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1. INTRODUCTION

In 1893 Charles Dodgson presented a collection of
Pillow Problems as Part II of Curiosa Mathematica
(1893), written under the pen name Lewis Carroll.
One of the problems asked for the probability that
a triangle formed by choosing three points at ran-
dom on an infinite plane would have an obtuse angle.
Dodgson purports to solve this problem as follows.
Let AB denote the longest side of the triangle. Then
the third point, C, must lie in the lune-shaped inter-
section of the two discs of radius AB with centers at
A and B (see Figure 1). Furthermore, the triangle /2
has an obtuse angle if and only if the third point lies
inside the circle with diameter AB. This holds since
if C is on the circle, the largest angle will be a right
angle exactly. As a solution, Dodgson simply takes
the ratio of the area of the disc with diameter AB to
the area of the lune-shaped region and obtains

T /334

Clearly, the problem is not well-posed since the no-
tion of “at random on an infinite plane” is not de-
fined precisely. Nonetheless, there is a rather com-
pelling reason that Dodgson’s solution cannot be cor-
rect. The following argument was described to me
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of these two regions is
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by Frank Wattenberg (Wattenberg, 1973). Let AB
now denote the second-longest side. Then the third
point must lie in the symmetric difference of the two
discs of radius AB centered at A and B; that is, C
must lie in the complement of the lune relative to
the union of the discs (see Figure 1). Furthermore,
the triangle is obtuse if and only if C lies outside the
perpendiculars to AB through A and B; that is, the
heavily shaded region in Figure 1 indicates the tri-
angles with no obtuse angle. The ratio of the areas

Since both of these solutions seem equally plausible
(or equally implausible), something must be wrong.
The error clearly involves conditioning on a specific
side. Whatever meaning can be given to “at random

/8 on the plane,” there is no reason to expect that the

~ 0.64. third point has a uniform distribution conditional
on the other two points determining the longest (or
second-longest) side. The fact that the two solutions
above differ shows that the conditional distribution
cannot be uniform in both cases and suggests that
it is uniform in neither. Clearly, a well-formulated
problem can be produced by specifying some partic-

ular probabilistic mechanism for drawing a random
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triangle; for example, taking the vertices to have a
uniform distribution over some fixed compact set in
the plane. There are a number of papers giving such
solutions. Unfortunately, since the solution depends
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FiG. 1. Region for third point given side AB.

on the shape of the set (e.g., the probability of ob-
tuseness is nearly 1 for a thin rectangle), this ap-
proach cannot provide reasonably unique answers,
even by taking limits. Here we consider the question
of whether any reasonable or natural answer can be
provided for the original Pillow Problem.

2. SOLUTION TO THE PILLOW PROBLEM

Consider the following approach to choosing three
points at random on an infinite plane. First, in-
troduce coordinates: A = (X3,Y;), B = (X;3,Y2) and
C = (X3,Y3). Then the set of triangles can be iden-
tified with six-dimensional Euclidean space R®, and
the set of obtuse triangles T is a subset of R6. Now,
multiplying each coordinate by the same constant
produces a similar triangle. Thus, if a point u € RS
corresponds to an obtuse triangle, any point on the
ray through u from the origin is in Tp. Therefore, To
is a double cone, and hence it intersects each sphere
about the origin in R in a similar set. As a conse-
quence, P{To} is the same value for every distribu-
tion P that is spherically symmetric in R®. This holds
since, for any spherically symmetric probability dis-
tribution, the conditional distribution given the dis-
tance from the origin is uniform on the appropriate
sphere; thus the conditional probability of T on any
sphere is the same value (whatever the radius).

Next, it seems reasonable that one consequence of
taking points “at random in the plane” is that the in-
duced distribution in R® be spherically symmetric. A
general approach to justifying this statement will be
presented in the next section. If this is accepted, the
Pillow Problem can be solved by using any spheri-
cally symmetric distribution in RS. One such dis-
tribution, especially appealing to statisticians and
probabilists, is the unit multivariate normal distri-
bution in R%, having each of the six coordinates inde-
pendent and identically distribution as N(0, 1).

