes and Pollard
(1989). Several conferences have brought together stat-
isticians and econometricians, with tangible product in
the form of conference volumes such as that edited by
Barnett, Powell and Tauchen (1991). Knowledge of
mutually interesting developments has also diffused
through the routine process of exchanging working
papers.



