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Is Industrial Statistics Out of Control?

David Banks

Abstract. This paper is a critique of the current direction of industrial
statistics in the U.S. The sweep includes not just the toolkit of statistical
methods most often employed in industry, but also international competi-
tiveness, the corporate climate in which statistical solutions are sought
and the educational process which trains applied statisticians. Much is
found that is good, but bland endorsement does little to advance a field.
Therefore most of the paper is deliberately iconoclastic. Almost all of
the extreme viewpoints are rooted in the author’s direct experience,
working with statisticians and managers across a range of industries.
Some of the perspective must be attributed to knowledgable gossip,
from friends and students who are now employed by various companies.
Incidentally, the paper reviews four new statistical textbooks for engi-
neers and an edited volume of papers on experimental design for industry.
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1. INTRODUCTION

Industrial statistics is a growth industry. Everyone
reading this paper has surely received a small mountain
of mail on the subject. There are advertisements for
short courses on control charts, Total Quality Manage-
ment (TQM), Taguchi methods and statistical process
control (SPC); there are flyers for books, periodicals
and newsletters and mass mailings from concerned mem-
bers of the statistical profession. Recently, our journals
have begun to devote more serious attention to this
area; we have developed new professional jargon and
an entire subgenre of after-dinner speech has flowered
on the subject of statistical contributions to interna-
tional industrial competitiveness. Some of us have par-
layed the boom into consultancies, funded research and
corporate/university affiliations. But an examination of
this trajectory of rapid development, to decide how
well the interests of industry and academics are served,
is,overdue. :

This paper speaks to three audiences. One group is
traditional academic statisticians, whose research has
barely flirted with industrial problems. Whatever inter-
est they have in this paper is driven by the desire to
see what all the noise is about and glean a quick un-
derstanding of recent themes in this area. The second
group is those university statisticians who have bent
their efforts to embrace the new enthusiasm; these people
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have written papers and proposals on industrial sta-
tistics and have attempted to develop industrial part-
nerships. The third group consists of industrial (or,
slightly more generally, corporate) statisticians. In con-
versations with representatives of this group, I have
sensed a delicate dilemma—they realize that much of
the quality control climate that rains down on them
from upper echelons is wishful hoopla, but they also
recognize a kernel of value, which, if properly culti-
vated, could lead to measurable (but usually unmiracu-
lous) product improvement. In some degree, this paper
tries to address all three groups.

My own perspective is that of an academic statis-
tician who has enjoyed broad consulting experiences
and a relatively large number of interactions with vari-
ous companies. Although industrial statisticians will
surely have a better sense of practice and practicalities
than I, it is my belief that we share a common concern
that the tools of our profession be used appropriately,
that the value of statistical methodology be accurately
recognized and represented and that rising students
receive the kind of education that will enable them to
solve real problems in honestly useful ways. Most of
this paper relates these issues to the manufacturing
sector, but a large part is pertinent to service indus-
tries; very little aims at statisticians working in such
areas as high finance.

The trigger for this paper was an invitation to review
several textbooks for courses in industrial statistics.
A number of idiosyncratic personal opinions were
spawned, and in the course of conversations with vari-
ous colleagues, both from academics and industry, it
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emerged that these opinions were not as orthogonal to
the rest of the world’s as is the usual case. The perspec-
tive expanded when a fourth book, an edited volume
on experimental design in industry, also arrived for
review. Although this paper grew from a critique of
some books into a critique of an entire field, specific
attention is given to these five impetuses:

1. Statistical Methods for Quality Improvement, by
Thomas P. Ryan (1989). Wiley, New York.

2. Introduction to Statistical Quality Control, 2nd
ed., by Douglas C. Montgomery (1991). Wiley,
New York.

3. Engineering Statistics, 2nd ed., by Robert Hogg
and Johannes Ledolter (1991). Macmillan, New
York.

4. Statistical Quality Design and Control, by Rich-
ard DeVor, Tsong-how Chang and John W. Suth-
erland (1992). Macmillan, New York.

5. Statistical Design and Analysis of Industrial Ex-
periments, edited by Subir Ghosh (1990). Dekker,
New York.

Much in these books is found to be good, but there
are aspects which reflect current practices, in both
industry and academics, that some may find troubling.

Section 2 describes the development and current
state of industrial statistics in Japan and the U.S.
Although some details are well known within the statis-
tical process control community, one cumulative effect
of the many quality salesmen has been to imbue the
history with a mythological glow. This survey at-
tempts a more realistic appraisal, which will inform
subsequent comments on the potential contributions
of academic statisticians.

After establishing the historical context and current
tension, Section 3 offers short commentary on several
topical areas in the industrial statistics purview: exper-
imental design, control charts, Taguchi methods and
process capability indexes. Section 4 points out new
directions in which statistical researchers may tackle
important industrial problems, and Section 5 examines
the appropriate education for industrial statisticians
and quality control engineers, which segues into an
appraisal of the books under review. Section 6 offers
some closing reflections on the different cultures of
industrial and academic statistics.

2. STATISTICAL MYTHOLOGY

There has always been a warm symbiosis between
research statistics and industrial applications. The
births of nonparametrics, seqhential analysis and ex-
perimental design testify to the generative influence of
practical problems on the body of theoretical statistics.
However, the recent spurt of activity has been driven
by new influences, such as the emerging industrial pri-

macy of Japan (with Europe close behind), the shift
in the search for research funding toward corporate
institutions and the expanding scientific perspective
of industry executives.

Regarding Japan, several misunderstandings seem
current, especially at the interface of the statistical
and management communities. These include:

1. the belief that the Japanese explosion of indus-
trial capability is attributable to their emphasis
on statistical methodology;

2. the belief that they use sophisticated quality con-
trol methodology;

3. all the usual accusations and countercharges
about unfair trade practices (we do it too), racist
management (we do it too), and governmental
support of key industries (they do it rather bet-
ter).

This article speaks only to the first two points, since
politicians, CEOs and Op-Ed columnists have cast so
much light on the last.

The myth of the importance of statistical methodol-
ogy has been fostered by the 1980 NBC television
special “If Japan Can, Why Can’t We?” and in various
articles in the popular press. However, economic his-
torians (in particular, Japanese economic historians)
emphasize entirely different factors. Uno (1987), in a
definitive study of Japanese industrial change between
1955 and 1985, never mentions trends in product qual-
ity or the contributions of industrial statistics. Instead,
he identifies the following defining influences on the
postwar Japanese economy:

1. The Korean War, pumping foreign dollars into
Japan, created an industrial boom and the capital
base for subsequent expansion.

2. From 1955 to 1964, government planners led and
abetted a deliberate drive away from agriculture
and light industry, towards heavy and chemical
industries. There was intensive capital invest-
ment; economic growth was strong until 1961,
then stagnated.

3. Between 1965 and 1970, the Japanese govern-
ment liberalized laws governing trade and capital
flow. The economy became substantially more
open and international; economic growth re-
sumed.

4. In the 1970s, the key domestic influence on Japa-
nese corporations was the need to reduce environ-
mental damage. Government and industry di-
verted substantial resources to this end. (At the
beginning of the period, the ratio of pollution
prevention investment to total private invest-
ment was about 3%; it peaked at 17% in 1975
and has recently declined to about 5%.)

5. In the 1980s, partly in response to the previous
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decade’s environmental difficulties, government
and industry committed themselves to a new plan
for growth, relying upon high-tech and service
industries. One measure of their success is that
the majority of new international patents are
granted to Japanese corporations.

Today, Japan’s industries are expanding their invest-
ment abroad and systematically defining a global role.
Their companies are becoming more multinational; trans-
national vertical growth, by owning foreign suppliers,
assemblers or retailers, is now a standard strategy.

Uno’s broad summary agrees substantially with
other experts. Kosai and Ogino (1984) put some empha-
sis on the importance of Japan’s well-educated and
disciplined workforce, and on their relatively high rate
of personal savings. Okita (1980) mentions that in the
first stage, Japan got a boost from the returns available
from their “peace dividend,” occasioned by the demili-
tarization after World War II; he also details several
fortuitous aspects of the economic climate (cheap re-
sources, wage structures that favored personal sav-
ings) which fostered growth through 1961. Lincoln
(1988) points out that the disruption of oil supplies in
1973-74 reinforced the concern with pollution that
prompted Japan's eventual movement away from
heavy industry. Saso and Kirby (1990) give consider-
able credit to the intelligent planning of the Japanese
government; they are also the only authors who men-
tion quality control. They spend three of their 203
pages on the subject, and their tone is lukewarm. They
point out the high costs (workers are paid overtime
wages for their participation in such TQM enterprises
as quality circles, and there is considerable expense
for on-site education) and suggest that the primary
dividend is nothing more than some temporary morale
building among the workers.

Several features of this historical sketch merit em-
phasis. First, the conventional sense of process control
applies to the chemical and manufacturing industries
that took root immediately after the Korean War. The
comparable American industries are still struggling to
regain a competitive standing in those domains, while
Japanese planners have moved their attention to new
arenas [recall the law of the multiplication of advantage
which appears in the AI chess literature (cf. Good,
1977): the further one is ahead, the more easily one’s
lead increases]. Second, the Japanese have learned a
lot about environmentally sensitive manufacture and
waste management —this is crucial to the world’s indus-
trial future, and we will all benefit if they can market
their expertise abroad. From a TQM perspective, pollu-
tion production is a process like any other, and hence
susceptible to planned control. Third, the sustained
growth in Japan over four decades reflects the intelli-

gence and self-discipline of management more than the
use of SPC, Taguchi methods or industrial statistics.

This is not to suggest that statistics has played no
role, only that its role has been minor compared to
the sculpting influences of widespread urban pollution,
rising oil costs and the conjunction of capital with
farsighted management. But even in the narrow do-
main of product quality, statistics has played a small
role. From the Japanese perspective, industrial statis-
tics is an arrow in the quiver of TQM techniques that
is part of their arsenal of success. Other arrows include
quality circles, consensus-style management, a corpo-
rate commitment to continual improvement (as op-
posed to U.S. “home run” corporate strategies) and
clear divisions of process responsibility. Other weapons
include well-educated workers, a population minded
toward domestic investment and relatively consistent
government policies for directing industrial growth.

It is noteworthy that Japanese success has rested
almost entirely upon rudimentary statistical methods,
all current in the 1930s. Instead of depending upon a
few strategically placed statistical experts, as is usual
in the U.S., their industries rely upon the ubiquitous
use of simple procedures. Specifically, Japan’s produc-
tion engineers (Ishikawa, 1985) point to seven key tools
that have advanced the quality of their output. These
tools are sometimes called “The Magnificent Seven”
among U.S. industries trying to transplant Japanese
methods—the name is a joking reference to Holly-
wood’s remake of Akira Kurosawa’s film Seven Samu-
rai. Specifically, the seven tools are the scatterplot, the
checksheet, the Pareto diagram, the control chart, the
histogram, the Ishikawa fishbone (or cause and effect
chart) and primitive graphics, such as the bar chart,
the pie graph and box plots.