PROPOSITION 1. Suppose the six coordinates
{X;,Y;:i = 1,2,3} are independent and identically

distributed as N(0,1). Then P{To} = 3. Hence,
P{To} = % for every distribution that is spherically
symmetric in RS.

The proof will require the following four well-
known facts about normal sampling:

1. If U and V are independent N(0, 1), then %(U +
V) and (U - V) are independent N(0, 3).

2. If U and V areindependent N(0, 1), thenaU+bV
is N(0, a2 + b2).

3. If U and V are independent N(0,a2), then U? +
V2 has the same distribution as a2S, where S ~
x2 (a chi-square distribution with two degrees
of freedom).

4. IfR and S are independent 2 random variables,
then R/(R + S) is uniformly distributed on the
interval [0, 1].

PRrROOF. Since at most one angle of a triangle
can be obtuse and the distribution of coordinates is
invariant under permutation (of coordinates in RS),

P{AABC obtuse}
=P{/ABC > 90°r
LCAB > 90°0r/BCA > 90°}
=3P{/ABC > 90°}.

(1)

Now, £ ABC is obtuse if and only if the median from B
to the midpoint of AC is smaller than 3AC. This fol-
lows (as in Dodgson’s solution), since if these lengths
are equal, B will lie on a circle with diameter AC,
and Z/ABC would be a right angle. Calculating these
lengths in terms of coordinates,

L2(median) = (X; — (X, + X5))’

+(Yp - (Y1 + Y3))2,
L*(LAC) = (3% - X3)” + (3(¥1 - ¥3))".

Therefore,

P{/ABC > 90°}
= P{L(median) < L(} AC) }
= P{L?(median) < L*(} AC) |

(2) 1 2 1 2
= P{ (% - 101 +X3)" + (Y2 — §(¥1 + ¥2))

< (36 - X3)" + (30v1 - ¥o)"}

=P{U2+U; <Vi+V3}.
Now from fact 1, X; + X3 and X; — X3 are inde-
pendent, and similarly for Y; + Y3 and Y; — Y3. It

follows that Uy, Uy, V; and V; are independent. Fur-
thermore, from fact 2, U; and U, are N(0, 2), and V;
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and V, are N(O, %). Thus, from fact 3, we can define
R and S as independent X% random variables, and
equation (2) becomes

P{/ABC > 90°}
3 1 R 1
@) =P{§R5§S}=P{§5§}

R 1
=P{R—:§§z}-

However, from fact 4, R/(R + S) is uniform on [0, 1];
so the probability above is just %. Therefore, from
equation (1),

P{AABC obtuse} = 3. o

3. AN APPROACH TO DEFINING “AT RANDOM”

The solution given in the previous section suggests
a general approach to giving meaning to the phrase
“at random.” First it seems clear that some notion of
indistinguishability among objects is necessary for
one of the objects to be chosen at random. In par-
ticular, any such “random” mechanism should not
depend on how objects are labeled. There are sev-
eral mathematical ways to define concepts concern-
ing equivalence among a set of objects. One of the
most fruitful, especially in statistics, is the use of
transformation groups: a transformation group is a
set X, together with a group G of invertible trans-
formations from X to X. The transformation group,
(X, G) is said to be transitive or is called a homoge-
neous space if, for each pair of objects in X, there
is a transformation taking one object into the other.
Such mathematical structures are familiar in sta-
tistical decision theory; see Wijsman (1990) for a
rather thorough treatment. A homogeneous space
would seem to provide an ideal candidate for a set
of indistinguishable objects. If the group is locally
compact, there is an invariant (“Haar”) measure on
G, and this measure induces an invariant measure
on X [at least, under appropriate smoothness condi-
tions; see Wijsman (1990)]. The measure is unique
up to multiplication by a scalar. If X is compact,
then the measure is finite and may be taken to be
a probability measure. Otherwise, further develop-
ment is necessary.

