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Comment

Nicholas G. Polson

The goal of Markov chain Monte Carlo (MCMC)
algorithms is to provide answers in multidimensional
statistical models that are computationally quicker
than other techniques such as importance sampling or
numerical integration. However, not all MCMC algo-
rithms lead to procedures that are more efficient than
these other techniques. Both Geyer, and Gelman and
Rubin propose empirical approaches to assess when a
particular MCMC procedure is useful. Unfortunately,
I am skeptical about the potential for any empirical
diagnostics in the MCMC setting.

Two desirable properties for a MCMC procedure are:
(1) to provide estimators that, with arbitrarily high
probability, approximate the quantity of interest to
any specified level of accuracy and (2) to perform this
task “quickly,” say in polynomial time. Unfortunately,
the two procedures presented cannot establish these
properties. Geyer proposes one long run of the chain
together with a time-series analysis of the output,
whereas Gelman and Rubin propose multiple runs us-
ing an overdispersed initial distribution together with
a diagnostic approach to stop the chain. I will show
that when (1) and (2) are satisfied there is no need to
“diagnose” convergence or perform a time-series analy-
sis of the chain. One long run of the chain is sufficient
and run lengths can be bounded using the second
eigenvalue of the Markov chain. These bounds are
stronger than those obtained using central limit theo-
rem arguments. On the other hand, when (2) does not
hold, it is theoretically unclear whether the output has
any informational content and whether diagnostics,
multiple runs or time-series analyses of the chain can
help solve (1). In this discussion I will focus on tech-
niques for checking (2) for any MCMC procedure.

In the following I will discuss several topics related
to properties (1) and (2): fast convergence of the chain,
selection of the “burn-in” period, how long to run the
chain and caveats associated with a purely diagnostic
approach. To introduce notation and fix ideas, consider
a time reversible ergodic Markov chain defined on a
finite state space, V. Let © be the distribution that we
wish to sample from and #: V = ® be the functional
whose expectation under #, E.(h), is the quantity of
interest. Imagine V, as the computer does, to be a fine
discretisation of the & dimensional parameter space. I
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define “quick” algorithms as those that satisfy (1) in
o(|V]) rather than O(|V]) operations [importance sam-
pling and numerical integration are O(|V|)]. This crite-
rion is central to the issue of why randomised
algorithms can be more powerful than deterministic
algorithms. Basically, MCMC algorithms meeting this
criterion are superior to numerical integration strate-
gies and are called provably convergent.

Let P denote the transition matrix of the chain de-
signed with 7 as the unique stationary distribution.
The efficiency of the algorithm, as we will see, depends
on the rate of convergence of the chain, which in turn
depends crucially on the second eigenvalue, i;. One
long run of the chain turns out to be sufficient to
generate samples from 7 and to draw inferences about
E.(h). I will show that there is no need to “diagnose”
convergence or perform a time-series analysis of the
chain as long as an a priori bound on 4, is available.

To assess the efficiency of a MCMC procedure one
may proceed as follows: by Perron-Frobenius theory,
the L! distance between the distribution after ¢ steps
of the chain, P%¢), and the stationary distribution,
n(p), is geometrically bounded as
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where ¢ is the initial starting point of the chain and
the negative eigenvalues are assumed to be bounded
below by —A, [see, e.g., Diaconis and Stroock (1991)].
Therefore, one can achieve a desired level of sampling
accuracy, & by running the chain for T' = log(ev'n(¢o))/
log(1/A,) steps. At first sight this is appealing and looks
straightforward to implement and there is no need to

. “diagnose” convergence from the realised chain. How-

ever, for the algorithm to be computationally efficient
we need T to be small relative to |V|. More precisely
we need T' = o(| V). Notice that since | V| is exponential
(in k), this essentially requires 7' to be polynomial (in k).

Demonstrating that a MCMC algorithm is provably
(polynomial time) convergent can be a difficult problem.
Several papers describe techniques for checking fast
convergence of a MCMC algorithm. Applegate, Kan-
nan and Polson (1990) provide a bound for T for Gibbs
and Metropolis algorithms by using the notion of con-
ductance to obtain a bound for A, and hence 7. Conduc-
tance (Sinclair and Jerrum, 1989) is widely used in
computer science and has the following intuitive defi-
nition: the chain will converge rapidly if the escape
probability for each subset S of states is high, as
measured by s es T(O)P(6, 9)/Loes m(6), where P(6, ¢)
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is the transition probability of going from 6 to ¢. The
conductance of the whole chain, ®, is the minimum
over all subsets such that =n(S) < 1/2. Conductance
provides an upper bound on the second eigenvalue due
to the inequality A, < 1 — ®% Diaconis and Stroock
(1991) discuss other ways of finding tighter bounds for
A1; for example, using the Poincaré inequality.

