Statistical Science
1993, Vol. 8, No. 1, 65-69

Randomization in Parallel Algorithms

Vijaya Ramachandran

Abstract. A randomized algorithm is one that uses random numbers or
bits during the runtime of the algorithm. Such algorithms, when properly
designed, can ensure a correct solution on every input with high probabil-
ity. For many problems, randomized algorithms have been designed that
are simpler or more efficient than the best deterministic algorithms
known for the problems. In this article, we define a natural randomized
parallel complexity class, RNC, and give a survey of randomized algo-

rithms for problems in this class.

Key words and phrases: Analysis of algorithms and problem complexity,
combinatorial probability, nonnumeric algorithms, parallel and distrib-
uted algorithms, parallel computation.

1. INTRODUCTION

In recent years, there has been an explosive growth
in the availability and diversity of parallel processors
for computation. For the purpose of parallel algorithm
design, it is convenient to work with an abstract, sim-
plified machine model, known as the Parallel Random
Access Machine (PRAM). The PRAM incorporates the
basic elements of a parallel machine and has the prop-
erty that an algorithm designed for it will perform
without significant degradation on most commonly
available parallel machines, including shared-memory
multiprocessors and fixed interconnection networks.
For a survey of PRAM algorithms, both deterministic
and randomized, see Karp and Ramachandran (1990).

The PRAM consists of a collection of independent
sequential machines, each of which is called a proces-
sor, that communicate with one another through a
global memory. This is a synchronous model, and a
step of a PRAM consists of a read cycle in which each
processor can read a global memory cell, a computing
cycle in which each processor can perform a unit-time
sequential computation and a write cycle in which each
processor can write into a global memory cell. There
"are many variants of this model, differing in whether
a read conflict or a write conflict is allowed and, in the
latter case, differing by the method used to resolve
a write conflict. Because efficient simulations of the
various models are known, we shall not elaborate on
these variants.

Parallel algorithms have been designed on the PRAM
for a large number of important problems. This has

Vijaya Ramachandran is Associate Professor, Depart-
ment of Computer Sciences, University of Texas at
Austin, Austin, Texas 78712.

been a rich and exciting area of research in recent
years, and many new techniques and paradigms have
been developed. However, in spite of impressive gains,
some problems have proved to be resistant to attempts
to design highly parallel algorithms for their solution.
For some other problems, parallel algorithms with good
performance have come at the expense of extremely
complex and intricate algorithms. In this context, sev-
eral researchers have turned to randomization in an
attempt to obtain better algorithms for these problems.

A randomized parallel algorithm is an algorithm in
which each processor has access to a random number
generator. The goal is to use this capacity to generate
random numbers to come up with an algorithm that
solves a problem quickly and with high probability
on every input. The requirement that the algorithm
achieve its performance guarantee on every input is
much stronger than that of demanding good average-
case performance and is a highly desirable property in
an algorithm that uses randomization. Correspond-

~ ingly, such algorithms are more difficult to design.

65

Fortunately, there have been a number of successes in
the design of such algorithms for parallel machines.

2. QUALITY MEASURES FOR RANDOMIZED
PARALLEL ALGORITHMS

For the purpose of this exposition, it is convenient
to consider a problem as a binary relation s(x, y), where
x is the input to the problem and y is a possible output
for x. The value of s(x,y) will be true if and only if y
is a solution on input x. An algorithm for the problem
should, on input x, either output some y such that
s(x, y) is true or output the fact that no such y exists.
A Monte Carlo (or one-sided error) randomized algo-
rithm is one that returns a y such that s(x, y) is true

[,f\’g

ok
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [[&)z
Statistical Science. NIEORS ®

WWW.jstor.org

66 V. RAMACHANDRAN

with probability at least 1/2 if such a y exists; if no
such y exists, the algorithm always reports failure.
Other types of randomized algorithms can be defined,
but Monte Carlo algorithms are the ones used most
commonly.

Given a Monte Carlo algorithm for a problem, we
can improve our confidence in the result supplied by
the algorithm from 1/2 to (1 — 1/2*) by performing %
independent runs of the algorithm. Hence, given any
€¢>0, we can obtain a confidence level greater than

"1 — & by performing [log(1l/e)] independent runs of
the algorithm.

The notion of a Monte Carlo algorithm applies to
algorithms in any model—sequential, parallel or dis-
tributed. In the following sections, we will address the
issue of obtaining Monte Carlo algorithms that execute
quickly on a PRAM.

