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DNA Fingerprinting: A Review of the

Controversy
Kathryn Roeder

Abstract.  Forensic scientists have used genetic material (DNA) as ev-
idence in criminal cases such as rape and murder since the middle of
the last decade. The forensic scientist’s interpretation of the evidence,
however, has been subject to some criticism, especially when it involves
statistical issues (including relevant areas of population genetics in the
realm of statistics). These issues include the appropriate method of sum-
marizing data subject to measurement error, independence of events in a
DNA pattern or profile; characterization of heterogeneity of populations;
appropriate sampling methods to develop reference databases; and proba-
bilistic evaluation of evidence under uncertainty of appropriate reference
database. I review these issues, with the goal of making them accessible to
the statistical community. My thesis in this article is that, for most cases,
the tremendous genetic variability among individuals obviates concern
arising from minor violations of modeling assumptions.
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1. INTRODUCTION

DNA fingerprinting or DNA profiling are terms
used to describe molecular techniques that have been
employed by forensic scientists to draw inferences
from bodily fluids and other materials found at crime
scenes. The culpability of a suspect is based, in part,
on the similarity of his DNA profile to that obtained
at the scene of the crime. Berry (1991) introduced
some of the statistical aspects of this topic to readers
of Statistical Science. In his article he presented a
new method for assessing the weight of the evidence
and compared this method to those currently used in
the courts. He also alluded to the controversy sur-
rounding the subject at that time. In this article the
history of the controversy will be reviewed, with em-
phasis on the confounding features of the data and
the pertinent statistical issues.

One of the earliest uses of this technique occurred
during 1987 in Narborough, England (Shapiro,
1991). A seventeen-year-old boy was accused of the
rape and murder of two girls, one in 1983 and the
other in 1987. Circumstantial evidence and his own
previous history indicated that he could have been
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the murderer. During his confession he requested a
blood test. By coincidence, the laboratory of noted
molecular biologist Alec Jeffreys was located within
6 miles of the village. Using molecular methods pio-
neered by Jeffreys, Wilson and Thein (19854, b), the
suspect’s DNA was compared to the sperm samples
found on the victims. It was concluded that both girls
were raped by the same individual, but the boy was
not the perpetrator.

Such DNA profiles can be obtained from any ma-
terial that contains nucleated cells: blood, semen,
skin, hair roots and so on. A DNA profile consists
of a set of measurements of discrete random vari-
ables, measured with error. The random variables
occur in pairs, one inherited from each parent. Typi-
cally three to five different pairs of random variables
are measured. Forensic scientists declare a match if
the profiles from two samples are considered to be
sufficiently similar. Two samples from the same in-
dividual differ only due to measurement error, while
samples from different individuals rarely match.

If the samples from the suspect and the crime
scene (evidentiary sample) do not meet the match
criterion, then the case does not go to trial unless
the nonmatch is immaterial in light of other evi-
dence. Although there is a possibility of false ex-
clusions, this has not been the focus of current de-
bate. The controversy arises when the samples do
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match and some measure of the weight of this ev-
idence is presented to the jury. Typically they are
presented with an estimate of the probability of ob-
taining a matching profile from a randomly selected
individual from some appropriately selected popu-
lation, called the reference population. This pro-
file probability is usually obtained by multiplying
the estimated matching probability for each com-
ponent of the profile—that is, by assuming inde-
pendence of the observations composing the pro-
file. The estimates of the probability of matching
for each component of the profile are based on the
distribution of profiles of individuals that have been
collected by forensic testing laboratories. Samples
are available for each of the major ethnic groups
(races).

The first flames of the controversy were ignited
by the claim that there were likely to be gross vio-
lations of the assumption of independence (Lander,
1989; Cohen, 1990). Subsequent studies of the data
by numerous authors refuted these initial claims
(Devlin, Risch and Roeder, 1990, 1991a; Chakraborty
and Kidd, 1991; Chakraborty and Jin, 1992; Weir,
1992a, b), yet the controversy did not completely sub-
side.

Another key point of contention concerned the ap-
propriate choice of the reference population (Weir
and Evett, 1992; Lewontin, 1993), as well as the
adequacy of the samples of the reference popula-
tions. These databases do not constitute strati-
fied random samples of the populations of interest,
but rather are convenience samples (Geisser, 1992).
It has been argued that individuals tend to marry
within their own region, religion and ethnic group
and consequently the general population consists
of subpopulations of individuals with radically dif-
ferent profile probabilities. The argument leads to
the conclusion that some apparently rare profiles
might be common in the context of the proper sub-
population (Lewontin and Hartl, 1991). This ar-
gument seems incompatible, as many authors have
noted, with the observation that profile probabili-
ties do not differ substantially across major ethnic
groups (Evett, 1992a; Weir, 1992a, b) and differ even
less across subpopulations within an ethnic group
(Devlin and Risch 1992b; Devlin, Risch and Roeder,
1994).