MCMC algorithms that are not provably convergent
are problematic due to slow convergence. Heuristically,
slow convergence will occur if there exists a subset of
states with poor conductance as the chain can get stuck
in this set for long periods. If this is the case, then
any diagnostic procedure will give an overconfident
assessment of convergence as a set with poor conduc-
tance can be “hidden” from the chain, such as, in the
witch’s hat distribution. The problem can be more seri-
ous for multimodal distributions. Here convergence
can “appear” to be very quick when in fact the chain
mixes poorly. Multiple-run procedures might alleviate
this problem, but proper application requires substan-
tial knowledge of the underlying distribution, such as
the location of modes and low conductance sets. The
analyses of Geyer, and Gelman and Rubin on chains
with slow convergence are largely unexplored. Both of
these issues are areas for further research.

The time-to-stationarity, 7, for any joint distribution
7 can be bounded by supposing that the experimenter
has specified a measure of local curvature, a, and a
global curvature measure f of log-concavity of 7. Then,
given ¢, the chain is run for

ottt

steps, where V is assumed to be contained in a cube of
size d and & = dim(6) (Applegate, Kannan and Polson,
1990). For log-concave distributions, corresponding to
B = 0, the Gibbs and Metropolis algorithms satisfy (2);
they perform (1) in o(| V|) steps and as such are (random)
polynomial time convergent. This is why randomized
algorithms like Gibbs sampling are powerful computa-
tional tools in high dimensions, whereas other Monte
"Carlo procedures or numerical integration are prone to
the curse of dimensionality.

I now turn to the problem of using MCMC algo-
rithms to draw inferences for E.(h) once provable
convergence is established. Specifically, consider the
class of estimators of E(h) are constructed by deleting
the first N, draws and then averaging the next N
values of A(+) at the Markov chain draws, 6, where
Ny = i< No+ Ni. That is,

. 1 No+N1
Ono.1 = - 2 h(69).

1i=No+1

Notice that, as Geyer points out, it is inefficient not to

take every draw. An analysis based on Aldous (1987)
provides a bound on the mean-square error (MSE) of
Ono, N, as follows:

. C(A1,N1)o? No
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where o2 = Varyh) and n* = min n. The constant
Cli, Ny) < 2 if Ny > 1/log(1/4,), and MSE(fyn,) can
be made arbitrarily small as long as

log (1/</m(@o) n*) 1

Ny > and Ny > ————.
’ log(1/A1) ! o%log(1/4;)

The bound on N, is related to that on 7" and is more
stringent than that on N;. Therefore, when there is fast
convergence, the experimenter can guarantee provable
estimates of E(h) in o(| V) steps without diagnostics or
time-series analysis. The current practice for selecting
“burn-in” values using ad hoc rules or diagnostics tend
to give values for N, that are extremely small and
misleading. This is of a more serious nature than indi-
cated by Geyer.

The above reasoning also provides the following
guidelines: N, reduces bias in dw,n;, N1 decreases the
MSE(f) and it suggests adopting a starting point near
the mode. An additional consequence is that N, de-
pends on A, (and in implementation on the bound for
A1), rather than on an estimated value from the ob-
served chain that might underestimate N;. When the
chain converges quickly, the bound is of|V|). In con-
trast, assessing N; purely using a central limit theorem
argument produces on a bound of order O(|V]) (that is,
exponential in k) (Aldous, 1987). Therefore, the central
limit theorem analysis provides a bound no better than
those in importance sampling in terms of computa-
tional complexity.

Two related issues concerning A; should be noted.
First, as a caveat, eigenvalue bounds can be pessimis-
tic, and the actual convergence of the L' distance is
not always an exponential decay (as suggested by the
upper bound) but rather drops sharply after a suitable
number of steps (Diaconis, 1988). Second, one practical
solution to poor convergence properties of a given
chain is to introduce auxiliary variables. For example,
the Swendsen-Wang algorithm for the Ising model
can exhibit polynomial time convergence (Jerrum and
Sinclair, 1990), whereas ordinary Gibbs sampling pro-
cedures can be nonpolynomial time convergent. For
the latter, any diagnostic procedure or multiple-run
procedure to assess convergence is prone to failure.

Hopefully, future research will develop methodolo-
gies that combine the procedures presented by Geyer,
and Gelman and Rubin with the theoretical considera-
tions discussed here.