The scatterplot, control chart, histogram and graph-
ics are familiar to all statisticians, and need no explana-
tion. The checksheet is a generic procedure for captur-
ing data in a systematic way —it indicates that someone
has put enough thought into the process that a form

. has been designed to minimize reporting errors and

human reporting time. As far as I know, there is no
formal definition of the checksheet.

In the manufacturing context, the Pareto diagram
is a bar graph that indicates the percentage of occur-
rences of each of several kinds of product defect. The
categories to which the bars correspond are ordered
by descending frequency (except for the last category
“Other,” which consists of all defects not previously
listed; this often breaks the monotonicity). The Pareto
diagram easily extends to other situations; for exam-
ple, one could use it to track different kinds of customer
complaints. To illustrate the generality, consider the
Pareto diagram in Figure 1. It might have been con-
structed by a whimsical journal editor who is examin-
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Fic. 1. An example of the Pareto diagram. (This diagram is
entirely fictitious; any resemblence to the editorial policy of a
real journal is entirely coincidental.)

ing the leading reasons that papers are rejected. Note
that the cumulative percentage line has virtually no
informational value [Tufte (1983) might call it chart-
junk]; also, note that the one might want to study the
possibility that a single item displays more than one
kind of defect. )

Obviously, the example is trivial, but my point is
that the method is also trivial. Any business that does
not use some comparably sensible way of identifying
key problems will ultimately fall victim to natural
selection. My chief concern regarding reliance upon
this simple tool is that the problem becomes trivialized
in the mind of the unsophisticated user. For example,
I have heard an engineer insist that the Pareto diagram
determines which defect problem must be solved first,
but that is a gross oversimplification that ignores the
cost of correction. In Figure 1, it is very difficult for
the editor to enforce a spirit of professional fellowship
among referees, but it is relatively easy to instruct the
associate editors not to insist upon citational flattery.
Similarly, an industry should tackle defects in the order
determined by a cost-benefit judgment on obtaining
a solution. Often it is better to solve the easy (or
inexpensive, or nonpolitical) defects first, even if they
are not the most numerous, and then re-examine the
problem. ’

The Ishikawa fishbone, or cause and effect diagram,

Ennui Competing Work

You decide that your You must teach five classes

pointless and trivial.

Colleagues make desperate pleas
for staustical consulting help.

Whenever vou settle to work. a
more interesting idea distracts you.

Your spouse demands that you
take weekends and nights off. /

Your key theorem appeared in
J. Arkansan Nasural Philos. /

Your simulation study will
require 3 years on a Cray. /

Your 15 year-old daughter
elopes on a motorcycle. /

Family Research Obstacies

Fic. 2. An example of an Ishikawa fishbone diagram, also
known as the cause and effect diagram.

is a method for listing the possible causes for a particu-
lar problem, in a hierarchy that ranges from broad
areas to very specific triggers. Sometimes it is used
as an organizational aid in running a brainstorming
session, to ensure that key features are not overlooked.
Usually, it serves as a starting point for a systematic
search for the cause of some problem; this problem
need not be industrial — the folklore mentions one qual-
ity expert who used it to debug a failing marriage. Its
name derives from its appearance, as shown in Figure
2. This particular example might have been drawn by
an exasperated author, trying to discover why papers
take so much longer to write than originally antici-
pated. It shows only two levels of hierarchical causes,
represented as large and small tines branching from
the central spine. In industry practice, there might be
several more.

As a tool, the Ishikawa fishbone is susceptible to
misuse, and the misuse is most likely to occur among
those who trust it too blindly. In general, it only offers
an avenue for organizing one’s thoughts about a prob-
lem. It does not guarantee that a problem source has

.not been overlooked, and it does not highlight interac-

tions that may occur between two problem sources.
For example, in Figure 2, the author has somehow
overlooked the possibility that the author might be
lazy. Also, it is reasonable to guess that combinations
of circumstances in the competing work tine and the
ennui tine might reinforce each other’s influence. In
the U.S., it may be a fundamental difficulty that this
tool needs team spirit to thrive; when used by a group,
it is easy for team members to elaborate the tines in
other members’ areas of responsibility, but one imag-
ines that their own may not receive the same careful
scrutiny.

Regrettably, these seven tools have been embued
with an aura of infallibility, and American industries
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that are self-consciously mimicking Japanese methods
have largely adopted this attitude. At best, these seven
tools are nothing more than a codification of common
sense; however, their use has become so ritualized that
many practitioners apply them without thought, which
necessarily undermines the value. For example, I know
of industries in which much discussion has been squan-
dered on determining the appropriate location of upper
and lower warning lines on the control chart and what
kind of stopping rules should be mandated (e.g., seven
points in a row above the centerline, four points in a
row above a warning line, etc.). However, this level of
distinction is enormously sensitive to underlying model
assumptions, which typically receive only cursory ex-
amination. Essentially, all the value in the control
chart accrues from the fact that a process expert peri-
odically plots the recent history and thinks about it—
any additional contribution from elaborate stopping
rules is nearly negligible.

Recently, a second set of tools is climbing into the
spotlight. These are the seven management tools for
quality control: the affinity diagram, the relation dia-
gram, the tree diagram, the matrix diagram, the pro-
cess decision program chart, matrix-data analysis
method and the arrow diagram [cf. Futami (1986) for
detailed descriptions and a brief account of their his-
tory in Japan]. The first three have no statistical com-
ponent and are not discussed here; they simply consist
of rules for writing down sentence fragments and then
drawing circles around some, and lines or arrows be-
tween others. Such sophisticated doodling can be valu-
able in problem solving, although it is unclear that a
manager actually benefits from the level of formalism
that these tools enforce.

Regarding the other members of the second seven,
some short comments may be useful.

The matrix diagram: This is simply an organized
way to compel the manager to consider each
possible pairwise combination of problem ele-
ments (in product manufacture, problem ele-
ments might include performance requirements,
cost constraints and material capabilities, but
the strategy generalizes readily to other do-
mains). Its chief limitation is the ability of the
user to anticipate all of the salient problem ele-
ments which must be captured in the rows and
columns of the matrix. To an extent, it repairs
a defect in the use of the Ishikawa fishbone,
in that the user seeks interactions among the
problem elements. )

The arrow diagram: In the West, this graphic
is known as the PERT (program evaluation and
review technique) chart. This is minimally quan-
titative, but its value in juggling complex sched-
ules for subtasks in larger projects has long
been recognized in MBA curricula.

The process decision program chart: One can
regard this as a prospective flowchart. The man-
ager uses it to anticipate future problems and
appropriate responses. It begins at the start of
the process and moves sequentially through
each important decision point; at each decision
point, the diagram branches according to the
decisions that might possibly be made. The re-
sult is a graphical game plan that covers the
major contingencies.

Matrix-data analysis method: This is just princi-
pal components analysis. As the practice in Ja-
pan is described, it is unsophisticated by
statistical standards. Much attention is spent
on the correlation matrix, but none is given
to the validity of the underlying assumptions.
There is considerable emphasis on graphics,
such as the examination of 2-dimensional plots
of the data on the space spanned by the first two
eigenvectors. It is remarkable that Japanese
management is making primitive use of a rea-
sonably sophisticated statistical perspective;
however, I doubt that their training enables
good inference. It may be the statistical equiva-
lent of letting children play with a loaded gun.

On balance, there is value in these tools, as long as no
one takes them too dogmatically. Japanese engineers
who write papers for Japanese journals claim that the
methods work well, and perhaps they do in Japan;
however, there is the potential for considerable selec-
tion bias in their reports. It is very uncertain that U.S.
management can achieve significant benefit from these
methods. At best, much of their value results from
the Nipponification of statistical ideas, making them
palatable to managements eager to learn corporate
Kung Fu.

It would be easy to suggest that American industry
should leapfrog the antiquated Japanese methods,
adopting visualization tools that employ dynamic color

. graphics to represent complex processes and using new

wave multivariate procedures (such as MARS, AVAS
and PPR as discussed in subsection 4.1). Often, this
is what researchers suggest when seeking corporate
support. However, these methods require substantial
investment, both in new technology and in people
trained in its use, and the marginal improvement in
process understanding seems generally unlikely to jus-
tify the cost.. I would guess that intelligent use of
simple tools will achieve about 95% of the knowledge
that could be obtained through more sophisticated
techniques, at much smaller cost. Also, the simple
tools can be applied more quickly to all problems,
whereas the complex tools are unlikely to be ubiqui-
tously used.

In addition to the 14 quality tools, U.S. firms are
sprinting to adopt TQM. This is a kind of corporate
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EST (EST is a consciousness-raising, self-help disci-
pline that became briefly prominent in the 1970s); it has
become as popular among upper management today as
planned obsolescence was in the early sixties. There
are dozens of definitions of TQM, but none with any
mathematical precision. Essentially, the gist is that
TQM refers to any company-wide plan to systemati-
cally boost the quality of their product. Connotations
of TQM practice include greater emphasis on assess-
ment of and adaptability to customer requirements, a
broadened sense of the economic value of high-quality
output, performance benchmarking against competi-
tors, team problem solving and a tendency to empower
the employee. In practice, companies tailor the details
to their own needs, often combining weird jargon with
a born-again belief in the universal applicability of the
core philosophy.

There is nothing deep about TQM —any 14-year-old
can immediately apprehend the key ideas (of course,
the same can be said of the theory of natural selection,
so simplicity is not equivalent to triviality). But despite
and because of this simplicity, TQM has worked very
successfully in diverse industries, and the nation’s eco-
nomic engine would doubtless run more smoothly if it
were more widely employed. Some of the valuable as-
pects of TQM include:

o TQM correctly shifts corporate attention to the
customer, at every level of the business. From the
TQM perspective, each employee is a two-legged
profit machine, interacting with a private set of
customers. Often the customers are internal to
the company—the stock clerk’s customer is the
foreman who needs a bin of bolts, and the fore-
man’s customer is the sales agent who must mar-
ket the product. Often there are multiple cus-
tomers; a secretary’s customers include the boss,
people who read typewritten letters, and anyone
who calls with an inquiry. Of course, there is no
direct revenue from internal customers, but one
presumes that closer attention is paid to Brownie
points when making promotions, to reward em-
ployees who go the extra mile in satisfying col-
leagues’ requirements.

o 'TQM self-consciously commits a company to the
unending quest for process improvement. In the-
ory, each person constantly scans their work en-
vironment for opportunities to better meet the
customers’ requirements. To further this goal, em-
ployees are trained in simple pseudo-statistical pro-
cedures (such as Pareto charts, Ishikawa fishbones
and control charts) so that everyone can better
recognize and embrace these opportunities.

