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Comment

Richard L. Smith

Jan Beran has written an excellent and timely review
of a topic that is gaining increasing attention in a
whole variety of fields. As his review makes clear, the
origins of the subject go back a long way and were
rooted in practical problems in several fields. However,
it is only in recent years, stimulated by the develop-
ment of the fractional ARIMA model, that the subject
has started to receive widespread attention among
statisticians. Beran does a superb job of bringing to-
gether the extensive results that now exist on the
effects of long-range dependence on a whole range of
statistical inferences. Nevertheless, I suspect it is in
the identification and estimation of long-range models
themselves that readers will take the greatest interest,
and it is here that I concentrate my comments.

A common feature of long-range models is that the
spectral density f(x) satisfies the relation

1) flw)~bw'2H, w—0.

Beran’s equation (6) is a slight generalization of this,
replacing the constant & by a slowly varying function,
but for most purposes (1) suffices. One feature of many
of the results about the effect of long-range depen-
dence, such as Beran’s equation (8), is that they depend
on the spectral density only through the constants b
and H. In fact, (8) itself depends only on H, but many
related results depend also on the scaling constant b.
For this reason, it is of interest to look for direct
estimators of b and H, rather than assume some para-
metric model such as fractional ARIMA. I have been
particularly interested in estimators based on the peri-
odogram, which are among those reviewed in Section
2.4. If I.(w) denotes the periodogram at frequency w
based on n observations, then it is “well-known” that
the sampling distribution of I.(w; at the Fourier fre-
quencies w; = 2zmj/n for 0 < j<n/2 is approximately
that of independent exponential random variables with
means f(w;). If we assume f(w) = bw' ™2 then this
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suggests that 1 — 2H could be estimated as the slope
of a linear regression of log I,(w;) on log w;. This
idea has been suggested by a number of authors, in
particular Geweke and Porter-Hudak (1983). Two re-
finements of Geweke and Porter-Hudak seem desirable:

a. Geweke and Porter-Hudak used least squares
regression of log periodogram ordinate on log
frequency. In contrast, since the asymptotic dis-
tribution of I,(w; is exponential, a regression
of logl,(w; based on errors from the Gumbel
distribution function 1 — exp(—e*) would seem
preferable. I call this the maximum likelihood
(ML) approach, in contrast to Geweke and Porter-
Hudak'’s least squares (LS) approach.

b. In addition, it is becoming increasingly clear that
it is necessary to restrict the range of frequencies
used in the regression, say to ny < j < n; where
1 < ny < n; << n/2. At the lower end, the difficulty
is that the above-mentioned “well-known” proper-
ties of the periodogram apparently break down
for very low frequencies in the case of a long-
range model (see, e.g., Kiinsch, 1987; Haslett and
Raftery, 1989). At the upper end, the problem
arises from the fact that (1) is only an asymptotic
relation, not an identity, so attention must be
restricted to small w. A more formal argument
along these lines was presented in my discussion
of Haslett and Raftery (1989).

It seems to me that Graf’s HUB0OO and HUBINC
estimators deal with problem (a), albeit in a quite
different way from the ML approach being suggested
here, but do not contain anything that corresponds
directly to the selection of no and ;. In view of this, I
am somewhat doubtful about the theoretical justifica-
tion of these estimators.

The rest of this discussion concerns three examples,
two of them taken from Beran'’s paper, which illustrate
the importance of appropriate selection of ny and n, in
this approach.

The first of these is the Nile data. Beran’s Figure 3
plots the periodogram in log-log coordinates. It can be
seen that the plot is decreasing at an approximately
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linear rate across its entire range, but that the first
and third points on the plot are also the highest ones,
and since these are also high-leverage points, they
might cause trouble if we do not make n, at least 4. In
fact, with n; selected somewhat arbitrarily to be 100,
we find estimates of H from a LS regression to be
0.87 (standard error 0.07) with no, = 1, 0.84 (0.08) with
no = 2, and so on as 0.85 (0.08), 0.80 (0.08), 0.82 (0.09)
with no = 3, 4, 5. Using ML regression in place of
LS regression, we have estimates 0.88 (standard error
0.05), 0.86 (0.05), 0.87 (0.06), 0.78 (0.07) and 0.79 (0.07)
again under no = 1, ..., 5. There does indeed seem to
be a slight jump in the estimates after no = 3. Fixing
no = 5 and varying n,, we have estimates 0.97 (0.16),
0.86 (0.08), 0.86 (0.06), 0.87 (0.05) for n, = 50, 150, 200,
250 under LS regression, and 0.86 (0.13), 0.85 (0.05),
0.82 (0.04), 0.84 (0.04) under ML regression. Apart
from the case n; = 50, which has high standard error,
these results seem to be quite stable with respect to
n;, with the ML estimates of H slightly lower than the
LS estimates.