Some simple examples should clarify this idea. If
X is finite, we may wish to take G to be the group of
all permutations on X. The invariant measure on §
is just counting measure, and this induces counting
measure on X. Normalizing this induced measure
makes each object equally likely; that is, it gives the
usual model for random sampling from a finite popu-
lation. Note that G is larger than X in this case. X is

also invariant under the smaller group of cyclic per-
mutations, and this smaller group would still induce
the same probability measure on X. This exemplifies
a general phenomenon: if § > G and (', X) is also a
homogeneous space, then the measures induced by G
and by § are generally the same (up to multiplication
by a scalar) under appropriate conditions.

As a second example, consider the unit circle un-
der the group of rotations. Clearly, this structure
generates the uniform distribution on the circle and
provides the usual model for a random spin of a spin-
ner. One often uses the uniform density on [0, 1]
as a model for choosing a point at random on the
unit interval. As noted in the next section, I be-
lieve this is much more problematic. The presence
of the endpoints (0 and 1) clearly complicates the is-
sue. Since the endpoints are distinguishable, it is not
clear why a uniform distribution represents random-
ness except by fiat. Consider the following thought
experiment: imagine asking people to choose a point
at random from a line segment and from a circle.
I would expect that even well-trained probabilists
would tend to avoid points too close to the ends of the
segment, but would be much more uniform on the
circle. It is of course always possible to impose the
uniform distribution as a model, but I claim that this
is not reasonable unless you are prepared to consider
the points invariant under something like rotation—
and then, both endpoints could not be present.

In the specific Pillow Problem here, the reader is
asked to choose three points at random in the plane.
Considering the group of translations on the plane
leads to Lebesgue measure on the plane. Equiva-
lently, letting the sample space be RS, the invariant
measure is Lebesgue measure. However, Lebesgue
measure is not finite, so an additional critical ingre-
dient is needed. Consider a general homogeneous
space, and suppose the induced measure is itself in-
variant under some other (arbitrary) group H. Sup-

-pose further that the events of interest are given

the same probability by any H-invariant probability
measure. Then, if there is an invariant probability
measure, it seems very natural to take the probabil-
ity under any such measure as the appropriate prob-
ability under sampling “at random.” In the case here,
Lebesgue measure is invariant under rotations (in
RS), and any spherically symmetric probability gives
the obtuse triangles the same probability— namely,
the solution given in Section 2.

There is an alternative approach to this construc-
tion that seems to appeal to researchers well-versed
in transformation groups. If the events of interest
are invariant under some group H’' (as the shape of
triangles is invariant under common scale changes),
it should be possible to define a “conditional” measure
given the sigma field generated by the orbits. Meth-
ods of “disintegration” (see Schwartz, 1976) will pro-
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vide such a measure on the space of orbits even when
the original measure is'not finite. The mathematics
is even easier using the structure of transformation
groups. General results are given in Wijsman (1990,
Chapter 7), and Ambartzumian (1990) presents spe-
cial cases from geometrical probability. If the space
of orbits is compact, this conditional measure will
be finite and can be taken to be a probability mea-
sure. Unfortunately, the resulting measure depends
strongly on the choice of the group J’. It may even
depend on the representation of the space of orbits,
although uniqueness does hold under certain condi-
tions (see Wijsman, 1990, Section 7.3).

Clearly, it is possible to imagine situations where
such ideas will not work. However, it does appear to
be very useful to think about randomness in terms
of invariance. If invariance and symmetry consid-
erations are applicable, then a natural solution may
be possible.

