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the importance weights can yield valuable information
about the convergence of the Markov chain. Further
experience with this Gibbs Stopper method is war-
ranted. Also of value would be analytical expressions
that quantify the probability of outlier detection for
important classes of problems.

Comment

’Alan E. Gelfand

As noted by Gelman and Rubin, the problem of
creating a simulation mechanism is clearly separate
from the problem of using this mechanism to draw
inference. Moreover, for the former problem, as ob-
served in Green and Han (1992), the objectives of rapid
convergence and good estimation performance are dis-
tinct. Translating these objectives to the latter prob-
lem, it appears that Gelman and Rubin focus on
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diagnosis of convergence, whereas Geyer focuses on
assessing estimation performance. Again, these enter-
prises are not identical, accounting in part for the
authors’ differing views.

The two papers share a common thread in that,
regardless of whether single or multiple trajectories
are used, the state space of the Markov chain at each
iteration is reduced to a univariate observation with
trajectories thus treated as univariate time series.
Though the authors’ proposals can be carried out for
any univariate reduction of interest, the thrust of my
comments is the suggestion that, at least in certain
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situations we can and should work with the entire state
vector. The notion of investigating convergence with
regard to the joint distribution of the variables is
conceptually more satisfying, but, in addition, the sole
analytic form we know explicitly is the nonnormalized
invariant joint density that the Markov chain has been
designed to have as its equilibrium distribution.

Denoting this nonnormalized density with respect to
Lebesgue measure by f(x) with x a p X 1 vector, a
convergence diagnostic built around f(x) was proposed
for the Gibbs sampler as the Gibbs stopper in Ritter
and Tanner (1992). The idea is that, if at the tth itera-
tion the marginal density of x is, say, A% (x), then
under convergence, w(x) = f(x)/h'*(x) should be roughly
constant. Of course A" is unavailable explicitly except
in trivial cases. However, note that A2(x) = [ h(x|y)-
h*~y) dy, where h(x|y) is the transition kernel for the
Markov chain. Hence, if x¢"Vj =1,2,...,m is a sam-
ple from A%~D a Monte Carlo approximation for A"
arises as

(1) M) = L S0 (xjxt).
m ;=1

In the case of the Gibbs sampler, A(x|y) takes the form

2, hlxi|%1, - - .y Xic1, Yit1, - - -, ¥p), Where the terms
in the product are the complete conditional distribu-
tions of the variables.

We can extend this idea to the case of a general
Hastings-Metropolis algorithm. If f is absolutely con-
tinuous with respect to some measure y, the transition
kernel associated with such an algorithm is defined to
be a mixed measure of the form

Pr(x?eA|xt ) =y)
= /A aly, x)qly, x) du(x)+ r(y)oyA),

where r(y) = 1 — [ aly, x)qly, x) du(x) and J,(4) =1 if
yeA,or=0ify ¢ A.

Here qly, x) is the “proposal” transition kernel and
aly, x) is the “moving” probability [see, e.g., Tierney
1(1991) for further details]. Suppose H" denotes the
marginal probability measure for x'*. Then direct calcu-
lation shows that H® is absolutely continuous with
respect to u if the starting distribution is and, in fact,

2) pio = B _ ey AHTD

du du

where s~ Y(x) = [ aly, x)q(y, x) dH"Y(y). Estimation of
(2) is straightforward given x¢™Y, j=1, ..., m, a
sample from A%V = dH*"V/du. In fact, for a given x,
§ %) = m™! L alx¥Y, x)g(x¥Y, x), A*"(x) would
be an appropriate kernel density estimate, and r(x)
would be computed by noniterative Monte Carlo using
draws from q(y, x). These ideas can be further extended
to more general hybrid Markov chain Monte Carlo

algorithms such as Metropolis within Gibbs (Miiller,
1992).

But then, given an estimate of A", we use i = fI/AY
in place of w. If, in fact, we have a sample x¥, j = 1,

., m from A%, we could naturally obtain the set of
w(x¥) and see how “constant” they are, perhaps using
a histogram or a dispersion measure.

Apart from the computational burden in computing
A9, two broader problems arise in the implementation
of this convergence diagnostic. First, if p is large we
will require m very large in order that A? be a good
estimator of A, Second, since the normalizing con-
stant for f is unknown, we will not know whether the
w’s are tending to the correct constant. It is possible
that the i's are roughly constant but that some portion
of the mass of f will have been missed (Roberts, 1992).

In special cases the second problem can be disposed
of through a suggestion of Zellner (personal communi-
cation). Suppose we can partition x into (x1, x2), where
h(x1|xs) and A(xs|x;) are standard densities. This can
occur when conjugacies are incorporated into the model
as, for instance, in Gaussian linear models with the
customary normal X inverse Wishart prior. If x; is the
vector of coefficients and x, the variance-covariance
matrix, then h(x;|x;) and h(xz|x;) will be updated nor-
mal and inverse Wishart densities respectively. But
then, if %, j=1,..., m, are a sample from A%, we
can obtain the marginal densities

- 12z A 1z
h(x:) = - Dhxi|xyy),  h(xe) = -~ > b (xa) %Y
j=1 Jj=1

along with & = h(x1|x2)ﬁ(x2)/hx2|x1)ﬁ(x1). Under conver-
gence the function @ should be approximately the
constant function 1; the set 1 (x¥) should cluster
tightly around 1.

The preceding discussion would appear to imply im-
plementation of the Markov chain Monte Carlo algo-
rithm through parallel strings since samples from, for
example, 2% are presumed. In fact, use of output from
a single string can be equally well justified. Suppose
we denote a post burn-in sample, possibly with spac-
ing, from this string by x% j =1, ..., m. Since, un-
der convergence, the x¥s are identically distributed,
we might, for example, replace (1) by Ax) =m™!
L7, hx|x¥. Of course the (unknown) dependence
among the x;/s muddies assessment of the precision
of A.

In summary, the above diagnostics will be suitable
for use when p is not large, conjugacies are present or
fis not pathological. Further discussion of the use of @
as both a convergence diagnostic and as a convergence
accelerator appears in Lee and Gelfand (1992). Lastly,
considerable care is required in choosing, implementing
and drawing inference from a simulation mechanism.
However the reward of accommodating uncompromised
modeling in many instances makes the effort worth-
while.



