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separating boundaries between classes gives error
rates on optical character recognition lower than
neural nets (Boser, Guyon and Vapnik, 1992).
Often the analogies and language used in the NN
community obscure the data analytic reality. There
is a lack of reflective introspection into how their

methods work, and under what data circumstances.
But these lapses are more than offset by the com-
plexity, interest, size and importance of the prob-
lems they are tackling; by the sheer creativity and
excitement in their research; and by their openness
to anything that works.

Comment: Neural Networks and Cognitive
Science: Motivations and Applications

James L. McClelland

Artificial neural networks have come and gone
and come again—and there are several good rea-
sons to think that this time they will be around for
quite a while. Cheng and Titterington have done an
excellent job describing that nature of neural net-
work models and their relations to statistical meth-
ods, and they have overviewed several applications.
They have also suggested why neuroscientists inter-
ested in modeling the human brain are interested in
such models. In this note, I will point out some ad-
ditional motivations for the investigation of neural
networks. These are motivations arising from the
effort to capture key aspects of human cognition and
learning that have thus far eluded cognitive science.

A central goal of congnitive science is to under-
stand the full range of human cognitive function.
During the 1960s and 1970s, when symbolic ap-
proaches to human cognition dominated the field,
great progress was made in characterizing men-
tal representations and in capturing the sequen-
tial thought processes needed, for example, to solve
arithmetic problems, to carry out deductive reason-
‘ing tasks, even to prove theorems of logic from given
axioms. Indeed, by 1980 a general computer pro-
gram for solving integro-differential equations had
been written. These accomplishments are certainly
very valuable, yet they still leave many scholars of
cognition with the very strong feeling that some-
thing very important is missing. Efforts in machine
recognition of spoken and visual input, machine un-
derstanding of language, machine comprehension
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and analysis of text, not to mention machine im-
plementation of creative or insightful thought, all
continue to fall short. A huge gap remains between
the capabilities of human and machine intelligence.
The interest in the use of neural networks among
cognitive scientists springs largely from the hope
that they will help us overcome these limitations.
Although it is true that there is much to be done
before this hope can be fully realized, there are
nevertheless good reasons for thinking that artifi-
cial neural networks, or at least computationally
explicit models that capture key properties of such
networks, will play an important role in the effort
to capture some of the aspects of human cognitive
function that have eluded symbolic approaches. In
what follows I mention two reasons for this view.
The first reason arises in the context of a broad
class of topics that can be grouped under the rubric
of “interpretation.” A problem of interpretation
arise whenever an input is presented to the senses,

- be it a printed digit, a footprint, a scientific argu-

ment or a work of creative expression such as a
poem or a painting. The problem is to determine
what the thing is or what it is intended to signify.
The problem is difficult because the direct data is
generally insufficient so that the ability to deter-
mine the correct interpretation depends on context.

Let us consider two examples. The first, shown in
Figure 1, is from Massaro (1975) and illustrates the
role of context in letter recognition. The same input
gives rise to two very different interpretations de-
pending on the context in which it occurs. The sec-
ond comes from very simple stories of a kind studied
by Rumelhart (1977):

Margie was playing in front of her house
when she heard the bell on the ice
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FIG. 1. The same visual configuration can be interpreted as two different letters, depending on the context. Reprinted with permission

from Massaro (1975) p. 382.

cream truck. She remembered her birth-
day money and ran inside the house.

In this case, human readers have no trouble figuring
out that Margie’s birthday money is probably in the
house and that she probably ran in to get it so that
she could buy herself ice cream. Obviously, this in-
terpretation, engendered by the second sentence of
the above story, would not arise if the context were
changed:

Margie lived in a dangerous neighborhood
with lots of drug addicts always on the
lookout for innocent passers-by to rob. She
was coming home from a birthday visit to
her grandmother when she saw a couple
of the addicts loitering at the corner near
her house. She remembered her birthday
money and ran inside the house.

What the Massaro and Rumelhart examples have in
common is the fact that the direct information—the
shape of the character, the words in a sentence—is
often not enough by itself to get the correct inter-
pretation. But context is not in general enough by
itself—indeed the context often provides only very
general and indirect constraints. What one is left
with is the sense that it is the aggregated influence
of the sum total of the cues rather than any one
operating individually that is of crucial importance.
Indeed, in real situations it is often the case that
ambiguity remains once all the factors have been
taken into account. Many psychologists have long
argued that it is reasonable to view all acts of inter-
pretation as closely related to Bayesian inference, in
that they involve the weighted combination of var-
ious direct and contextual cues together with prior
biases. Signal detection theory (Green and Swets,
1966), based on a Bayesian analysis of decision mak-
ing under uncertainty, is a centerpiece of this line
of thinking. '