+ TQM emphasizes the need for discovering the cus-
tomers’ actual requirements. Historically, Ameri-
can industries have been notorious for putting
their own convenience ahead of the end-user, and

in a competitive environment, this is a short path
to disaster. Therefore TQM typically develops a
range of methods for soliciting customer input and
measuring customer satisfaction, and these affect
(impact) even the earliest phases of research and
development.

These ideas should be completely obvious, and it is
unclear whether TQM is intrinsically more effective
than alternative theories of management. It could well
be that the general success of this strategy simply
reflects the Cooley or Hawthorne or Heisenberg princi-
ple (the name depends upon whether one is a sociolo-
gist, psychologist or physicist, respectively), and that
all the productivity benefits that accrue from TQM
could have been equally well realized by hyping any
new theory of management, because the response is
not due to the kind of manipulation, but simply the
fact that a manipulation has occurred.

However, there are dangers in TQM. As imple-
mented, it tends to be enshrined, and this stifles cre-
ative solutions. One fears that corporate executives
walk their corridors clutching copies of Deming’s Out
of the Crisis, just as a generation of Chinese bureau-
crats sought universal applicability from Mao’s Little
Red Book.

As an example of the ideology that overreliance on
seemingly insightful soundbites from quality gurus
can breed, consider the collision between the zero defect
philosophy and acceptance sampling plans. The zero
defect philosophy (cf. Crosby, 1991) maintains that
since all defective product is a drain on corporate
assets, the proper goal of a quality management pro-
gram is to produce defect-free output, by building
quality directly into the production process. In con-
trast, the acceptance sampling strategy attempts to
“inspect in” product quality. A particular example is
the Dodge-Romig plan, which guarantees an average
outgoing quality level for the product by sampling
outgoing lots, rejecting those with too many defec-

- tives, performing rectifying inspection of rejected lots

and shipping the corrected product. In discussing these
ideas, DeVor, Chang and Sutherland (1992) write:

One of the by-products of the Dodge-Romig ap-
proach to quality control was the acceptance of
the concept of an acceptable quality level (AQL),
a target level of defective material, supposedly
based on economic grounds. The most devastating
effect of the AQL concept is that it promotes qual-
ity improvement up to an acceptable plateau be-
yond which further improvements appear to be un-
justified economically. Scrap became an accepted
part of the business, unfortunate but inevitable.
Certainly, scrap reduction wars were waged from
time to time, but by and large, scrap became
an integral part of the production and business
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planning activity. Deming has clearly pointed out
the fallacies in this way of thinking, but for many
years (the 1930s through the 1970s) this basic
approach to quality control prevailed. (p. 11)

This is an unreasonably optimistic view of the value
of zero defect manufacturing and an unfair bashing of
the average outgoing quality approach.

Regarding zero defect goals, there is always the
problem of diminishing return in efforts at quality
improvement. No company in the world has achieved
zero defects, and none will spend infinite sums to attain
it. There is always a point at which the cost of addi-
tional defect reduction outweighs the return, but strict
advocates of zero defect production overlook this in
their zeal for a slogan. Regarding acceptance sampling,
these strategies do precisely what they claim. When
the decision rules honestly reflect economic trade-offs,
then acceptance sampling has broadly desirable fea-
tures. In many instances, it may offer the only immedi-
ate way to maintain contractually obligated quality
levels; moreover, it gives a regular check on outgoing
quality which can guide subsequent efforts at quality
improvement. There is no necessary contradiction be-
tween the zero defect strategy and the acceptance
sampling tactic, but attempts to boil down the ideas
into oversimplified principles have produced a spurious
conflict.

There is a pervasive mistake (especially among peo-
ple who teach short courses or write research proposals)
that Japan is working at the leading edge of industrial
statistics and that American firms can only compete
by funding statistical research to produce the next
generation of quality control. This is a useful error to
propagate when seeking money, but in fact Japanese
industry rarely employs sophisticated statistics. Typi-
cally, the Japanese use simple methods from the 1930s,
such as control charts and histograms; the effective-
ness of these antiques stems from their almost univer-
sal application, at every stage of the manufacturing
cycle.

From the perspective of a research statistician, it is
notable that no Japanese university has a department
of statistics (although the Institute of Statistical Math-
ematics is specially empowered to grant Ph.D.’s). It
(1979) indicates that the suggestion to establish one
has been made on several occasions, but aside from a
short-lived experiment at the University of Tokyo in
the 1960s, it has never come to pass [Kitagawa (1983)
points out that several Departments of Information
Science were established at various Japanese univer-
sities during the 1960s, and these typically contain
a strong statistical component]. The great Japanese
mathematical statisticians have not emphasized indus-
trial applications, but rather differential geometry, econo-
metrics, efficient estimation and time series analysis.

The intellectual push behind the quality movement
came from JUSE (the Japanese Union of Scientists
and Engineers), which quickly seized upon Deming’s
ideas as a method whereby their group could contribute
to rebuilding Japan’s postwar economy. This organiza-
tion founded the Deming Prizes, which became a cata-
lyst for change in Japanese industries. Ken-ichi Koya-
nagi, the president of JUSE, invited Deming to visit
Japan in 1949 to teach statistical quality control. When
Deming accepted that invitation in 1950, he seems to
have taken a two-pronged approach in putting his ideas
across. On the one hand, he taught statistics to large
numbers of the members of JUSE; on the other hand,
he met with Ishikawa and other leaders of the Kei-dan-
ren (the Japanese association of senior management).
Mann (1988) reports that this combination of contacts
provided both the will at the top and the capability in
the middle that was necessary to establish the quality
revolution.

U.S. corporate leaders should learn from the Japa-
nese example that their quality budget can best be
spent by distributing simple statistics throughout their
corporation (this includes internal paper flow, account-
ing, hiring, advertisement and personnel benefits, not
just the processing stream). Chucking money at univer-
sity statisticians is a laudable charity, but may be a
breach of fiduciary responsibility unless it specifically
targets industry problems that cannot be addressed
by in-house talent. However, this is one of the few
aspects of the American manufacturing debacle in
which it is difficult to legitimately lay the entire blame
at the feet of myopic management. So many academic
statisticians have written such brilliant research pro-
posals arguing the case for corporate sponsorship on
grounds of quality competitiveness that our profession
must surely shoulder some responsibility for mis-
leading our prospective clients.

3. RESEARCH IN INDUSTRIAL STATISTICS:
CONVENTIONAL TOPICS

Industrial statistics covers such a range of applica-
tions and methods that enumerative treatment is be-
yond this paper. However, there are several classical
areas of research that deserve some special comment,
for reasons indicated below.

3.1 Experimental Design

For decades, experimental design has been the hall-
mark training of the industrial statistician. Although
the original theory was propounded for agricultural
applications, industry rapidly became the major con-
sumer and its problems led directly to the invention
of the related areas of evolutionary operation and re-
sponse surface methodology.
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My sense, from a research standpoint, is that the
bloom is off the experimental design rose. It is hard
to see profoundly new ideas on this horizon—most of
the attention is given to the working out of old ideas for
relatively more complex cases. Mixture experiments,
optimal design, sequential design and trend-free design
have risen in their turn, and none of these has entirely
fallen, but the publications in these areas have grown
steadily more particular. Currently, the Latin hyper-
cube design research (cf. Stein, 1987; Owen, 1992) is
a wave that responds to recent concerns with high-
dimensional computer models for complex industrial
processes; perhaps it will temporarily reinvigorate the
field.

As previously mentioned, one of the triggers for
this survey was an invitation to review a collection of
papers on the interface between modern experimental
design research and industrial applications. That col-
lection is Statistical Design and Analysis of Industrial
Experiments, edited by Subir Ghosh (1990). Its preface
says that “This book will be indispensable for every-
body concerned with experimentation in industries and
serve as a guide for students, instructors and research-
ers at colleges and universities.” Although such an
introduction is permissible hyperbole, the book fell
short of markedly less grand expectations, largely be-
cause of the disjunction in interests between industrial
statisticians and university researchers. To show how
this occurs, we begin with a list of the papers and a
short account of their content.

Experimental Design for Product Design, by G.
Taguchi. The paper is diffuse and offers a blend
of elusive philosophy (Section 1), low-level theory
(Sections 2 and 3.1-8.4) and practice (subsection
3.5). It ties together many of Taguchi’s themes,
including signal-to-noise ratios, orthogonal arrays
and parameter design, and climaxes with a practi-
cal problem in air gauge design.

Designing Experiments in Research and Develop-
ment: Four Case Studies, by K. Kafadar. Kafadar
writes to persuade people of the value of exper-
imental design methods in the R&D phase of

" manufacture. This reviewer (and most readers of
Statistical Science) already agree with her thesis,
but she gives four solidly practical examples, of
which the power-meter problem in Section 2
seemed most interesting.

Biotechnology Experimental Design, by P. D.
Haaland. The first two sections are written at a
super-low level, and reflect excessive saturation in
the corporate TQM credo. The third section gives
three examples, but these are less exciting than
the examples contained in other chapters of the
book. Statisticians are advised to skip this portion
of the book.

Expert Systems for the Design of Experiments,
by C. Nachtsheim, P. Johnson, K. Kotnour, R.
Meyer and I. Zualkernan. Sections 1 and 2 give a
cursory survey of the history of REX, STAT-
PATH and BUMP and strategies that underlie
the development of an expert system. Section 3
develops a process model for consultation by a
human expert and describes a somewhat fuzzy
attempt to validate that model. Section 4 de-
scribes the expert system MELAMPUS (named
from Greek mythology’s equivalent of Dr. Dolittle,
on the grounds that Melampus was the first seer).
This reviewer was not impressed by the paper and
is skeptical of the value of MELAMPUS.

The Effect of Ozone on Asthmatics and Normals:
An Unbalanced ANOVA Example, T. Lorenzen.
Lorenzen describes an unbalanced, mixed effects
design, focusing on the development of expected
mean square terms. The analysis appears techni-
cally correct, but the application is not obviously
industrial nor especially general. It is unclear why
this book was an appropriate vehicle for the paper.

Sensitivity of an Air Pollution and Health Study
to the Choice of a Mortality Index, D. Gibbons
and G. McDonald. Previous studies have used
regression techniques to examine the link between
air pollution and mortality. Previous critiques of
these studies have focused on the validity of the
assumptions, the sensitivity of the results, the
accuracy of the data and the complexities of the
model-fitting task. This chapter extends those cri-
tiques, by examining the effect of changes in the
definition of the mortality index (it turns out to
be small). The technical features of the work are
routine, and the paper’s concerns are distant from
the topic of the book.

Mixture Experiments, J. Cornell. This paper is an
excellent review of issues and methods in the de-
sign of mixture experiments. It includes practical
theory and good industrial examples.

