102 P. BACCHETTI, M. R. SEGAL AND N. P. JEWELL

Comment

Ron Brookmeyer

I would like to congratulate the authors on an excel-
lent and comprehensive discussion of backcalculation
of HIV-infection rates. Bacchetti, Segal and Jewell
(BSJ) develop a framework for backcalculation that
incorporates several new attractive features, and they
discuss important sources of uncertainty.

The earliest data on the incubation period of HIV
infection came from a 1986 study of tranfusion-
associated AIDS cases. These data indicated that the
incubation period was long and variable. This was
alarming because it suggested that the number of diag-
nosed AIDS cases must be only a fraction of the num-
bers of individuals who were HIV infected. This was
the kernel of the idea behind the backcalculation meth-
odology. Brookmeyer and Gail (1986) introduced and
applied the methodology to the U.S. AIDS epidemic
based on cases diagnosed through 1985 and concluded
that even without accounting “for new infections after
1985 nor very long incubation periods,” the cumulative
number of AIDS cases would grow by a factor of more
than 6 by the end of 1991.

Backcalculation is essentially a deconvolution prob-
lem. Using data on the cumulative numbers of AIDS
cases a(t), and the incubation distribution F, one tries
to glean information about past infection rates I(s)
through the convolution equation

(1) alt) = f I(s) F(t — s| s)ds.

—o0

The solution of (1) has a long and rich statistical history
(O’Sullivan, 1986; Wahba, 1990). Equation (1) arises
in a wide range of applications, including geology,
meterology, engineering and biomedical applications.
An important issue that arises in solving (1) concerns
how much structure to impose on I(s). Additional prob-
lems associated with applying Equation (1) to the
AIDS epidemic are imprecise knowledge of the incuba-
tion distribution F and systematic errors in AIDS-
incidence data.

1. NONSTATIONARY INCUBATION DISTRIBUTION

Backcalculation analyses must account for changes
over calendar time in the incubation distribution (Gail,
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Rosenberg and Goedert, 1990). For example, failure to
account for lengthening incubation periods, perhaps
because of new treatments, can lead to underestima-
tion of the numbers of infected individuals. One ap-
proach to account for nonstationarity effects is to use
a completely external estimate of the nonstationary
incubation distribution Fl(t|s) [the treatment model,
Brookmeyer and Liao (1990b); Brookmeyer (1991)].

Alternatively, BSJ propose a methodology for esti-
mating nonstationarity effects in the incubation distri-
bution using AIDS-incidence data and backcalculation
methods (Section 3.3). However, it seems to be asking
a lot of AIDS-incidence data to provide information
about both infection rates and changes in the incuba-
tion distribution. A falloff in the growth of AIDS cases
could either be explained by the scenario of declining
infection rates or a scenario of lengthening incubation
periods. Intuitively, I would not expect that AIDS-
incidence data alone could distinguish between these
two scenarios.

The model proposed by BSJ appears to be “nearly
nonidentifiable” in the following sense. Given any 6 and
B, there exists another § * and §* that produce the
same likelihood, that is, Ln( 8, ) = Ln( 8 *, $*). To see
this, assume g; = 0 for j < T' (BSJ used T' = January
1986). Now let 6* = 6, for j < T, and choose 6 for j =
T to be any arbitrary values you like. If we set ¥ =
0 for j < T, and set

@) B = B; + log {( i;:()ﬁ:ﬂij) / < é(})(i{ﬂj)}

forj = T, then L,( 8, f) = Ln( 0 *, §*). Equation (2)
was derived by setting E(Y; | 0, g) = E(Y; | 0% B*).
Equation (2) shows that if one wanted to keep E(Y))
fixed, lower infection rates (6 < 6;) can be compensated
by additional shortening of the incubation period (8}
> ). On the other hand, higher infection rates (6 >
0) can be compensated by additional lengthening of
the incubation periods (8¥ < ) in order to keep E(Y))
fixed. This result on nonidentifiability [Equation (2)]
holds for the general model proposed by BSJ that
incorporates seasonal effects (S;) and reporting delays
(R, (setting S} = S; and R} = R)), as well as for a
simple model that assumes no seasonal effects (S; =
0) and with the data completely reported (R; = 1).
BSJ jointly estimate infection rates and nonsta-
tionarity effects for the U.S. AIDS epidemic. In this
case, simultaneous estimation of § and ¢ appears to
be possible solely because of the additional smoothness
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requirements on 6 and g induced by the roughness
penalties.