As Cheng and Titterington point out, neural net-
works provide a natural domain for capturing per-

ception and interpretation as probability optimiza-
tion problems in which direct and contextual in-
formation is combined to reach the most likely in-
terpretation given the available input. The use of
graded (real-valued) connection weights allows the
appropriate weighting of different sources of evi-
dence. The process of settling to a stable attrac-
tor state captures nicely the multifaceted nature of
most interpretation problems in which the interpre-
tation of one part of an input both influences and
is influenced by the interpretation of every other
part. Human subjects often behave in ways that
are highly consistent with optimal statistical meth-
ods (Massaro, 1989) and, indeed, connectionist mod-
els that share these properties have been highly
successful in accounting for psychological data from
perceptual decision tasks (McClelland and Rumel-
hart, 1981; McClelland and Elman, 1986; McClel-
land, 1991). A wide range of authors have argued
for the use of similar models in sentence comprehen-
sion, story understanding, visual scene interpreta-
tion and many other related tasks based on the gen-
eral fact that correct interpretation is not in general
possible. The only way to maximize the probabil-
ity of making the correct decision is to exploit all

* sources of information.

A second reason why neural networks are rele-
vant to cognitive science arises in the area of learn-
ing. Psychological research on learning has gone
through many different phases, including a phase
lasting from around 1920 to nearly 1960 where it
was dominated by stimulus-response theories (in
which probabilistic formulations have proven very
useful) and another that arose in the 1950s and per-
sisted into the 1960s in which learning was concep-
tualized in terms of the formulation and testing of
deterministic rules, within the symbolic tradition.
This approach largely gave way in the 1970s and
1980s to a new approach based on the probabilis-
tic use of accumulated knowledge from examples.
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One of the most successful models in this tradition
is a model of category learning due to Medin and
Schaffer (1978). These authors argued that cate-
gory learning occurs through the exhaustive stor-
age of all examples in memory. When a test item
is presented for categorization, it is compared to
all of the examples in memory and each votes for
its own category in proportion to its similarity to
the test item. The probability of choosing a par-
ticular category is equal to the sum of the votes of
all of the known exemplars in the category divided
by the sum of all of the votes. The key point is
that the responses subjects make are probabilistic,
not deterministic; and they reflect the influence of
specific examples rather than general rules. Neu-
ral network models are highly relevant to capturing
this kind of learning since each experience leaves its
own residue in the form of changes to the connec-
tion weights among the units in the network. In-
deed, the Medin and Schaffer model can easily be
formulated as a neural network model, and a re-
cent, highly successful connectionist model of cate-
gory learning due to Kruschke (1992) takes just this
approach. Kruschke’s model makes use of individ-
ual units to represent each exemplar and extends
the Medin and Schaffer model by using an error cor-
recting learning rule to modify the strengths of the
contributions each exemplar makes to the activation
of each of the possible categorization responses.

A related difficulty for deterministic rule systems
arises in various domains of language. In general,
language production and interpretation can both be
thought of as mapping problems in which a message
in one form of representation must be translated
into another form of representation. As two exam-
ples, the problem of producing a verb to describe a
state or action one wishes to convey, and the prob-
lem of producing a spoken sound that corresponds
to a written word can both be thought of as mapping
problems. In general, in natural languages such
problems often involve what might be called quasi-
regular—or even better probabilistic—structure. In
‘mapping from spelling to sound, for example, there
are important regularities; but at the same time
there are many exceptions as well. Often, the ex-
ceptions are not simply isolated individual cases
but are grouped together in clusters; for example,
in English spelling there are many words that vi-
olate the rule that EA corresponds to the long E
sound as in HEAT, most of these words—THREAD,
TREAD, BREAD, etc.,—end in EAD but not all do
(cf. DEAF) and not all of the words that end in EAD
are exceptions to the standard EA correspondence
(cf. BEAD; and the homographs READ and LEAD).
Thus, the relationship between EA and its pronunci-
ation is statistical. Similar statistical relations exist

between the present and past tense forms of many
of the English verbs; thus, many monosyllabic verbs
with the short ‘ih’ vowel followed by a velar conso-
nant (dig, swing) form the past tense by changing
‘ih’ to ‘uh’ (did-dug, swing-swung). Again, the reg-
ularity is statistical rather than deterministic (cf.
sing-sang, and ring, which can be rang or ringed
depending on the meaning intended).