Response Surface Designs and the Prediction Vari-
ance Function, R. Myers. This paper is an excel-
lent review of the issues and methods in response
surface analysis. It includes practical theory and
good industrial examples.

The Analysis of Multiresponse Experiments: A
Review, A. Khuri. This paper is a good review of
the issues and methods in multiresponse experi-
ments. The coverage of industrial applications is
nearly nonexistent.

The Role of Experimentation in Quality Engi-
neering: A Review of Taguchi’s Contributions, V.
Nair and A. Shoemaker. Aspects of Taguchi’s
methods have generated considerable controversy
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in the industrial statistics community. This paper
outlines his ideas (more clearly than Taguchi him-
self in Chapter 1), presents an application from
AT&T VLSI manufacture and then surveys the
areas that have generated discussion. For statisti-
cians, this is the best short account of Taguchi’'s
work that I have encountered.

SEL: A Search Method Based on Orthogonal
Arrays, C. F. J. Wu, S. S. Mao and F. S. Ma. The
proposed SEL is an intriguing strategy for finding
good response regions quickly. The paper de-
scribes the idea and illustrates its use in three
applications. Many questions are unresolved, but
this paper repays the reader’s attention.

Modern Factorial Design Theory for Experiment-
ers and Statisticians, J. N. Srivastava. Although
the first section is painfully elementary, this paper
turns into a very good review of several important
results in modern experimental design. There is
virtually no discussion of industrial applications.

New Properties of Orthogonal Arrays and Their
Statistical Applications, A. S. Hedayat. For or-
thogonal array fans, this chapter is a tease. It is
too brief to do the subject justice, but it gives an
intriguing bird’s-eye survey and lightly develops
some new ideas, such as designs of fractional
strength [readers are referred to Hedayat, Sloane
and Stufken (1994) for a fuller treatment]. No
industrial examples are given.

Construction of Run Orders of Factorial Designs,
C.-S. Cheng. The theory behind this area is suffi-
ciently abstract that it seems unlikely that the
method will see much use in practice. This is unfor-
tunate, since, in rare cases, it is plausible that
industry could benefit from the technique. How-
ever, the effort needed to sell the strategy, devise
the design and execute the analysis is so great
that it is probably not cost effective for most
practical problems.

Methods for Constructing Trend-Resistant Run
Orders of 2-Level Factorial Experiments, M. Ja-
croux. The topic in this paper is similar to the
previous paper, and the previous reservations
apply.

Measuring Dispersion Effects of Factors in Facto-
rial Experiments, S. Ghosh and E. S. Lagergren.
This chapter considers three methods for measur-
ing dispersion effects in factorial models, moti-
vated largely by Taguchi’s concern with variance
minimization. A brief industrial example is given,
taken from previous literature. It would be good
if the comparisons among the methods were more
explicit; in particular, this reviewer is concerned
about model robustness. However, it appears that
at least the first method offers a usefully simple
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approach and is unlikely to be unduly sensitive to
nonnormality.

Designing Factorial Experiments: A Survey of
the Use of Generalized Cyclic Designs, A. Dean.
Slightly more attention to industrial datasets
would have been welcome, but overall, this is a
very good review of cyclic designs.

Crossover Designs in Industry, D. Raghavarao.
Raghavarao states that cross-over designs have
not been used in industry and proceeds to develop
plausible applications and corresponding designs.
The exegesis is moderately clear, and the section
on nonparametric analysis was a welcome change
from the model-centric theory in the preceding
chapters.

To summarize the results of these synopses, this
edited volume shows the usual vital few and trivial
many (to lapse into a TQM buzzphrase). The vital few
are very few and emphasize area reviews and applica-
tions over theoretical derivation. Essentially, what is
good is not new, and what is new is not good.

Of course, part of this evaluation depends upon the
viewpoint of the audience. I think the book is, regretta-
bly, more successful in speaking to academic than
industrial statisticians. Most industrial statisticians
lack the time, background and management support
needed to undertake the very complex experimental
designs that are outlined in several of the book’s chap-
ters. Moreover, their practical sense may persuade
them to put their resources into planning analyses
that are robust to the violation of model assumptions,
rather than clever minimalist designs that are sensitive
to minor model failures.

In fairness, there are some industrial statisticians
who will benefit from more than one or two of the
chapters. Several of these people are, in fact, contribu-
tors to this volume. However, industrial statisticians
would probably do their companies better service by
teaching large numbers of low-level employees how to
use simple statistics, rather than by spending the same
amount of time developing a trend-resistant run order
for a partially balanced incomplete block design with
four associate classes.

On the other hand, an academic researcher would
find several of the papers in this volume to be honest
work, but the topics are not hot. There is no consensus
on a central problem whose solution would affect the
future research agenda. From that perspective, which
is no fault of the book’s but rather a natural result of
the maturity of this field, the appeal of the collection
is limited.

3.2 Control Charts

A different area of classical research concerns control
charts. These were developed almost simultaneously
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by Shewhart (1926) in the U.S. and by Dudding and
Jennett (1937) in England. (Both groups were using
them as early as 1924, although formal descriptions
did not arise in the statistical literature until later.)
Control charts are a prime example of a good idea that
has been corrupted by formal theorists and then resold
to industrial practitioners.

The earliest control chart was the X-chart; other
workers quickly developed the p-chart, R-chart and
similar variations. The next intellectual milestone was
the CUSUM chart, invented by Page (1954); this looks
at the cumulative sum of the deviations from the cen-
terline, enabling more rapid detection of small shifts
in the process. This was followed by the EWMA chart,
an exponentially weighted moving average technique
developed by Roberts (1959); it examines the residuals
from a forecast of the process based upon the dis-
counted past and therefore confronts the problem of
trends in control chart data.

In the wake of these key ideas, there has been a
subgenre of statistical literature that specializes in
variations on control chart themes. People write papers
about control charts for data that have double exponen-
tial, ¢, Weibull and other distributions [recent examples
include Kaminsky et al. (1992) and Bannerjee and
Rahim (1988)], or about average run length calculations
(cf. Champ and Woodall, 1987; Davis and Woodall,
1988; Hawkins, 1992) or about control charts that
track multivariate product features (cf. Crosier, 1988;
Pignatiello and Runger, 1990). This theoretical particu-
larization has steadily removed the procedure from its
initial application as a broadly practical tool, sequester-
ing it into the fold of arcane statistical techniques.

The result of this tendency to play off of other re-
search rather than practical problems has been that
many process engineers believe that 3o limits on con-
trol charts have reliable physical significance. They are
recklessly unmindful of the distributional and indepen-
dence assumptions that underlie their use of the control
chart and blindly apply dozens of rules (runs criteria,
warning lines, etc.) for declaring out-of-controlness to
the same set of data. Under the canonical assumptions,
this increases the false alarm rate-over the nominal
level; more importantly, it obscures the real value of
the control chart exercise, which consists of having a
knowledgable process engineer regularly examine the
trajectory of the product quality. If the expert sees a
hiccup in the process the day after the foreman was
shoved into the vat of raw chemicals, the expert knows
not to stop the process and recalibrate the heaters—
the source is clear and one just lets the impurities filter
out. However, it drift emerges when the inputs are
putatively homogeneous, a canny engineer may intuit
a problem before the control chart formally signals. In
such cases, meek subservience to the rule of the chart
can hurt the process.

More recently, and more encouragingly, there has
been some movement back toward realism. Reynolds
et al. (1988) have pointed out that it is desirable to let
the sampling rate in a control chart depend upon the
recent history; that is, if the process is looking dodgy,
inspect it more often. This type of result combines
good theory with a laudable attention to practicality.
Although the theoretical properties are, as usual, re-
gretably sensitive to a busload of assumptions, the
strategy is transparently sensible and should inform
almost any application of control chart methodology.

From a research perspective, control charts are dino-
saurs. I do not see issues there that are going to
provide scope for heroic improvement. It is hoped that
statisticians’ slow disengagement will have a salutary
effect upon industry practice, as engineers and quality
control managers devote more attention to the perfor-
mance of their process and less attention to the arcana
of control chart theory.

3.3 Taguchi Methods

The Taguchi method (cf. Taguchi, 1986) emphasizes
the use of experimental designs in identifying ways to
minimize the mean squared error of product features
that affect quality. His fundamental revolution was
to dethrone the conventional acceptance of tolerance
specifications, arguing that any deviation of a part’s
value from the specified target was a “cost to society.”
The ripples from that stone have spread internationally
and spawned a growing body of work in robust parame-
ter design (cf. Freeny and Nair, 1992), signal-to-noise
ratios (cf. Leon and Wu, 1992), orthogonal arrays for
experimental design (cf. Wang and Wu, 1992), accumu-
lation analysis for categorical data (cf. Hamada and
Wu, 1990) and other areas. Since Taguchi’s writings
are sometimes difficult, readers who want a brief intro-
duction to the ideas might prefer the review given by
Kackar (1985).

Although it is difficult to formally characterize the

" procedures developed by Taguchi and his school, key

components include:

» emphasis upon designing the product to have ro-
bust quality in the teeth of inescapable variation
in manufacture and usage;

* the use of a signal-to-noise ratio to measure devia-
tions between current and desired process perfor-
mance;

* the reliance upon inner and outer orthogonal arrays
(experimental designs), corresponding to factors
that are susceptible to manufacturing control and
factors that reflect variation to which product qual-
ity should be insensitive, respectively.

The signal-to-noise strategy can be flexibly tailored to
the situation—Vining and Myers (1990) report that
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Taguchi has devised more than 60 such measures.
These measures are not derived from information theo-
retic considerations, but rather respond to judgments
about costs incurred as a function of the production
process mean and variance with respect to a specific
quality characteristic.

The Taguchi method has been controversial, partly
because it has often been formulated very vaguely and
partly because of criticisms levelled at it by various
statisticians. In particular, Box (1985) points out that
Taguchi’s predilection for saturated or nearly saturated
orthogonal arrays overlooks simpler experimental de-
signs that often enable better handling of interaction
effects. Also, Taguchi’s strategy pays meager attention
to sequential experimentation, which can be tremen-
dously important when experimental runs are expen-
sive or large numbers of factors must be considered.

Nonetheless, most industrial statisticians agree that
Taguchi’s perspective is valuable (although some grind
their teeth in frustration over its adoption as a manage-
ment shibboleth). The concentration upon designing
the product to make quality easier to achieve, and
the recognition that minimizing financial loss requires
simultaneous control of the mean and the variance of
the production process, are key ideas. Vining and My-
ers (1990) have recently recast the latter insight into
a more standard statistical formulation, by viewing
the problem as a dual-response surface analysis. Here
one seeks to optimize with respect to one criterion (the
mean) while fixing another criterion (the variance) at
an acceptable level. It would probably be slightly closer
to the spirit of Taguchi’s intention if the variance were
not held fixed, but rather allowed to vary so as to
obtain the least cost compromise between the value of
the mean and the value of the variance. This might be
obtained by plotting a curve of the total cost as a
function of both mean and variance.