BSJ estimated the cumulative numbers of HIV in-
fected individuals by December 1990 to be 897,000
and 1,031,000 for the random sample and treatment
incubation models, respectively (Table 1). However, the
nonstationary incubation distribution for the random
sample model was generally shorter than for the treat-
ment model [see Figure 1 of Bacchetti et al. (1993)]. It
is conceivable that infection rates that are higher than
those shown in Table 1 for the random sample model
together with correspondingly longer incubation peri-
ods for the random sample model, could fit the AIDS-
incidence data nearly as well, in which case the random
sample and treatment incubation models might yield
more similar estimates of the cumulative numbers in-
fected. Table 1 becomes difficult to interpret because
it is not clear if the varying estimates of the cumulative
infections result from the four different external incu-
bation distributions or from numerical instabilities
because of near nonidentifiability that arises if nonsta-
tionarity effects and infection rates are estimated si-
multaneously.

Because of these considerations I do not believe that
joint estimation of infection rates and nonstationarity
effects using only AIDS-incidence data will yield useful
estimates. It is simply asking too much of AIDS-
incidence data. External estimates of F(t|s) are re-
quired.

2. EXTERNAL ESTIMATES OF THE INCUBATION
DISTRIBUTION

Backcalculation is sensitive to the assumed incuba-
tion distribution. BSJ estimate the incubation distribu-
tion from three data sets. However, each of these data
sets is relatively small (the numbers of AIDS cases in
each data set ranged from 33 to 56 cases). The main
differences among the three incubation distributions
appear to occur after 9 years following HIV seroconver-
sion [Figure 2 in Bacchetti, Segal and Jewell (1992a)].
However, BSJ censored followup at about 1987 in the
analyses of these three cohorts. Thus, because nearly
no one was infected prior to 1978, estimates of F(z)
beyond 9 years depend on parametric model extrapola-
tion.

Not all studies have found systematic differences in
incubation distributions. Mariotto et al. (1992) com-
pared the incubation distribution among male homo-
sexuals and intravenous drug users in Italian cities
and did not find a significant difference. Furthermore,
the only cofactor (i.e., covariate that modifies the incu-
bation-period distribution) that has been identified is
age at infection. The fact that the hepatitis B vaccine
trial and random sample data sets yielded different
incubation distributions is somewhat surprising since

both data sets were composed of homosexual men and
were initially part of a larger San Francisco cohort.
This statistical finding of different incubation distribu-
tions for these two cohorts raises the question of
whether there is a plausible biological or clinical expla-
nation. Different incubation distributions could either
be explained by a cofactor (e.g., other sexually trans-
mitted diseases) or, alternatively, other study differ-
ences such as different intensities of followup of the
cohorts for AIDS incidence. If a cofactor is identified,
it would be important to replicate the finding in other
cohort studies of HIV infection.

Backcalculation should be based on the best avail-
able incubation distribution. Analyses that combine
information from a number of epidemiological studies
should be performed. Meta-analyses along the lines
suggested by Harris (1988) are important to perform
and could provide invaluable input to backcalculation.

It is important to emphasize that even if the incuba-
tion distribution were known exactly, estimates of re-
cent infection rates are very imprecise. Accordingly, it
is important to present confidence intervals on the
cumulative numbers of HIV-infected individuals.

3. SMOOTHING THE INFECTION CURVE

Some structure has to be imposed on the infection
curve I(s). Strongly parametric models can yield very
biased estimates of recent infection rates if the para-
metric assumptions are incorrect. Weakly parametric
models such as piecewise constant step functions are
flexible yet unsatisfying because they yield unsmoothed
and implausible reconstructions of HIV-infection rates.
Smoothing through the penalized likelihood is an at-
tractive alternative. The penalized log likelihood is

A
logL —=J,
og 3

where J measures the roughness of the infection curve
and A is the smoothing parameter.