One approach to learning mappings of this sort is
to propose that they are handled by dual learning
systems: one that learns the general rules and an-
other that contains a list of the exceptions (Pinker
and Prince, 1988; Coltheart et al., 1994). A differ-
ent approach, first presented in the Rumelhart and
McClelland (1986) model of past tense formation
and the Sejnowski and Rosenberg (1987) NETtalk
model for translation from spelling to sound, as-
sumes that the entire quasi-regular system can be
acquired in a single multilayer network. These sys-
tems share with the Medin and Schaffer model of
category learning the property that individual items
(in this case words)—especially those that occur fre-
quently in the learner’s experience—influence the
response the network makes to other similar items.
At the same time, they show how these effects
of individual items can cumulate to produce out-
puts for novel items that conform to regularities
that many examples share. There has been con-
siderable debate about the adequacy of these one-
process systems. The first models introduced did
have some inadequacies, but recent models in both
domains (MacWhinney and Leinbach, 1991; Plaut
and McClelland, 1993) address the main concerns
and demonstrate that a single system can be ade-
quate to capture both the regularities and the ex-
ceptions. While it remains debatable whether the
deeper aspects of language can be captured by neu-
ral network models, it seems clear, at least to this
writer, that the problem of translation from streams

 of words to an appropriate semantic interpretation

is quasi-regular (see McClelland, St. John and Tara-
ban, 1989). Thus, it seems very likely that many of
the statistical properties of neural network models
will be evident in any successful model of language
use and language acquisition.

To summarize, two very general and central tasks
for cognitive systems—the task of interpretation
and the task of learning—appear in essence to be
statistical in nature. Artificial neural networks are
attractive mechanisms for modeling such tasks be-
cause, as Cheng and Titterington make clear, neu-
ral networks are essentially devices that imple-
ment statistical processes. Given this, the current
burgeoning of interactions between mathematical
statistics and neural network research is a welcome
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development for cognitive science. Such interactions
will lead to a deeper understanding of the inter-
pretation and learning tasks, and may ultimately
help us to address other cognitive tasks, perhaps
including creative thinking and scientific discovery,
as well.

Comment
B. D. Ripley

Bing Cheng and Mike Titterington have reviewed
many of the areas of neural networks; their paper
overlaps the flood of books on the subject. I also
recommend Weiss and Kulikowski (1991) (Segre
and Gordon, 1993, provide an informative review)
and Gallant (1993) for their wider perspective and
Wasserman (1993) for coverage of recent topics. My
own review article, Ripley (1993a), covers this and
many of the cognate areas as the authors comment.
The five volumes of the NIPS proceedings (Advances
in Neural Information Processing Systems, 1989
1993, various editors) provide a very wide-ranging
overview of highly-selected papers. Much of the
latest work is available electronically from the ftp
archive at archive.cis.ohio-state.edu in directory
pub/neuroprose.

At the time I received this paper to discuss, I had
recently attended a NATO Advanced Study Institute
on From Statistics to Neural Networks (whose pro-
ceedings will appeat as Cherkassky, Friedman and
Wechsler, 1994), which despite the direction of the
title revealed that current thoughts in neural net-
works are not to subsume statistics in neural net-
works but vice versa. Many researchers in neural
networks are becoming aware of the statistical is-

sues in what they do and of relevant work by statis- .

ticians which encourages fruitful discussions.

Cheng and Titterington concentrate on similari-
" ties between statistical and neural network meth-
ods. I feel the differences are more revealing as they
indicate room for improvement on at least one side.
However, I believe the most important issues to be
those of practice which are almost ignored in the
paper. Before I turn to those, there are two points I
wish to attempt to clarify.
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1. PROJECTION-PURSUIT REGRESSION

The connection between multilayer perceptrons
(MLPs) and projection-pursuit regression (PPR) is
much deeper than the authors appear to sug-
gest. Other empirical comparisons (apart from my
own cited in the paper) are given by Hwang et
al. (1992a,b, 1993), and Barron and Barron (1988)
viewed PPR from a network viewpoint. In the au-
thors’ notation PPR is

yi=woi + Y 1uTvp),
%

where I have allowed for multiple outputs. An MLP
with linear output units is the special case of logis-
tic ¢p; of course both PPRs and MLPs can be given
nonlinear output units. Since we can approximate
any continuous v of compact support uniformly by
a step function and can approximate (nonuniformly)
a step function by a logistic, we can approximate 1,
uniformly by a sum of logistics. This fact plus the
(elementary) approximation result for PPR of Dia-
conis and Shahshahani (1984) gives the approxima-
tion results of Cybenko and others. There is a ver-
sion of Barron’s Ly result for PPR by Zhao and Atke-
son (1992). (This point of view, approximating 1
by a simple neural net of one input, corresponds to
organized weight-sharing between input-to-hidden-
unit weights for groups of units, a sensible proce-
dure in its own right.)

These results suggest that the approximation ca-
pabilities of MLPs and PPR are very similar (sug-
gesting an affirmative partial answer to the ques-
tion in Section 7). However, PPR will have an ad-
vantage when there are many inputs, only a few
combinations of which are relevant, in making bet-
ter use of each projection and hence fewer projec-
tions and parameters. My suspicion is that this is
commonly the case.