The real danger in the ubiquitous Taguchi cult is
that industry users may copy the inefficiencies as well
as the insights. There is a large statistical toolkit of
pertinent designs and alternative methods, and it would
be unfortunate to overlook these on grounds of ideolog-
Jical commitment. .

3.4 Process Capability Indices

A process capability index attempts to measure
whether the error in manufacture is so great that an
economically excessive amount of product falls outside
the tolerance specifications. Several indices are avail-
able; the two used most comimonly in the U.S. are C,
and Cp:

C, = (USL — LSL)/ 65
C,» = min{USL — 4, 2 — LSL}/ 36,

where USL is the upper specification limit, LSL is the
lower specification limit, 4 is the sample mean of the
process.and & is the sample standard deviation of
the process.

Clearly, the C, index does not involve the sample
mean and thus implicitly assumes that process perfor-
mance is centered at the midpoint of the upper and
lower specification limits. Otherwise, simply by shift-
ing the location, a process with an arbitrarily good
(large) index could be generating arbitrarily bad amounts
of noncompliant product. Since C,. avoids this pre-
sumption, it should be strongly preferred; note that it
automatically handles the case of asymmetry in the
upper and lower specification limits with respect to the
process mean. However, in most ways, the C, and C,;
indices are discouragingly similar—both are aimed at
processes that have Gaussian variation, and both in-
herit the magic 36 concept of acceptable behavior.

In Japan, a process is said to be capable if its Cp
value is at least 1.33 (cf. Sullivan, 1984). Under the
Gaussian assumption, this suggests that not more
than 6 items per 100,000 are nonconforming. However,
this Gaussian approximation is entirely unreasonable
in practice, since it depends sensitively upon the tail
behavior of the actual unknown distribution. In control
charts, the fact that one averages several values when
plotting a single point makes the Gaussian assumption
marginally agreeable—in the process capability con-
text, it is completely unsatisfactory. So management
should be skeptical of estimated numbers of noncon-
forming items obtained from Japanese manufacturing
processes having particular capability indices, and they
should be skeptical of studies that compare different
processes in terms of their capability indices. The value
of a capability index lies in tracking improvement in
a particular process and is untrustworthy when com-
paring the performances of different processes.

It can happen that a process is capable, but not in
control, or that a process is in control, but not capable.
For the C,: index, this occurs when the process stan-
dard deviation is small relative to the distance between
the mean and the nearest specification limit, but the
mean of the process is far from the target value. Con-
versely, a process can be strictly in control, but have
large variance with respect to the separation between
the upper and lower specification limits. I have been
assured by industry statisticians that confusion of
these concepts is rife within U.S. management.

The process capability index emphasizes that in
most situations, significant improvement requires re-
duction in process variance. This perspective is one of
the chief motivations for Taguchi’s work in parameter
design, where the goal is to design a process that is
insensitive to perturbations in input streams that are
difficult to control. Concomitant to this perspective is
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the hope that it is less difficult to shift the mean of a
low variance process than to reduce the variance in a
process that already has the proper mean.

As used, the process capability index is trying to
serve three separate purposes, and this causes some
interpretational difficulty. One purpose is to track im-
provement in the control of a particular process over
time. The second is to compare the performance of dif-
ferent processes, and the third is to roughly estimate
the number of defective parts produced. All of these
are sensible questions to ask, but the index is not
particularly useful regarding the second two.

The first purpose is approximately well answered by
something like C,;. Large numbers here are good rough
indicators of the comfort zone of the recent operating
history of the process with respect to the prescribed
specifications. Conveniently, it is easy to calculate the
index from quantities used in constructing the control
chart.

It is much less clear that a process capability index
is a reasonable guide for comparing different processes.
When examining very similar processes, perhaps be-
tween economic competitors, it may have value. But
if a manager wants to evaluate problem areas in a
complex process with many subprocesses, the indices
of the subprocesses may grossly mislead attention. A
direct comparison implicitly assumes that the quality
of the final product is equally sensitive to variation in
each of the subprocesses, which seems very unlikely.

Respecting the third purpose, both C, and C,. are
essentially mute. The conventional interpretation leans
too heavily upon assumptions about independence and
tail behavior to be useful. Nonetheless, it is important
for management to monitor the numbers of out-of-spec-
ification parts closely, since changes in these extremes
are harbingers of process degradation. In most cases,
managers eventually receive information from the cus-
tomer or assembler regarding noncompliant parts, and
this seems the only appropriate basis for estimating
change in the numbers of bad parts produced.

4. RESEARCH IN INDUSTRIAL STATISTICS:
NEW TOPICS -

The methodologies discussed in Section 3 are either
intellectually stale or quickly becoming so. One does
not expect new research in these areas to make aston-
ishing discoveries that can provide enormous benefit
to industry; rather, gains will be small and become
smaller as researchers tackle increasingly narrow prob-
lems. Nonetheless, competitive industrial performance
requires a strong understanding of those methodolo-
gies, both their potential and their limitations. To
achieve this, companies rarely need academic research-
ers; rather they must have access to Ph.D. level statis-

ticians internally, who may not be developing new
theory, but can comfortably command the old. Usually
the bottlenecks in effective corporate use of statistical
techniques are managerial, operational and structural,
rather than due to any lack of available technical exper-
tise.

So what role is left for the researchers? Fortunately,
there are dozens of statistical problems that have in-
trinsic mathematical interest and whose solution would
provide enormous profit potential to industry; more-
over, many of these problems (at some abstract level
of formulation) arise across many industries. The exam-
ples listed below are not intended to be exhaustive or
representative—they only reflect a sampling of the
more provocative cases that have arisen in recent for-
ays into industrial consulting.

4.1 High-Dimensional Response Surface Analysis

For many industries, automated systems regularly
measure very large numbers of independent variables.
In continuous manufacturing (e.g., the continuous pour-
ing of sheet glass or crude oil fractionation), one typi-
cally records several hundred control variables, such as
temperature, quantities of raw materials and pressure,
and tens of quality variables, such as optical clarity,
purity and boiling point. The same is true for batch-
continuous processes (e.g., sheet aluminium or VLSI
chip manufacture), in which blocks of raw material are
subjected to a fixed sequence of steps, each of which
has a continuous processing character.

The immediate purpose of this data collection effort
is to maintain control of the production system. Pro-
cesses that are bones of aggessive international con-
tention tend to be unstable; otherwise, control is easy
and profit margins are small (and there is little contri-
bution a research statistician can make). Therefore re-
search attention and funding focuses on processes in
which small drifts lead rapidly to catastrophic quality
degradation. Sensitive feedback loops are needed to
regulate the process, and the tightness of control is
often the key factor in attaining high quality product
at competitive manufacturing cost. The control loops
may depend upon the values of the output quality
variables, but more often are based upon inline measur-
ments, which are compared to target values. In very
mature processes, or ones in which a sophisticated un-
derstanding of the physics or chemistry of each stage
exists, it is sometimes possible to use feedforward
control to guide drifting product back onto the target
trajectory.

The secondary purpose of the data collected during
manufacture is to inform future efforts at process opti-
mization. The data are archived into superlarge data-
sets (cf. Banks and Parmigiani, 1992); e.g., one dataset
from Alcoa captured 212 control variables and 16 qual-
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ity variables and held 240 records for each day of op-
eration. The usual hope is that quality engineers can
apply the principles of response surface analysis to
obtain better setpoints for the control variables and
feedback loops used in subsequent production.

Classical response surface analysis works well when
the dimensionality of the data is low. However, the
“curse of dimensionality” implies that in all practical
situations, the value of statistical techniques, no mat-
ter how clever, rapidly decreases as the problem be-
comes more multivariate and as less structure is
known. The following are three nearly equivalent heu-
ristic descriptions of the curse:

e The complexity of the possible signal increases
rapidly with dimension. The simplest way to see
this is to note that if one looks just at the class
of polynomial regression models, then the number
of possible models of degree r developed from p
variables increases combinatorially fast in p.

e In high dimensions, all data are sparse. If one
distributes 20 points uniformly on [0, 1}, the gaps
between the data tend to be very small; however,
if one distributes 20 points uniformly on [0, 1],
nearly all points are very distant. Thus for a fixed
sample size n, the amount of information about
local functional relationships between the control
and quality variables goes to zero as the dimension-
ality, p, increases. Figure 3 indicates how swiftly
the expected distance grows in p; it shows the side
of a cube that is expected to contain q% of data
that are uniformly distributed in the unit cube in
Rr, for p = 1,2,5,10,15.

¢ In high dimensions, nearly all datasets show gener-
alized multicollirearity. Suppose p = 3. Tradition-
ally, a dataset is multicollinear if the independent
variables concentrate on a plane or line in R3; one
result is that parameter estimates in the fitted
model are wildly unstable. For general p, the data
are multicollinear if the independent variables con-
centrate on a lower dimensional affine subspace.
In the context of nonparametric modeling, multi-
collinearity generalizes to concurvity, in which the
independent variables concentrate on a smooth
submanifold of lower dimensionality.

Hastie and Tibshirani (1990) and Scott and Wand
(1991) provide additional details on these different fac-
ets of the curse.

The gist of the curse is that the hope of using ar-
chived industrial data to build a predictive model of
process response is almost surely doomed to failure.
Conventional linear modeling is hopeless. At best, one
can try using new nonparametric regression methods
such as MARS [for multivariate additive regression
splines; cf. Friedman (1991)], GAM [for generalized
additive models; cf. Hastie and Tibshirani (1990)}, PPR
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Fic. 3. A graph illustrating the curse of dimensionality. The
plotted functions show the side-length y of subcube in the
p-dimensional unit cube that is expected to contain proportion q
of a uniform random sample, for p = 1,2,5,10,15.

[for projection pursuit regression; cf. Friedman and
Stuetzle (1981)] and neural nets [Barron and Barron
(1988) and Ripley (1993) give reviews of this area from
interestingly different statistical perspectives], but the
process structure must be serendipitously simple be-
fore these methods have any chance of succeeding,
even with the superlarge datasets available. Also, it is
worth emphasizing that most industrial data of this
kind show strong serial correlation, partly because of
feedback control, partly for all the usual reasons; this
complication makes the new wave nonparametric meth-
ods even less likely to succeed.

However, the prospects are not unvaryingly dismal.
One aspect of the response control heuristic is that it
is unwise to waste explanatory simplicity in building
good descriptions of process response in regions of
poor quality. From a practical standpoint, the process
engineer wants a model that better enables good qual-
ity output. It is reasonable to hope that in that rela-
tively small region of control space, the model may be
locally low dimensional and hence susceptible to an
analysis that sidesteps the curse of dimensionality.