It must be emphasized that estimates of the recent
infection rates depend strongly on both the amount of
smoothing (1) and the form of the roughness-penalty
function J. Because of the long incubation period, there
is essentially no information in the AIDS-incidence
data about infection rates in the most recent year or
two. Thus, the estimates of @ in the most recent past
would approximately minimize J because log L is
nearly unaffected by changes in recent infection rates.
BSJ use the penalty

J= Z[log(i, - 210g(0i+1) + lOg(0i+2)]2.

It follows that estimates of recent infection rates are
approximately given by

3) Ok+; = Oge,
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where o = log[fx/0x_1] and K is sufficiently large.
Thus, the most recent infection rates are estimated by
extrapolating an exponential function.

Another choice of the penalty function is

J= 2[0,‘ = 260;+1 + 6i42]2

Then, estimates of recent infection rates are approxi-
mately

(4) Ox+; = Ok + jo,

where 6 = [fx — Ox-1]. Thus the most recent infection
rates are estimated by extrapolating a linear function.

The piecewise constant step function model for I(s)
that was used in the early work on backcalculation
assumes that infection rates are constant over inter-
vals. Simulation studies of Rosenberg, Gail and Pee
(1991) suggest choosing a last step of 4 to 4.5 years in
length. Recent infection rates under this model are
estimated by

(5) éK+j = éx.

Estimates of recent infection rates obtained by back-
calculation are essentially extrapolations of trends in
I(s). Equations (3) through (5) are different examples
of mathematical functions that have been used for
such extrapolations and result from different choices
of the roughness penalties or parametric assumptions
on I(s). Estimates of recent infection rates based on
backcalculation are highly dependent on the degree of
smoothing A, the penalty J and the parametric model
for I(s).

Appreciable improvements in our ability to recon-
struct infection rates may come, not from alternative

smoothing procedures or parametric models but rather
from obtaining empirical data on recent infection rates.

4. FUTURE PROSPECTS FOR FORECASTING AND
RECONSTRUCTING THE AIDS EPIDEMIC

Early in the AIDS epidemic, the only reliable data
for monitoring the epidemic was AIDS-incidence data.
Since the development of the HIV antibody test in the
mid-1980s, numerous surveys of HIV seroprevalence
have been conducted. Infection rates have also been
directly estimated in several cohorts. Our ability to
reconstruct infection rates may drastically improve by
incorporating external information about recent infec-
tion rates and HIV seroprevalence derived from cohort
studies and cross-sectional surveys.

There is considerable underreporting of AIDS cases
to national and regional AIDS surveillance registries in
developing countries, especially in Africa. Projections
of the course of the epidemic in developing countries
must rely more on HIV seroprevalence and seroinci-
dence surveys than on AIDS-incidence data. While
U.S. AIDS-incidence data are relatively complete, more
reliable assessments of the scope of the epidemic may
be obtained by considering HIV-seroprevalence and
HIV-seroincidence data as well. For example, exten-
sive HIV-seroprevalence surveys among childbearing
women are extraordinarily useful for forecasting the
future numbers of pediatric AIDS cases. Statistical
approaches that combine data from multiple sources
(e.g., AIDS-incidence data, HIV-seroprevalence and
-seroincidence surveys, incubation distributions) are
promising and may considerably improve the accuracy
of assessments of the scope of the epidemic.

Comment: Assessing Uncertainty

in Backprojection

John B. Carlin and Andrew Gelman

Bacchetti, Segal and Jewell are to be congratulated
for providing not only a comprehensive review of an
important problem in applied statistics but also for
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introducing a number of new ideas that should have a
practical impact on understanding the course of the
HIV epidemic. On a semantic detail, we wonder why
the authors (and others) have adopted the term “back-
calculation,” rather than “backprojection,” which seems
to carry a more appropriate connotation of uncertain
inference (as well as being shorter!).

The authors rightly emphasize the sensitivity of
backprojection estimates to assumptions about the
incubation distribution, but they seem strangely reluc-