3. THE RANDOMIZED PARALLEL COMPLEXITY
CLASS RNC

In the design and analysis of highly parallel algo-
rithms for various problems, it has been observed that
some problems have simple highly parallel algorithms
using a relatively small number of processors, whereas
others have resisted all attempts so far to obtain any
‘algorithm with a significant amount of parallelism.
In this context, researchers have identified a natural
parallel complexity class NC. The class NC consists of
those problems that have PRAM algorithms that run
in polylog time, that is, time polynomial in the loga-
rithm of the input size, with a polynomial number of
processors. This class is robust in the sense that the
collection of problems it contains does not vary with
the machine model used, whether it is a shared-memory
machine or a low-diameter interconnection network. It
is also the smallest nontrivial class that is robust.
Although several important problems have been shown
to be in NC, many others have not. The latter problems
are of two types (for our purposes): one type consists
of those problems that are either provably not in NC
by virtue of the fact that they are provably not in P
(polynomial time) or are highly unlikely to be in NC by
virtue of the fact that they are complete problems

"for a larger class (such as P); for these problems, we
currently know of no technique, randomized or other-
wise, to come up with algorithms that run in polylog
time with a polynomial number of processors. The
other type of problems are those for which no one has
come up with either an algorithm to place the problem
in NC or a completeness result to make it highly un-
likely to be placed in NC. This latter type includes
several important problems such as finding a maximum
matching or a depth-first search tree (an important
type of spanning tree) in a graph. For these problems,
randomization has proved to be a valuable tool in
coming up with fast parallel algorithms. For more on

parallel complexity classes, see Cook (1981, 1985) and
Karp and Ramachandran (1990).

The class RNC is the class of problems that can be
solved by a Monte Carlo randomized algorithm that
runs in polylog time with a polynomial number of
processors. Thus, RNC is the randomized counterpart
of NC.

4. SOME IMPORTANT PROBLEMS IN RNC

4.1 Testing If a Multivariate Polynomial Is Not
Identically Zero

Let Q(xo, . . . , x,—1) be a multivariate polynomial
over a field. Consider the problem of determining if
this polynomial is not identically zero. It is not known
if this problem can be solved deterministically in poly-
nomial time sequentially. However, if we allow random-
ization, we can come up with a simple Monte Carlo
algorithm for the problem, as shown below.

The randomized algorithm is based on the following
lemma, which is fairly straightforward to prove by
induction on the number of variables n (note that the
base case n = 1 follows from the fact that any single
variable polynomial of degree n has at most n zeros).

LEMMA 1. Let Q(xo, . . . , x,—1) be a polynomial of
degree d with coefficients over a field F. For any set
I ¢ F, the number of zeros of @ in I" < |I|""1-d.

The above lemma gives us the following Monte Carlo
algorithm to determine if @ is not identically zero
(Schwartz, 1980):

1. Choose any set J € F containing 2d elements.

2. Pick a random element e = (e, . . . , e,—1) € J*,
and evaluate Q(e).

3. If Q(e) # 0, then report Q # 0, else report failure.

The probability of success in the case in which Q is
not identically zero can be enhanced to 1 — 1/2* by
repeating steps 2 and 3 k times. This algorithm is
easily implemented on a PRAM with n processors by
having the ith processor generate e;. Then, provided
Q(e) can be determined quickly given e, we have a fast
algorithm to test if Q(e) # 0. In particular, if evaluating
Ql(e) is in NC, then determining if Q(xo, ..., x,—1) £ 0
is in RNC.

4.2 Finding a Maximum Matching in a Graph

A matching in an undirected graph is a subset of
edges, no two of which share a vertex. A perfect match-
ing is a matching that contains all vertices of the graph.
An RNC algorithm for the problem of determining if
a graph has a perfect matching can be obtained using
a theorem of Tutte (1947) that shows that the determi-
nant of a certain matrix of multivariate polynominals
becomes identically zero if and only if the graph does
not have a perfect matching. This matrix is easily

RANDOMIZATION IN PARALLEL ALGORITHMS 67

constructed from a description of the input graph.
Because computing the determinant of an integer ma-
trix is in NC, the problem of determining the existence
of a perfect matching is in RNC by virtue of the above
result on determining if a multivariate polynomial is
not identically zero. This result can be extended to
place the problem of determining the cardinality of a
matching of maximum size and that of finding a match-
ing with this cardinality in RNC (Karp, Upfal and
Wigderson, 1986; Mulmuley, Vazirani and Vazirani,
1987).