Researchers have already begun pushing this strat-
egy, although not in an explicitly industrial context.
Duan and Li (1991) and Li (1989) have pioneered a
technique called SIR (sliced inverse regression) that
attempts to reduce the effective dimensionality in non-
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parametric modeling by restricting attention to one
subset (slice) of the data at a time, where the subsets
correspond to quantiles of the response variable. Thus
one might focus attention upon modeling the process
structure using only the control data that gave the
10% best quality output; after all, why spend effort
understanding exactly how to produce output with
quality in the bottom 90%? So far, work in this area
has focused upon performing principal component anal-
ysis on the slices (cf. Li, 1991). The door is open for
more general approaches, perhaps by extending the
new-wave techniques so that adaptive partitioning strat-
egies can depend upon the response variable, by the
more obvious device of applying the new wave methods
directly to the slices, or by humbler practices, such as
doing partial least squares or ridge regression on each
slice.

In industrial applications, one expects that for a
relatively mature process, the model fitted by a SIR
method will find that most control variables are (lo-
cally) unimportant. These variables are the ones which
are so well understood that they are tightly controlled
about their target values. Few variables would show
interesting main effects—if these effects were impor-
tant, then the combination of constant international
competition and decades of manufacturing experience
would have already revealed their influence. The best
hope for process improvement lies in identifying the
few variables that show simple interactions, and indus-
tries that apply SIR analysis should be alert for these.
Of course, if the industrial process is not mature, then
there is greater scope for heroic change. This potential
probably exists in such industries as VLSI wafer fabri-
cation.

4.2 Software Reliability

Most competitive companies place great reliance
upon millions of lines of software code. However, as
every software manager is keenly aware, such code
almost surely contains hundreds of hidden bugs; more-
over, the code is difficult to maintain, and it is fraught
with the potential for dangerous/expensive errors [cf.
Humphrey (1989) or, for an earlier but wonderfully
readable account, Brooks (1982)]. Writing a typical
large program may cost decades of human-years. The
code is so interactive that an error in one portion may
affect many other portions, in entirely unpredictable
ways. It is so complex that the number of logical paths
can easily exceed the number of lawful chess games
(approximately 10'%°), rendering exhaustive testing im-
possible. Software is unsmoath, in that small changes
in code can cause enormous changes in the output—
thus program maintenance is like blindman’s buff in a
minefield. It is as unique as artwork, since each pro-
gram is written for a specific task, and so EVOP strate-
gies that succeed when making ball bearings over and

over again are nearly pointless for code; in some sense,
there is only one chance to get it right. Finally, soft-
ware is invisible. Most manufacturing products can be
broadly inspected with the eye, a task for which hu-
mans are evolutionarily adapted; but we are not hard-
wired for the kinds of logic checks needed in software
verification. These aspects distinguish the software
quality problem from conventional quality problems.

There are many examples of serious software errors.
For example, the American Society for Quality Control
mailed out thousands of dues bills in 1992 which were
unpayable because the membership ID was omitted.
Also, the judicial software in Connecticut drew no
jurors from the town of Hartford for three years, be-
cause the terminal “d” in the town’s name extended
into the status field, and thus all residents appeared
to be dead. And in two separate instances in 1991,
telephone service to 10 million customers in Washing-
ton, Pennsylvania, West Virginia, and Los Angeles
was disrupted (I could not place calls for an entire
afternoon) by what the New York Times (July 10,
1991) describes as a few lines of erroneous code in
the Switching System 7 traffic management program
written by DSC Communications.

Besides simple software errors, there is the broader
problem of system performance. The nature and use
of industrial software presents unique problems in op-
erational reliability. For example, the difficulty in in-
specting software opens the door to subtle sabotage
or unprofessional work —a disgruntled employee of the
Encyclopedia Britannica substituted the names of
company executives for historical figures, and there is
a persistent myth that penny round-off errors in the
financial transactions of a large bank are secretly cred-
ited to the architect of their computer system. Also,
software is so powerful that unless it is written to
include elaborate sanity checks on input, minor input
errors can have devastating consequences. For exam-
ple, Salomon Brothers recently sold several million
dollars worth of stock by mistake, apparently pro-

. voking a small Stock Market tumble in the process—

a tired clerk had transposed the value of the stock with
the number of shares to be sold, and the supervisor did
not notice. Similarly, TRW’s credit reports accidentally
listed virtually every resident of Norwich, Vermont,
as being delinquent in their property taxes, due to a
one-keystroke clerical error.

Unlike most manufactured objects, software bugs
are hard to apprehend through direct measurement.
Catastrophes may be caused typographically, by logi-
cal errors on the part of the programmer, by sabotage,
by simple human error during key inputs or by inter-
active failures between separate modules (e.g., two
modules may each be logically correct, but the first
passes information to the second more rapidly than
the second can handle). The first type of error can be
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very hard to detect during inspection; the other kinds
. are nearly impossible to discover or prevent. Much of
the difficulty arises from the tremendous complexity
of a realistically large software program.

Any software module can be conceptualized as a
directed decision graph. Nodes correspond to if-then
branches, and edges correspond to direct manipula-
tions on the inputs. Starting from a base state, the
module takes a vector of inputs, then negotiates a
series of if-then statements (nodes) to produce a vector
of outputs. Since the number of possible paths in the
graph increases combinatorially, enumerative verifica-
tion of software accuracy is almost always impossible.
Thus anyone who purchases or commissions software
is buying a lottery ticket, and, at a minimum, needs
to understand the odds.

Previous work in this area has been fragmented and
diverse. Some of the key threads are as follows:

¢ Dalal and Mallows (1988) offer the most statistical
treatment — it is a Bayesian analysis of the problem
of deciding how long one should test software
before release. They descibe a practical implemen-
tation, but the method is sufficiently mathematical
that it requires repackaging before conventional
industries will be able to avail themselves of its
virtues. (By the way, as a nonindustrial digression,
the decision problem they address can be mapped
directly into the problem of deciding when to stop
the simulated annealing algorithm in optimiza-
tion.)

¢ Humphrey (1989), Cho (1987) and Musa, Iannino
and Okumoto (1990) attempt to transport TQM
ideas into the software arena. The details differ,
but the first author emphasizes the process of
software production, with inline measurements to
check accuracy, control charts to track error rates
for individual programmers, metrics for software
quality and built-in protocols for software valida-
tion. The other authors put more of a statistical
reliability spin on their treatment by including
failure rate models and the associated parameter
estimation. My own sense is that although these
devices will, on balance, reduce errors in the code,

~ they do not offer the sweeping solution that one
hopes to find.

¢ Transparent proofs, a new mathematical technique
described by Arora and Safra (1992), re-expresses
calculations so that any error appears nearly every-
where. This has enormous potential for facilitating
program checking, although the technique is still
in its infancy and remains infeasible for routine
application. A particular problem is that identi-
fying the source of errors is hard, especially when
the software program may involve multiple bugs.
In a similar vein, there are methods for producing

provably correct code (cf. Dijkstra, 1982), but
these are curiosities rather than practicalities.

¢ Some people (Jewell, 1985; Goudie, 1990) have
used capture-recapture methods to estimate the
number of undiscovered bugs and an appropriate
stopping rule for terminating the inspection. This
has solid statistical roots, but does not directly
help the producer in achieving process improve-
ment.

¢ There is a smattering of statistical literature that
looks at human factors in code quality, such as
Humphrey and Singpurwalla (1990). In a similar
vein, there have been some empirical studies of
where errors are most likely to appear in code (cf.
Shen et al., 1985); it appears that the dominant
component in the number of faults is proportional
to code length, but another component reflects the
complexity of the function or the interface with
other modules.

Humphrey (1989) indicates that the Japanese rely
chiefly upon “software factories,” in which highly modu-
lar code is produced. Programmers specialize in certain
modules and tailor them to particular requirements.
Over time, workers whose modules interact build up a
good understanding of each other’s requirements. This
structure and the attention to the software production
process is why Humphrey views the Japanese as the
world leaders in software quality, despite the distance
between this domain and their more conventional man-
ufacturing arenas. If this modular production turns
out to be the best avenue for swift improvement, then
there are pertinent OC-curve methods, balancing Type
I and II error, that have been developed for modular
manufacture (Easterling et al., 1991). These might be
exported to the software domain.

4.3 Partial Least Squares

Recently, especially in the chemical industries, there
has been an organized challenge to traditional proce-
dures for fitting multiple linear regression models. In-
stead of ordinary least squares or variable selection
techniques, or the more sophisticated principal compo-
nents regression and ridge regression, practitioners
have been experimenting with partial least squares.

The partial least squares approach was developed
by Wold (1966, 1975). It has many different flavors,
but the most common implementation for multivariate
regression is described by Helland (1988). The method
is designed to work well in data-rich, theory-poor situa-
tions, such as those that commonly arise in industrial
datasets. The framework is very similar to principal
components regression; comparative studies of these
and other methods appear in Stone and Brooks (1990)
and Frank and Friedman (1993).
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Suppose one has n p-vectors of explanatory vari-
ables, Xj,...,X,, corresponding to the n-dependent
values Y3,...,Y,. Denote the centered (mean zero)
explanatory vectors by X, i=1,...,n, the centered
vector of dependent values by ¥, and the n X p matrix
whose ith row is X; by X.

To perform principal components regression, one
uses p* pseudo-regressors; these are constructed ac-
cording to

X,’_l; = CjTXi

where the ¢; is the normalized eigenvector correspond-
ing to the jth largest eigenvalue of the sample co-
variance matrix S = X7X. Equivalently, ¢; maximizes
c’Sc subject to the constraints that ¢c;=0,...,
¢/7cj—1 = 0. Using these p* pseudo-regressors, one then
applies the ordinary least-squares method to find co-
efficients that minimize the squared error in fitting the
data; this gives the principal components regression
function. In applications, one wants p* to be smaller
than p. Several methods are available for determining
p*; cross-validation is currently popular.

In contrast, for partial least-squares regression, one
finds p** pseudo-regressors of the form

X,’;* = djTXi

Here d; is the normalized vector that maximizes
(d7X7Y)?, the squared sample covariance, and d; maxi-
mizes the same quantity subject to the constraints that
d’Sd; =0, ...,d/’Sd;-; = 0. Note the close parallel to
the constraints imposed in principal components re-
gression. As before, one uses ordinary least squares on
the pseudo-regressors to find the partial least-squares
regression function. Again, one wants p** to be rela-
tively smaller than p, and cross-validation offers a
sensible basis for choosing p**.