A study sponsored by the National Research Coun-
cil (NRC, 1992) to examine these issues, and pre-
sumably to quell the controversy, has instead fanned
the flames, drawing criticism from those who gen-
erally support the forensic scientists’ interpretation
of DNA evidence: yet the NRC report endorsed the
forensic use of DNA profiling. Indeed a flurry of
articles have appeared critiquing the NRC report
(Budowle and Monson, 1992; Cohen, 1992; Weir,
1992¢, 1993; Balazs, 1993; Devlin, Risch and Roeder,

1993a; Evett, Scranage and Pinchin, 1993; Morton,
Collins and Balazs, 1993).

Although many of the arguments put forth by the
critics of current methods of evaluating DNA evi-
dence are theoretically correct, my conclusions are
that the data do not support their claims. The con-
cern about both independence of the components of
the profile and the choice of reference population are
based on the assumption of extreme population het-
erogeneity. Such extreme heterogeneity could only
occur if individuals within a population (say, Cau-
casians) tend to marry other individuals from the
same subpopulation (say, Irish, Italian, German,
etc.) and these subpopulations have very different
profile probabilities; population geneticists would de-
scribe the situation as extreme population substruc-
ture. There is little doubt that some population het-
erogeneity exists, although it is not extreme for the
major ethnic groups constituting the U.S. popula-
tion. Moreover, because there is such a tremendous
amount of variability among DNA profiles within a
subpopulation, this heterogeneity is of little practi-
cal import in most cases. Claims to the contrary, sup-
ported by apparent deviations of model assumptions,
have been based on incorrect analyses of the data,
and hypothetical conjectures of gross violations have
not been supported by empirical evidence.

In Section 2 the data are described, and a sim-
ple probability model for DNA profiles and the as-
sociated measurement errors is presented. From
the probability model, methods for summarizing the
weight of the evidence are first developed in Section
2 and expanded in Section 6. Due to measurement
error, a profile consists of continuous measurements
of discrete characters. A discrete probability model
will be the focus of this article because the meth-
ods currently in use discretize the data. Methods
for summarizing the data without discretizing it are
discussed in Section 6.

In Section 3 the genetic model (heterogeneity
among populations) that is most commonly assumed
to be the basis for violations of independence is pre-
sented, and tests of independence are reviewed. Het-
erogeneity among populations is also the reason for
concern about the choice of reference population and
the quality of the existing nonrandom samples. The
appropriate reference population to evaluate the ev-
idence for a given crime is discussed in Section 4.
Statistical methods that allow for various levels of
relatedness between the suspect and donor of the
evidentiary sample are also presented in Section 4.
This discussion covers corrections that account for
population heterogeneity. The adequacy of standard
reference populations is discussed in Section 5. In
Section 7, issues surrounding some open questions
are outlined. Finally, in Section 8, I contrast my con-
clusions with those drawn by the NRC panel.
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2. DNA PROFILES: THE DATA AND THE
EVIDENCE

A VNTR (variable number of tandem repeats) lo-
cus, the genetic marker presently favored by foren-
sic scientists, is a specific location of the genome
where a core sequence of nucleotides is repeated in
tandem numerous times (Wyman and White, 1980;
Baird et al., 1986). DNA from a VNTR locus of two
randomly chosen individuals generally differ in the
number of these repeats, and hence in length. For
each locus (location), the data on VNTR length are ob-
tained by a sequence of molecular techniques. First,
the DNA is cut into smaller pieces using a restriction
enzyme that cuts outside (usually) the VNTR region.
Next, fragments are separated by size using gel elec-
trophoresis. The fragments are then denatured into
single strands and blotted onto a membrane. A ra-
dioactive probe, designed to attach to the core se-
quence (the repeating segment), is applied. When
the gel is exposed to an X-ray film, the radioactive
sites appear as dark bands (Figure 1). The length of
each DNA fragment is inferred from the distance the
DNA has traveled on the gel. The genetic markers
discussed are designed to yield a pair of fragments
(one inherited from each parent) at each locus.