As a further illustration, Figure 1 shows standard-
ized residuals from the ML regression of log periodo-
gram on logwj, with no =5 and n, = 150. Part (a)
shows a plot against j, and part (b) is a probability
plot. The main feature of these plots is a group of 6 or
7 outliers corresponding to very low values of the
periodogram. If LS regression is used and a normal
probability plot constructed, then the effect of these
outliers is even more pronounced. However, there is no
other obvious departure from the model, and given
that the outliers seem evenly distributed amongst the
frequencies (Figure la), it seems unlikely that they
are excessively influential. It may well be that Graf’s
HUBINC estimator is dealing effectively with this
feature and I would be interested in Beran’s comment
on this point.
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The overall conclusion seems to point to an estimator
of H in the range 0.8-0.85 with a standard error be-
tween 0.05 and 0.08. In contrast, the confidence inter-
vals quoted by Beran for the HUB00 and HUBINC
estimators correspond to standard errors around 0.02-
0.03. Considering the variation of the regression-based
estimators with no and n;, and the contrast between
the LS and ML estimators, I think Graf’s procedures
are underestimating the standard errors, but the two
sets of results are still broadly consistent, and in partic-
ular provide clear evidence of long-range dependence.

The situation with the NBS data seems to me much
less clear cut. For one thing, when I computed the
periodogram I found an extreme low outlier at j = 43;
this does not appear on Beran’s Figure 4 and distorts
the estimates whether the ML or LS method is used.
There are, of course, other ways of dealing with ex-
tremely low values of the periodogram. For example,
this one is much less noticable if the data are tapered
before calculating the periodogram. Therefore, I do not
believe this feature is too important in itself, but it
does have an effect on regression estimates and this
needs to be taken into account. What is important is
that in this case the visual evidence, if the plot is
inspected carefully enough, suggests to me that the
linear decrease does not persist over the whole plot,
but only over about the first 40 or so periodogram
coordinates. For this reason, I have taken n; = 40 and
have obtained LS estimates for H of 0.69 (standard
error 0.13), 0.56 (0.17), 0.52 (0.21) under no, = 1, 3, 5,
ML estimates of 0.68 (0.09), 0.65 (0.13), 0.64 (0.17). In
this case the ML estimates are more stable than the
LS estimates, but all the estimates have rather large
standard errors. If we remove the outlier at j = 43 and
extend the range of n,, keeping n, = 3, we obtain LS
estimates 0.59 (0.09), 0.49 (0.07) and ML estimates
0.71 (0.07), 0.60 (0.05) at n, = 80, 120. Gumbel plots
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Fic. 1. Plot of Gumbel residuals from model fitted to Nile data with no = 3, n; = 150. (a) Plot of jth residual against j. (b) Probability

plot of ordered residuals.
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Fic. 2. Plot of Gumbel residuals from model fitted to NBS data with no = 3, n1 = 120, the 43rd ordinate having been removed. (a) Plot

of jth residual against j. (b) Probability plot of ordered residuals.

for the case no = 3 and n; = 120 are shown in Figure
2; my feeling about Figure 2a is that it seems to show
a decrease over the first third of the plot followed by
an increase, which is consistent with the fact that both
the LS and ML estimates of H take their lowest value
when n; = 120. Figure 2b shows a clear discrepancy
from the Gumbel distribution in the lower tail. In fact,
in this case the normal distribution of log periodogram
ordinates shows a much better fit than the Gumbel!

I can see no clear-cut interpretation of these results.
There seems to be some evidence for long-range depen-
dence, but it is not decisive, and I would not feel
comfortable myself with Beran’s claim that it is sig-
nificant at 1%.