The problem of finding a maximum matching in a
graph is an important one and one that has received
extensive attention in the context of sequential algo-
rithm design. Although the problem is not known to
be in NC, the above result allows us to find a maximum
matching quickly and with high confidence. RNC algo-
rithms for several other problems have been obtained
in recent years; for example, Aggarwal and Anderson
(1987), Aggarwal, Anderson and Kao (1989), Babai
(1986), Gibbons et al. (1988), Karloff (1986) and Rama-
chandran (1988).

5. RANDOMIZATION LEADS TO SIMPLE PARALLEL
ALGORITHMS

In practice, the number of processors available for
solving a problem is typically much smaller than the
problem size. Although massive parallelism may be-
come a reality in the future, it is still of importance
to address the issues that arise when the amount of
parallelism available is small in comparison to the size
of the input. In such a case the efficiency of a parallel
algorithm becomes important. This refers to the
speedup provided by the parallel algorithm using a
fixed number of processors over the best currently
known sequential algorithm. A parallel algorithm is
considered efficient if the product of its running time
and the number of processors it uses is within a polylog
factor of the running time of the current best sequential
algorithm; it is considered optimal if this product is
within a constant factor of the running time of the
best sequential algorithm. A parallel algorithm that is
efficient (or optimal) when run using a certain number
‘of processors will remain an efficient (or optimal) paral-
lel algorithm when implemented on a smaller number
of processors while running proportionately slower.
Hence it is of interest to construct efficient parallel
algorithms that run very fast, regardless of the number
of processors available.

There are a few problems, such as computing a depth-
first or breadth-first search tree in a dense graph or
performing Gaussian elimination, for which parallel
algorithms with very efficient speedups are known,
even though NC algorithms are either not known or
highly inefficient. However, most problems for which
efficient parallel algorithms are known are in NC. Thus,

placing a problem in NC is generally a first step to
obtaining an efficient parallel algorithm for it.

Randomization has proved useful in the design of
efficient and optimal parallel algorithms. It has also
been useful in developing algorithms that are simpler
than the best deterministic parallel algorithm known
for the problem. Randomization has been applied to
achieve these goals for a wide range of problems in
graph theory (e.g., Alon, Babai and Itai, 1986; Gazit,
1986; Gibbons et al., 1988; Karp and Wigderson, 1985;
and Luby, 1986), sorting (Hagerup, 1991; Rajasek-
haran and Reif, 1989; Reif and Valiant, 1987), list pro-
cessing (Vishkin, 1984), computational geometry (Reif
and Sen, 1989), string matching (Karp and Rabin,
1987), linear algebra (Borodin, von zur Gathen and
Hopcroft, 1982; Borodin, Cook and Pippenger, 1983)
and load balancing (Gil, 1991; Gil, Matias and Vishkin,
1991). The last is a subroutine used in many efficient
parallel algorithms to ensure that all of the processors
perform about the same amount of work. We illustrate
this simplifying potential of randomization with a prob-
lem that has received much attention in this context,
the maximal independent set problem (Alon, Babai and
Itai, 1986; Karp and Wigderson, 1985; Luby, 1986).

The problem of finding a maximal independent set
in a graph has been studied extensively in the context
of parallel algorithm design. One reason for this is the
fact that this problem arises quite frequently in the
design of parallel graph algorithms. Another reason is
that this problem is a very easy one to solve by a
sequential algorithm, but designing a good parallel
algorithm for it places quite a few challenges.

Given an undirected graph, a set of vertices is inde-
pendent if no pair is connected by an edge. The maxi-
mal independent set problem is the problem of finding
an independent set in an input graph with the property
that the set cannot be enlarged into a larger indepen-
dent set that contains it. This problem has a simple
sequential algorithm: fix an ordering of the vertices
and examine them in order, adding the examined vertex

_ to the independent set if it contains no edge to a

vertex in the set and discarding the vertex otherwise.
Unfortunately, this sequential algorithm does not seem
to lend itself to parallelization. Although fast, efficient
deterministic parallel algorithms have been developed
for this problem, these algorithms tend to be fairly
complicated. On the other hand, the following simple
randomized algorithm gives a fast parallel algorithm
for the problem and is more efficient than any of the
deterministic NC algorithms known for it.