Partial least squares is a hot area in industrial statis-
tics. There have been several studies in which it has
performed very well compared to conventional tech-
niques, and it is now widely used in chemometrics,
especially for calibration problems (cf. Martens and
Naes, 1989). Currently, considerable excitement has
, been generated by a combination of Bayesian analysis
with extensive simulation reported in Frank and Fried-
man (1993). Their results strongly imply that variable
selection methods perform very badly (almost as badly
as ordinary least squares) and that ridge regression is
marginally superior to partial least squares and princi-
pal components regression across the range of condi-
tions examined. No doubt more will be heard on this
topic, but it appears that the murmurs of dissatisfac-
tion with variable selection methods commonly avail-
able to industry analysts via standard software pack-
ages have been justified, and industrial practitioners
may be expected to continue their inclination to explore
alternatives.

fori=1,...,nandj=1,...,p%

fori=1,...,nandj=1,...,p**

4.4 Geometric Conformance

Manufacturing industries are encountering competi-
tive challenges in miniaturization. When making and
assembling very small components, it is crucial that
each part’s geometry conform to tolerance specifica-
tions. (Tolerance specifications are usually defined in
terms of Taylor’s principle: a part geometry is out of
conformance if its surface cannot be inscribed within
a similar shape that is larger by a specified amount,
or if it does not circumscribe a similar shape that is
smaller by a specified amount.) Assessing this confor-
mance is a key issue in modern inspection —one must
do it rapidly and very accurately, at scales that are
increasingly difficult to measure.

Until the last decade, part conformance would be
crudely assessed by checking some key dimensions
with a ruler; if precision were wanted, the inspector
might use a dial gauge or calipers. Nowadays, leading-
edge applications employ coordinate measuring ma-
chines (CMMs). These consist of a platform upon which
the part in question is fixtured (this is a technical term,
meaning that the part is placed in a standard posi-
tion for measurement), and a computer-controlled arm,
equipped with a measuring stylus, that moves over
the surface of the part, touching it at various points.
The touch-off points are recorded as (x, y, z) coordinates
and one uses these vectors to decide whether the part
geometry is satisfactory. In the future, it may happen
that this verification process can be done with an elec-
tronic eye, which is logically very similar to the CMM,
except that the number of touch-off points is larger
and one must combine different 2-D perspectives to
reconstruct the 3-D shape.

The statistical issue in the geometric conformance
problem is to infer the shape of the object from the
measurements. The solution should incorporate the
measurement error in the CMM device (since these are
carefully calibrated, this problem offers an unusual
instance in which the error covariance matrix ¥ is
actually known), the errors in the fixturing of the part,
and models for errors in the part manufacture. Chap-
man and Kim (1992) and Chen and Chen (1992) describe
the use of spherical regression methods in addressing
aspects of this problem, and Hulting (1992) proposes
graphical techniques for analyzing fixturing errors. A
complete solution, for realistically complicated part
geometries, has yet to be found.

5. WHAT INDUSTRIAL STATISTICIANS
SHOULD KNOW

Hogg (1985) made suggestions as to what engineers
should be expected to know about statistics. (The mo-
mentum of that articulation carried Hogg and Ledolter
through the vicissitudes of authorship, culminating in
Engineering Statistics.) 1 think those recommenda-
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tions serve well as a platform for what industrial statis-
ticians should know.

It goes without saying that statisticians with doctor-
ates should know everything. But for those at the
Master’s level, Hogg’s committee would emphasize de-
sign of experiments, graphical methods, linear regres-
sion and response surface methodology; also, they
should not appear embarrassingly ignorant when the
coffee-urn conversation turns to acceptance sampling,
control charts or W. E. Deming. Although this may
not have been as current a topic when Hogg’s commit-
tee met, a smattering of Taguchi’s ideas are sufficiently
fashionable to assist a green career. I think a grasp of
the bootstrap and cross-validation is invaluable, and a
good understanding of applied Bayesian analysis could
be a useful ticket to future developments. At the micro
level, every practicing statistician should know such
tricks as the arcsine-square root transformation for
proportions or Fisher’s rule for combining the results
of independent experiments.

It is fundamentally important for any new industrial
statistician to be serenely competent with at least one
major statistical package, and it is highly desirable
that this package enjoy good graphics capabilities. No
amount of theoretical proficiency will (at the Master’s
level) compensate for inadequate computational skills.
Graphics are useful because senior statisticians in in-
dustry have assured me that upper management can-
not deal with statistical issues that are not susceptible
to simple visual renderings.

Industrial statisticians should be proficient problem
solvers. In terms of their university training, this
points up the desirability of building some exposure
to statistical consulting into the Master’s program.
Obviously, the Master’s programs are already tightly
packed; nonetheless, graduates who can claim some
experience in realistic consulting enjoy such enormous
advantages in obtaining and maintaining employment
that it seems an essential part of a competitive pro-
gram. The immediate advantage appears on the resumé
and in the kinds of letters of recommendation that the
faculty can write. The more important advantage is
that, in a well-constructed program, they have a chance
to learn nontextbook skills that can give them a flying
start in their career.

I digress briefly, on a personal soapbox: Boen and
Zahn (1982) have spent considerable attention on the
teaching of statistical consulting, stressing interper-
sonal transactions in establishing meaningful dia-
logues with the client. I find their perspective too
Caliifornia-ish to recommend, but agree with their em-
phasis on good oral and written communications skills,
over and above mere technical competence. Contrary
to most students’ beliefs, defining the problem can be
the greatest service the statistical consultant provides;
this task is often fluid, difficult and without unique

solution. Unless students see this process for them-
selves, they usually think in terms of end-of-the-chap-
ter exercises and struggle to find an exact match be-
tween a recently taught tool and the client’s naive
statement of the problem.

Sadly, amusingly, technical proficiency can be a lia-
bility in statistical practice. I am often surprised that
mathematically brilliant statisticians can be so bad at
consulting, but I have listened as a time series expert
tried to cast a simple repeated measures design into a
Box-Jenkins model, I have heard probabilists blithely
make unrealistic distributional assumptions on no bet-
ter grounds than personal convenience and I have seen
Bayesians undertake analyses that their clients do
not understand and cannot hope to persuade their
colleagues to endorse. A senior statistician at a major
petrochemical firm has mentioned world class statisti-
cians whom he would not trust with his data and whose
students he would never hire. The only real corrective
is breadth and consulting experience and (sometimes)
a complete change in one’s Weltanschuaang, but I urge
all practitioners to read Breiman (1985).

Finally, new industrial statisticians should be pre-
pared to quickly build a very deep understanding of
the industry that employs them. This emphasis upon
the partnership between domain knowledge and good
analysis is fundamental in statistics, but too easy to
underemphasize in a crowded Master’s curriculum.

Although it is rhetorically awkward to attempt to
list topics that Master’s level industrial statisticians
need not know (it opens the door for endless quibbling
clarifications), I strongly feel that there is no need to
explicitly teach TQM. Of more conventional subjects,
it seems that survey sampling is not ubiquitously used,
nor are any of the more mathematically athletic aspects
of time series analysis. Only a weak knowledge is
required of continuous multivariate statistics, and
there is even less demand for discrete multivariate
(contingency table) methods. Most of formal probabil-
ity may be quickly forgotten upon graduation, and

-much of inference and decision theory. Typically, one

hopes that students retain the flavors of the ideas long
after the details have faded and that their education
will serve as a platform rather than a straitjacket.
From this perspective, superficial exposure to a great
range of methods (cluster analysis, ridge regression,
CART, the bootstrap etc.) may be better education
than the current drill in the mathematical conse-
quences of sufficiency, Fisher information and the
strong law of large numbers.

Regarding people with bachelor’s degrees, their back-
grounds are so diverse and their capabilities so varied
that detailed specifications are difficult. In the modern
world, for any career that requires a combination of
competencies in statistics and some aspect of engi-
neering, it is probably unreasonable to view a bache-
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lor’s degree as a terminal degree. Nonetheless, certain
things are obviously important for good undergraduate
preparation, and these clearly include an understand-
ing of basic statistics (probability, p-values, confidence
intervals and multiple regression). If there is additional
strength in experimental design and some exposure to
a computer package, that constitutes a strong starting
point at this level. If the student were a statistics
major with an interest in industry, then the topics list
would include much more regression, applied statistics,
computer skills, Bayesian methods and so forth. If the
student were an engineer with an interest in statistical
tools, then this core list is as much as one can reason-
ably expect.

Slightly tangentially, it is my impression that stu-
dents at all levels should anticipate a credential defla-
tion upon graduation. A person who is hired with a
bachelor’s degree in statistics typically finds an em-
ployer who expects only trainability and a skill set
equal to what a good high school student ought to
achieve, but rarely does. Similarly, the employer of
a new Master’s student often anticipates no greater
knowledge than what a bachelor’s degree in statistics
should certify, and a Ph.D. student who takes a nonaca-
demic position may not be called upon to use any
statistical tools that had not been taught in the Mas-
ter’s program. Of course, employers may have a very
different view of this, and surely they always hope to
hire people whose capabilities exceed expectations.

Regarding undergraduates, several new texts have
recently appeared that aim at the undergraduate engi-
neer, and these were one of the prods that produced
this review. The texts might also be useful in a low-level
course for graduate engineers, or for a short course
taught to working engineers, but all of them are too
elementary to be used in a Master’s program in statis-
tics. The four texts considered are:

1. Thomas P. Ryan’s Statistical Methods for Quality
Improvement (1989). Ryan’s book emphasizes
control charts and experimental design and could
be used for a first course in statistics for engi-
neering students.

* 2. Douglas Montgomery’s Introduction to Statisti-
' cal Quality Control (1991). Montgomery assumes
slightly more mathematical background than
does Ryan, strongly emphasizes acceptance sam-
pling methodology and aims at undergraduates
pursuing engineering and management studies.
Perhaps the second half could be used in a Mas-
ter’s course for engineers.

3. Hogg and Ledolter's Engineering Statistics
(1991). This book offers a first course in statistics
for engineers. Although it deliberately straddles
the domains of statistics and quality manage-
ment, compared to the other introductory texts
in this sample it leans more heavily upon its

statistical foot. It could be used as a text in a
low-level graduate course for engineers that have
had no prior exposure to statistics.

4. DeVor, Chang and Sutherland’s Statistical Qual-
ity Design and Control (1992). These authors ad-
dress seniors and Master’s students in engineering.
They assume no prior background in statistics
and take a more strongly engineering perspective
than Ryan, Montgomery or Hogg and Ledolter.
However, the differences in statistical coverage
between this and the other three basic texts are
slight, although the tone sometimes varies.

None of these books requires prior exposure to statis-
tics, but all assume a level of mathematical sophistica-
tion comparable to that provided by a two-semester
calculus sequence. Hogg and Ledolter are somewhat
more advanced than the rest (for example, they discuss
expected mean squares in ANOVA tables), but it is
nearly pointless to differentiate the others.