Of course, symmetry arguments have a long and
cherished tradition in probability theory. However,
as noted in the Section 4, naive application of symme-
try can often be extremely misleading. Zabell (1988)
provides an extensive history of the use (and misuse!)
of symmetry arguments in probability. Nonetheless,
the use of invariance ideas does seem to provide clar-
ification in the Pillow Problem and in many other ex-
amples. Jaynes (1973) applies ideas similar to those
above to obtain a solution of Bertrand’s paradox (con-
cerning random chords on a circle), and he argues in
favor of the general usefulness of invariance. Cer-
tainly, many statisticians find these ideas valuable:
statistical invariance is a well-developed area, and
statisticians often suggest the use of invariance to
simplify problems, to obtain optimal (minimax) pro-
cedures or to provide “informationless” priors [see
Lehmann (1983), Berger (1980), Zidek (1969) and
Portnoy (1971), among many others].

We conclude this section with a few more related
examples of the application of these invariance ideas.
First consider alternate ways of generating a “ran-
dom” triangle. Suppose a side and two angles are
taken “at random” (say, as angle-side-angle, to be
specific). Given that the values form a triangle (i.e.,
that the sum of the two angles is less than ), what
is the conditional probability that the triangle is ob-
tuse? Invariance ideas suggest the following: by ro-
tational invariance, each angle (; and 6;) should
be uniform on [0,27) and, by scale invariance, the
length of the side (a) should have measure da/a; that
is, the element of measure is d; dfs da/a on the set
[0,27)2 x R*. However, the value of a is irrelevant:
for any a, the desired conditional probability is the
ratio of the area of the set

™ ™ ™
{(01, (92): 91 > E 01'92 > E 01‘(91+92 < 5}

to that of the set {(6,62): 6; + 6, < 7}. Once again
the probability of an obtuse triangle is %. An inspec-
tion of these triangular regions shows this directly.

Now suppose that the three sides are drawn “at
random.” Again, conditioning on the event that
the three sides form a triangle, find the probabil-
ity that the triangle is obtuse. Here, using scale
invariance, the measure for the three sides {a,b,c}
is (da/a)(db/b)(dc/c) on the set (R*)?. Again using
rotational invariance of this measure on (R*)? and
some rather tedious computations yields the answer,
%. Here, there is an alternative method that avoids
new computation: consider transforming (a,b,c) to
(a, 91, (92) with

c2 —a? - b? b%2 —a?—c?
and cosfy =

cos by = 2ab

2ac
A straightforward Jacobian calculation gives

dadbdc =d01d02d—a,
abce a

which shows that the answers must coincide (since
the conditions for forming a triangle transform prop-
erly).

It is rather interesting that choosing two sides and
the included angle seems to give a different answer.
Here the natural measure is (da/a)(db/b)d6. How-
ever, there may be a problem here: 6 and 27 — 0 give
the same triangle. Thus, the domain of § should be
[0, 7], but this suggests that there may be an end-
point problem and perhaps indicates that this prob-
lem is somewhat less natural than the others. Ig-
noring this problem (and taking 6 uniform on [0, 7]),
we can proceed as above. By rotational invariance
of (a,b), we can take a = rcos7 and b = rsin7 with
7 uniform on [0,7/2). Letting A denote the vertex
opposite the side of length a, B denote the vertex op-

" posite the side of length 6 and C denote the third

vertex (opposite the angle 6), elementary trigonome-
try shows that

P{ACBA > 1} =P{b > 2 }
2 cos

=P{cos€ > :(,)ST}.

mr

The integral giving this probability can be calcu-
lated numerically to be approximately 0.1713, but
it does not seem possible to compute the integral
symbolically (at least not using Mathematica). The
probability that the triangle is obtuse is the prob-
ability that 6 exceeds /2 plus P{/CBA > =/2}
plus P{/CAB > =/2}, which gives approximately
0.5 +2(0.1713) = 0.8426..
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A referee suggested yet another approach. Any
three points in the plane must lie on some circle.
If one conditions on this circle, rotational invari-
ance suggests taking the three points uniformly dis-
tributed. Fix the first point (A) at angle zero, and
let B be the second point. Let S be the shorter arc
from A to B. That is, take S to be the arc [0, 6] with
6 < w. Then it is not hard to see that the triangle is
acute if and only if C lies in the arc S’ exactly opposite
S; that is, S’ is the arc [, 7 + 6]. So the probability
that the triangle is acute conditional on A and B is
just 6/(27). Since A may be fixed, the unconditional
probability is

P{acute} = l/ 2i do = i;

P{obtuse} = % .