The randomized algorithm examines each vertex v
independently in parallel and assigns the vertex to the
independent set with probability 1/(26(v)), where &(v)
is the degree of v in the graph. Because this assignment
is made simultaneously over all vertices, it is possible
that the set constructed is not independent. The algo-

68 V. RAMACHANDRAN

rithm corrects this by examining each edge in the
graph, and if the edge has both endpoints in the set,
it throws out the vertex with smaller degree (breaking
ties randomly). The resulting set is clearly independent.
The algorithm then deletes all neighbors of all vertices
in the set from the graph and repeats the procedure
with the new, smaller graph. It can be shown that the
expected number of edges in the new graph is no
more than 7/8 the original number of edges. Hence a
logarithmic number of stages of this algorithm suffices
to construct an independent set that is maximal in
the original graph. This gives an efficient randomized
algorithm that runs in O(log? n) time using a linear
number of processors.

6. ELIMINATING RANDOMIZATION

In some applications, it is desirable or necessary to
have a deterministic algorithm. It turns out that some
randomized algorithms can be derandomized provided
only a limited amount of independence is required. This
strategy is applicable to the algorithm described above
for the maximal independent set problem. An analysis
of that algorithm shows that only pairwise indepen-
dence is required in the random trials. Hence the algo-
rithm can be made deterministic by searching the
entire space in parallel using a quadratic number of
processors (Luby, 1986).

An alternate strategy that preserves the number of
processors is to compute conditional probabilities while
fixing one bit of the output at a time. If 2-wise indepen-
dence suffices for the randomized algorithm, for some
constant k, then this gives a deterministic strategy
that uses the same number of processors but increases
the parallel time by a logarithmic factor. This technique
has proved to be a powerful one and has resulted
in efficient deterministic NC algorithms for several
problems using the technique of first constructing an
efficient randomized parallel algorithm with limited
independence and then transforming the randomized
algorithm into a deterministic one (Berger and Rompel,
1989; Luby, 1988; Motwani, Naor and Naor, 1989).

7. CONCLUSION-

This article has described some of the most signifi-
cant applications of randomization in parallel algo-
rithm design. Randomization has led to fast parallel
algorithms and to algorithms that are simple and effi-
cient. These parallel algorithms provide correct solu-
tions with high probability on every input. For most
applications, such a performance is almost as satisfac-
tory as a foolproof guarantee. Hence it is not surprising
that randomization is a major trend in parallel algo-
rithm design and applications, and we expect the field
of randomized parallel algorithms to continue to be a
thriving and productive area of research.

ACKNOWLEDGMENT

This work was supported in part by NSF Grant CCR-
89-10707.

REFERENCES

AGGARWAL, A. and ANDERSON, R. J. (1987). A random NC algo-
rithm for depth-first search. In Proceedings of the 19th An-
nual ACM Symposium on Theory of Computing 325-334.
ACM Press, New York.

AGGARWAL, A., ANDERSON, R. J. and Kao, M. (1989). Parallel
depth-first search in general directed graphs. In Proceedings
of the 21st Annual ACM Symposium on Theory of Comput-
ing 297-308. ACM Press, New York.

ALoN, N., BaBar, L. and Itai, A. (1986). A fast and simple
randomized parallel algorithm for the maximal independent
set problem. J. Algorithms 7 567-583.

Basal, L. (1986). A Las Vegas-NC algorithm for isomorphism
of graphs with bounded multiplicity of eigenvalues. In Pro-
ceedings of the 27th Annual IEEE Symposium on Founda-
tions of Computer Science 303-312. IEEE Computer Society
Press, Los Alamitos, CA.

BERGER, B. and RompeL, J. (1989). Simulating logsupcn-wise
independence in NC. In Proceedings of the 30th Annual
IEEE Symposium on Foundations of Computer Science
2-7. IEEE Computer Society Press, Los Alamitos, CA.

BorobIN, A., Cook, S. A. and PipPENGER, N. (1983). Parallel
computation for well-endowed rings and space-bounded prob-
abilistic machines. Inform. and Control 58 113-136.

BorobpiN, A., vON zur GATHEN, J. and Horcrorr, J. E. (1982).
Fast parallel matrix and GCD computations. In Proceedings
of the 23rd Annual IEEE Symposium on Foundations of
Computer Science 65-71. IEEE Computer Society Press,
Los Alamitos, CA.

Cook, S. A. (1981). Towards a complexity theory of synchronous
parallel computation. Enseign. Math. 27 99-124.