The third example isbased on Smith (1993). Recently,
there has been some interest in the use of long-range
dependence models for the analysis of global warming
phenomena. In particular, Bloomfield (1992) considered
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both conventional and fractional ARIMA models for
global temperature series, concluding that there was
significant evidence for long-range dependence in the
context of fractional ARIMA models. Bloomfield and
Nychka (1992) extended this analysis by comparing a
number of approaches for deriving standard errors of
estimated trend parameters based on the spectrum of
the time series. In Smith (1993), I considered specifi-
cally the case of regression on a linear trend when the
spectral density of the errors satisfies (1). If we regress
observations y, on regressor x, =n,1 < n =< N, and if
B is the least squares estimator of the slope, then under
(1) we have

36bn(1 — H) N4
H(1 + HI(2H)sin(z — nH)

’

(2) Varf~

a special case of Yajima’s (1988) results mentioned in
Section 2.3. If we can estimate b and H, then equation
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Fic. 3. IPCC data. (a) Smoothed plot of raw data, monthly averages for 1854-1989 (b) The first 120 coordinates of the periodogram
on log-log scales, calculated from the residuals of a linear regression fitted to the unsmoothed raw data.
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(2) provides an approximate formula that can be used
to estimate the standard error of 4. As an example, we
consider a series of 1632 average monthly tempera-
tures over the Northern Hemisphere (land and sea)
used by the IPCC (Intergovernmental Panel on Climate
Change) for its global warming analyses. Figure 3a
presents the data, smoothed by applying a 49-month
moving average and centered around the 1950-1979
mean value for each month. It shows a pattern of
steady behavior until about 1920, followed by a sharp
rise between 1920 and 1940, then a gradual decrease
until about 1975, followed by the sharp rise that has
triggered the present alarm about global warming.
Over the whole series, there is a clear rise in tempera-
ture, but whether it is due to the greenhouse effect is
a matter of intense debate among climate scientists.
A linear trend was fitted to this data series (un-
smoothed) and resulted in a estimated trend of 0.40°C
per century, a figure consistent with several other esti-
mates of global warming over the last century and a
half. The first 120 periodogram ordinates of the residu-
als are plotted on log-log scales in Figure 3b. The
pattern is quite similar to the two series quoted by
Beran, and again seems to show evidence of long-range
dependence. This is confirmed by the estimates
H = 0.90 with standard error 0.05, based on n, =1,
ni = 120; also 6 = 0.0033. When these figures are in-
serted into (2) (adjusted for the unit of trend) the
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I would like to thank the discussants for their stimu-
lating comments and valuable suggestions. Their com-
ments emphasize once more that long memory is an
important issue to anybody who uses statistical infer-
ence, since it occurs rather frequently in real data and
strongly influences the validity (and power) of standard
tests and confidence intervals. Particularly interesting
are the data examples analyzed by Smith (global warm-
ing —climatological data), Haslett and Raftery (wind
speed —meteorological data) and Dempster and Hwang
(employment series—economic data), since these are
examples that concern everyone (and not just a se-
lected group of scientists). Parzen summarizes the main
message of the paper very clearly by saying that in
data analysis, we always. have to decide whether the
data (either the original measurements or residuals,
e.g., after subtracting a regression function) are white
noise, a short-memory process or a long-memory pro-

standard error of the estimated trend is around 0.1,
which is again consistent with earlier estimates of
standard error including those quoted by Bloomfield
(1992). My main doubt about this conclusion is whether
the series can really be assumed stationary, given the
obvious inconsistencies in methods of measurement
over the last century and a half, but this would take
us into other aspects beyond the scope of the present
discussion.

I believe the message of all three examples is that
the concept of long-range dependence must be taken
seriously. At the same time, exactly how these exam-
ples are to be interpreted could be a matter of consider-
able debate. Jan Beran is to be congratulated on his
very clear and comprehensive review, and I hope it will
act as a springboard for much further research in this
area.
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cess. The same view is expressed in a more general
context by Mosteller and Tukey (1977, p. 119 ff): “even

" in dealing with so simple a statistic as the arithmetic

mean, it is often vital to use as direct an assessment
of its internal uncertainty as possible. Obtaining a
valid measure of uncertainty is not just a matter of
looking up a formula.” In other words, no formula
should be applied without checking its approximate
validity. Naturally, this does not only refer to “classi-
cal” formulas, such as var(X) = a2n71, but also to the
“new” formulas, such as var(X) = L(n)n? 2 (0 < H< 1),
given in the present review paper.

One major reason why the question of long memory
is usually not dealt with in daily statistical practice is
the lack of statistical software packages. Haslett and
Raftery’s program (and its implementation in the next
release of SPLUS) is therefore a welcome contribution.
As already mentioned briefly after formula (12) and