None of these alternative approaches uses a mea-
sure in R®. Thus, the connection with spherical sym-
metry in R® is unclear, and the fact that the answer
43 arises so often seems to be fortuitous. It would be
extremely interesting to find a general principle un-
derlying all the P = 2 answers. Note also that none
of these approaches deals with choosing a random
element from the set of triangles. The sample space
is always strictly larger than the set of triangles. In
fact, it is rather difficult (or perhaps impossible) to
find a natural group operating transitively on the set
of triangles (however this set is defined). As noted in
the next section, this makes the notion of “random

triangle” somewhat problematic.

4. DISCUSSION

There are two common statements about choosing
objects at random as discussed here that I believe are
fallacious:

1. “At random” means using the uniform distribu-
tion; that is, taking a constant density over some
set.

2. Since there is no unambiguous answer, all an-
swers are equally good (or bad).

The fallacy in the first statement is perhaps clear-
est is some “classical” conundra. Those early gam-
blers who thought that there would be a 1 probability
of getting one head and one tail in tossing two coins
were making this error. See also Zabell (1988). An-
other recent example is the “Monty Hall” problem: a
contestant is asked to choose one of three doors, be-
hind exactly one of which is the prize. After the con-
testant chooses one door, the host shows one of the
other two doors that does not have the prize. The con-
testant is then permitted to switch doors. The naive

(and most common!) response is to retain the origi-
nal choice, arguing that the two remaining unknown
doors are equally likely. In fact, if the initial chance
was %, the chance of getting the prize by switching
is % These examples indicate the care with which
symmetry arguments must be used—if the objects
are not appropriately indistinguishable, a uniform
distribution may be wrong.

Assumptions of uniformity are especially problem-
atic in continuous probability problems like sampling
from a line segment or sampling triangles. Care is
clearly required whenever there are endpoint effects
or other departures from symmetry. Here, symmetry
arguments based on transformation groups should
be especially valuable for suggesting when depar-
tures are present and when uniform assumptions
may be unnatural.

The second statement is clearly fallacious as pre-
sented. It is often made more subtle by leaving the
first clause implicit, but still represents the intellec-
tual laziness of refusing to analyze a problem because
its formulation is flawed in some manner. This state-
ment is bandied about in casual argumentation all
the time by persons, including myself, who should
know better.

The Pillow Problem offers a good example of this
fallacy. The issue of choosing a “random triangle”
is indeed problematic. I believe the difficulty is ex-
plained in large measure by the fact that there seems
to be no natural group of transitive transformations
acting on the set of triangles. However, the pillow
problem as asked in terms of random points in the
plane does have a reasonable answer. I do not think
it is accidental or perverse that most people with
whom I have discussed this problem accept the ar-
gument using rotational invariance in RS as more
natural than other solutions. In fact, there are in-
formal ways of thinking about choosing a point at
random in the plane. For example, one could throw

. darts at a large board or drop pebbles on a large floor

from some height. In either case, if the target or
floor were large enough so that edge effects could be
ignored, one would expect the points in R® to satisfy
rotational symmetry (at least approximately), and
thus to explain why the argument does not seem so
unreasonable. In any event, application of notions of
symmetry seems to make some contribution to clar-
ifying where the problems really lie. In fact, I would
suggest that the value and enjoyment of mathemat-
ics is greatest when it is used to provide imperfect
and incomplete solutions to ill-formulated problems.
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