Cook, S. A. (1985). A taxonomy of problems with fast parallel
algorithms. Inform. and Control 64 2-22.

Gazit, H. (1986). An optimal randomized parallel algorithm for
finding connected components in a graph. In Proceedings
of the 27th Annual IEEE Symposium on Foundations of
Computer Science 492-501. IEEE Computer Society Press,
Los Alamitos, CA.

GisBons, P., Karp, R. M., MiLLER, G. and SorOKER, D. (1988).
Subtree isomorphism is in Random NC. In Proceedings of
the 3rd Aegean Workshop on Computing 43-52. Springer,
New York.

GiL, J. (1991). Fast load balancing on a PRAM. In Proceedings

of the 3rd IEEE Symposium on Parallel and Distributed
Processing 10-17. IEEE Computer Society Press, Los Ala-
mitos, CA.

GIL, J., MaT1as, Y. and Visukin, U. (1991). Towards a theory of
nearly constant time parallel algorithms. In Proceedings
of the 32nd Annual IEEE Symposium on Foundations of
Computer Science 698-710. IEEE Computer Society Press,
Los Alamitos, CA.

Hagerup, T. (1991). Constant-time parallel integer sorting. In
Proceedings of the 23rd Annual ACM Symposium on Theory
of Computing 299-306. ACM Press, New York.

KarLorr, H. J. (1986). A Las Vegas RNC algorithm for maximum
matching. Combinatorica 6 387-392.

Karp, R. M. and RaBin, M. O. (1987). Efficient randomized pat-
tern-matching algorithms. IBM J. Res. Develop. 31 249-260.

Karp, R. M. and RAMACHANDRAN, V. (1990). Parallel algorithms
for shared-memory machines. In Handbook of Theoretical

RANDOMIZATION IN PARALLEL ALGORITHMS 69

Computer Science, Vol A (J. van Leeuwen, ed.) 869-941.
North-Holland, Amsterdam.

Karp, R. M., UrraL, E. and WicDERsON, A. (1986). Construct-
ing a perfect matching is in random NC. Combinatorica 6
35-48.

Karp, R. M. and WIGDERSON, A. (1985). A fast parallel algorithm
for the maximal independent set problem. J. Assoc. Comput.
Mach. 32 762-773.

LuBy, M. (1986). A simple parallel algorithm for the maximal
independent set problem. SIAM J. Comput. 15 1036-1053.

LuBy, M. (1988). Removing randomness in parallel computation
without a processor penalty. In Proceedings of the 29th
Annual IEEE Symposium on Foundations of Computer Sci-
ence 162-173. IEEE Computer Society Press, Los Alamitos,
CA.

Morwan1, R., Naor, J. and Naor, M. (1989). The probabilistic
method yields deterministic parallel algorithms. In Proceed-
ings of the 30th Annual IEEE Symposium on Foundations
of Computer Science 8-13. IEEE Computer Society Press,
Los Alamitos, CA.

MurmuLey, K., Vazirani, U. V. and Vazirani, V. V. (1987).
Matching is as easy as matrix inversion. In Proceedings of
the 19th Annual ACM Symposium on Theory of Computing

345-354. ACM Press, New York.

RasasekHARAN, S. and RE1r, J. H. (1989). Optimal and subloga-
rithmic time randomized parallel algorithms. SIAM J. Com-
put. 18 594-607.

RAMACHANDRAN, V. (1988). Fast parallel algorithms for reducible
flow graphs. In Concurrent Computations: Algorithms, Ar-
chitecture, and Technology (S. K. Tewksbury, B. W. Dickin-
son and S. C. Schwartz, eds.) 117-138. Plenum Press, New
York.

RErF, J. and SEN, S. (1989). Polling: A new randomized sampling
technique for computational geometry. In Proceedings of the
21st Annual ACM Symposium on Theory of Computing
394-404. ACM Press, New York.

RErr, J. H. and VaLianT, L. G. (1987). A logarithmic time sort
for linear size networks. J. Assoc. Comput. Mach. 34 60-76.

ScuwARrTz, J. T. (1980). Fast probabilistic algorithms for verifi-
cation of polynomial identities. J. Assoc. Comput. Mach. 27
701-717.

Turte, W. T. (1947). The factorization of linear graphs. J. London
Math. Soc. 22 107-111.

Visukin, U. (1984). Randomized speed-ups in parallel computa-
tion. In Proceedings of the 16th Annual ACM Symposium
on Theory of Computing 230-239. ACM Press, New York.