Each of the four books delivers the usual first-course
coverage of topics in probability models, estimation
and hypothesis testing, although DeVor, Chang and
Sutherland tend to be relatively more cursory. The
major surprise is that Montgomery and DeVor, Chang
and Sutherland do not include linear regression, which
seems a very unfortunate omission. Ryan and Hogg -
and Ledolter cover multiple linear regression and pre-
diction intervals. Only Hogg and Ledolter treat Bayes’
theorem (and this was absent in their first edition).
Tolerance intervals as estimated from a sample are not
usually treated in an introductory statistics course,
but they are covered by Hogg and Ledolter; the other
authors treat tolerance from an engineering perspec-
tive, in the context of design specifications. DeVor,
Chang and Sutherland do not mention some of the less
familiar probability models, such as the hypergeomet-
ric or exponential.

Regarding the specialty topics, each book offers ex-
tensive treatment of various flavors of control charts

_(cf. this reviewer’s comments in subsection 3.2). Also,

each has an initial chapter or two propounding the
philosophy of quality control, and each devotes serious
attention to experimental design up through fractional
factorials. All but Ryan give fairly detailed treatment
of response surface analysis, and all but Hogg and
Ledolter offer some explicit treatment of Taguchi’s
ideas and process capability indices. Other divergences
in coverage are that Ryan devotes considerable space
to multivariate control charts, CUSUM charts, the
analysis of means and evolutionary operation, whereas
Montgomery emphasizes acceptance sampling and a
managerial perspective. DeVor, Chang and Sutherland
put emphasis on case studies with an engineering twist,
while Hogg and Ledolter tend to provide usefully
greater mathematical depth.

Regarding computational issues, Hogg and Ledolter
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and DeVor, Chang and Sutherland both include exer-
cises that push the students to use a statistical pack-
age. Hogg and Ledolter do not specify a particular
package, but their problems are so data intensive that
any instructor who uses them should plan to provide
software support. Upon request, DeVor, Chang and
Sutherland provide free software tailored for their book
to instructors who order their text. Montgomery does
not emphasize software as a teaching tool, but points
the reader to pertinent software reviews in the Journal
of Quality Technology for each of the major topics he
considers. Ryan’s text can be covered without resort to
any tool more sophisticated than a typical engineering
student’s scientific calculator.

In terms of efficient prose, Ryan covers all of the
topics in the fewest number of pages, with Hogg and
Ledolter a very concise second. The level of coverage
is comparable for all four books, and entirely satisfac-
tory for the target undergraduate (or junior graduate)
audience.

All of the books have good exercise sets. Montgom-
ery’s problems tend to be more numerous and more
deliberately couched in terms of real or hypothetical
industrial .applications than are Ryan’s, which often
have a philosophical feel. Hogg and Ledolter have both
group project problems and exercises for individuals.
The former are quite good, but the latter seem to have
a somewhat narrow band of difficulty and often failed
to fire my imagination. DeVor, Chang and Sutherland
provide the largest number and greatest diversity of
exercises, ranging from routine drill to the use of com-
puter programs to open-ended questions about case
studies. Depending on the application, different styles
of exercises will be preferrable.

Ryan makes minimal use of real data, which is a
refreshing departure from conventional thinking. Col-
leagues in engineering have assured me that their stu-
dents have sufficient imagination that one need not
provide real data to illustrate every variation of the
factorial design. Moreover, one must search through
heaps of industrial examples to find something unclut-
tered enough to use in a textbook —that kind of selec-
tion bias is likely to undermine the intended exposure
"to reality by making the world seem simpler than it
is. However, at the other extreme of pedagogic prac-
tice, Hogg and Ledolter and DeVor, Chang and Suther-
land make regular use of real examples, and it appears
to work well. A particular strength of both is the
inclusion of case studies. Montgomery takes the middle
path. This reviewer is inclined to favor Ryan’s mini-
malism, but imagines that most readers/teachers/stu-
dents subscribe to the fashionable preference for case
studies and real data.

Regarding the presentational styles of the authors,
they are all admirably effective. My annoyance with
Ryan’s misuse of the adverb “hopefully” was offset by

the strong sense of narrative trajectory that underlay
his writing—this feature is particularly valuable for
classroom use. Montgomery’s style was direct and very
clear. His prose was terse and declarative, giving the
feel of a well-written handbook. Hogg and Ledolter’s
voice was somewhat closer to a conventional text in
introductory statistics —it moved with purposeful ped-
agogy through each chapter’s agenda, avoiding both
dullness and digression. In contrast, DeVor, Chang
and Sutherland were somewhat more vague —their sen-
tences tended to be longer and hedged about with
softening subordinate clauses and parenthetical com-
mentary [this is an almost inescapable result of multi-
ple authorship (except with unfortunately discursive
writers)].

In the spirit of Consumer Reports, one of the main-
springs of quality consciousness in this country and a
pioneer in the presentation of complex multivariate
information, I summarize the performances of the four
books in Figure 4. A fully darkened circle indicates
excellence; an empty circle shows serious inadequacy.

Broadly, my sense is that Hogg and Ledolter’s book
is the most desirable text for a one-semester first course
in quality control statistics for engineers. Ryan’s book
is a close second, largely because I am undaunted by
his parsimonious use of real problems. Montgomery
has written a valuable reference book for practitioners,
and it could be used successfully in the classroom or
industrial short course, especially if the emphasis were
on acceptance sampling. DeVor, Chang and Suther-
land’s text probably requires a two-semester sequence
and would probably be preferred by teachers who are
themselves engineers rather than statisticians.

6. TWO CULTURES

Industrial statistics has an entirely different agenda
than academic statistics. It concentrates upon eco-
nomic results and ad hoc applications and often (but
not as often as it ought) seeks simple solutions that
are expedient if suboptimal. In contrast, academic stat-
isticians need to prove new theorems, of almost any
kind, and it often seems that the least practical and
most impenetrable receive the best peer response. To
academics, the economic progress of an industry or a
nation is a distant consideration, except possibly when
one is rationalizing a proposal for funding.

The rift goes deeper. Academic statisticians are
drawn from all nations, spend sabbaticals in all nations
and obtain students from all nations. The occasionally
jingoistic tone of corporate rhetoric grates on their
cosmopolitan vision. It sounds narrow and selfish, es-
pecially as it comes from managers whose own stupid-
ity has squandered the vast capital and technological
advantage they are now scrambling to recover. (Of
course, this representation is extreme-—most major
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Fic. 4. A comparative summary of the four introductory books
under review, along axes that may be relevant to potential users.

industries are multinational, and chief executives are
hiring coaches to teach them the rudiments of courtesy
abroad.)

The greatest gulf of all is one of respect. TQM strikes
many of us as something between a foolish fad and
much ado about the trivial. Worse, some academic
statisticians regard most industrial statisticians as the
ones who were not good enough to succeed at a univer-
sity. Very often, in the biannual Black Friday faculty
meetings at which all the graduate students are re-
viewed, comments surface to the effect that a barely
adequate thesis might prepare someone for a career
in industry, whereas the advisors of strong students
should be sure to pace their students’ completions to
the academic calender so that candidates can interview
at universities in January and February.

The same snobbish point gets made in other ways.
The number of industrial statisticians who give invited

talks at American Statistical Association meetings is
dramatically underproportionate to their membership.
Few internationally famous statisticians seek sabbati-
cals at industry, and many statisticians feel that ap-
plied research is generally not as prestigious as work
in pure theory. And it does not soothe feelings that
industrial statisticians typically command better wages
than the professors who labored to teach them their
trade.

Inescapably, this academic arrogance has sparked a
reaction. Applied statisticians are often openly skepti-
cal of academics’ practicality, and have been assured
that some practitioners view us as pretentious para-
sites, spawning uselessly complex theory while they
deliver the goods. Industry drives them up a different
ladder of advancement and forces their attention in
other directions, and they discover that the statistics
they learned has only a small value in rarified manage-
ment echelons. Statistical skill carries one a few steps
on that ladder, but then personality, experience, drive
and political skills become significantly more im-
portant. (This is also true in universities, but to a much
lesser degree.)

In large part, the industrial statisticians are correct.
We have not shaped our mutual field according to their
interests, and our greatest failure is that we have not
provided (certainly at the Master’s level!) the kind of
education they need most. Our academic programs are
chiefly designed to replicate university professors; even
the relatively applied programs take their major themes
from research institutions. It would be exciting to try
to develop a program that aims at applied statisti-
cians — this would entail endless heresies, such as purg-
ing all measure theory, admissibility, Hilbert spaces,
sufficiency, differential geometry and so forth. In their
place would doubtless appear the bootstrap, extensive
computing, a deep study of exploratory data analysis
and much more emphasis upon consulting experiences.
I realize that such a complete restructuring of the
curriculum is unlikely to ever occur, but I urge depart-
ments to consider the possibilities.

Also, we have set a research agenda that often ig-
nores messy real problems or abstracts such problems
to the point of sterility. I cannot believe that, aside
from a few exceptions noted before, the contribution
of academic researchers to control chart theory has
served the interests of the industries that generated
the questions. Similarly, the time series models that
are most studied do not model the kinds of control
loops that commonly operate to create autocorrelation
in industrial processes. I would like to hope that some
of this is being remedied by the emerging attention
upon robust parameter design, software reliability and
partial least squares, but it is noteworthy that in all
of these cases, much of the impetus and effort arose
outside conventional academic circles.
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There are too many university researchers who have
worn a rut in the theoretical landscape by repeated
publications in a narrow domain. Even by the broader
standards of intrinsic mathematical interest, this re-
lentless elaboration of old ideas is hardly honest work.
The best researchers know this well; David Aldous
(1989) ends his book with the following postscript:

In this book I have tried to explain the heuristics
and direct the reader to what has been proved, in
various special cases. I shall be well-satisfied if
applied researchers are convinced to add the heu-
ristic as one more little tool in their large toolkit.
For theoreticians, I have already made some re-
marks on the relationship between heuristics and
theory: let me end with one more. A mathematical
idea develops best when it faces hard concrete
problems that are not in the “domain of attraction”
of existing proof techniques. An area develops
worst along the “lines of least resistance” in which
existing results are slightly generalized or ab-
stracted. I hope this book will discourage theoreti-
cians from the pursuit of minor variations of the
known and the formalization of the heuristically
obvious, and encourage instead the pursuit of the
unknown and the unobvious.

Our ivory tower windows survey a broader demesne
than is allowed to most corporate statisticians, but we
need to open the windows and let in the wind.

These divisions in our profession cannot be repaired
soon, if at all. It will help if universities design curricu-
lums that take better account of the needs of the
majority of our Ph.D. and Master’s students. It is
desirable for academic researchers to pursue research
avenues that link to industrial problems, but there is
enormous inertia which will slow movement in that
direction. It is probably past time for university re-
searchers to drop stale pseudo-applied activities (such
as control charts and oddly balanced designs) that only
win us a reputation for the recondite. And it would be
very kind if industry statisticians were to understand
that professors have different purposes and that statis-
,tical practice is an unsafe road for. academic advance-
ment.
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