Consider the pair of measurements obtained at a
given locus. Because of the large number of alleles
(distinct types or lengths of DNA) segregating in the
population, most individuals are heterozygous (two
distinct alleles at the locus) and generate bands of
two distinct lengths (Figure la). A single band is
sometimes generated at a locus (Figure 1b); single-
banded patterns may be due to homozygosity (two
copies of the same allele), to difficulties in distin-
guishing fragments of similar lengths or to an al-
lele too small to be measured. See Devlin, Risch
and Roeder (1990) and Devlin and Risch (1992a)
for statistical analysis and Steinberger, Thompson
and Hartmann (1993) for molecular demonstration
of these phenomena.

This section describes the independence model for
DNA profiles and reviews the calculations which
summarize the weight of the evidence presented to
a jury. In Section 2.1 a model is presented for a
simpler case in which the DNA profile can be ob-
served without measurement error. The weight of
the evidence is summarized in the form of a like-
lihood ratio. In Section 2.2 measurement error is
introduced. With measurement error, the discrete
DNA profile is transformed to a continuous set of
random variables. In an effort to mimic the meth-
ods developed for discrete data, a method was de-
veloped, called match/binning, for discretizing con-
tinuous DNA profiles. This method is presented in
Section 2.3. Finally, Section 2.4 reviews some of the
recommendations made by the NRC committee con-
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F16. 1. Schematic of autoradiographs of two loci (top, bottom):
the first and second lanes (columns) on each autoradiograph are
the suspect and evidentiary samples; the third and fourth lanes
are victim samples. In the second autoradiograph’s third lane, the
two bands blurred together or coalesced.

cerning the probability calculations laid out in this

. section.

2.1 A Probability Model for Discrete Data

A multilocus genotype G for a particular individual
consists of unordered pairs of fragments from each of
L loci:

G={(1,A2),£=1,...,L}.

At each locus, A; is a discrete random variable that
takes on values, (alleles) {a(k),k = 1,...,m} with
probabilities {y(k),k = 1,...,m} that depend on £ and
the population of interest. Provided that A, is inde-
pendent of Ay (Hardy-Weinberg equilibrium, here-
after H-W), the probability of observing the single-
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locus genotype {a(i), a(j)} can be calculated as

Pr ({a(i),a(})
(1) { 2v@)y(j), i#Jj (heterozygotes),

7@)?, i =j (homozygotes).

Furthermore, provided the genotypes are indepen-
dent across loci (linkage equilibrium), then the mul-
tilocus genotype probability can be obtained by mul-
tiplying across loci. The assumption of independence
is a key point of contention, which will be discussed
further in Section 3.

Assume the genetic evidence consists of the mul-
tilocus genotype G, obtained from the suspect and
that obtained from the evidentiary sample G,. The
objective is to distinguish between two competing hy-
potheses:

Hy: the samples were obtained from different
individuals;

H;: the suspect and evidentiary samples were
obtained from the same individual.

Notice that neither of these complementary hypothe-
ses contains an evaluation of guilt. In fact, formu-
lations involving guilt and innocence are mislead-
ing: like dermal fingerprints, a DNA profile, even
if unique, can only place the suspect’s DNA at the
crime scene.

Under H;, because the same person was the donor
for both the suspect and evidentiary sample, Pr(§; =
G.) = 1. Clearly, the calculation of genotype probabil-
ities is only of interest when G, = G,. Let us use G to
denote this matching genotype and let Pr(G) denote
the probability of observing the multilocus genotype
G in a random draw from a hypothetical population
of potential donors of the evidentiary sample. This
population is known as the reference population. Un-
der H,, assuming that the suspect and evidentiary
samples are independently drawn from the reference
population, Pr(3, = G, = §) = Pr(§)2. Under these
model assumptions, the evidence for a crime can be
summarized in the following likelihood ratio:

_ Pr (93, Ge | Hl)

LR =
Pr (937 9e | HO)
(2) Pr(9)x1 1 o o
_| e oy 9 =%=5
0, if Gs # Ge-

This calculation is based on modeling assumptions
that have been the focus of some debate. These issues
will be discussed in Section 4. The choice of reference
population is probably the most controversial. At

this point, it suffices to note that all of the major
testing laboratories possess large databases that are
used as reference populations. These samples have
been obtained, for example, from the men and women
tested in disputed paternity cases (see Section 5.2).
For any particular crime the objective is to choose
a database that is representative of the genotypes
that we would expect to find in the pool of potential
donors of the evidentiary sample. For example, if
a crime occurred on a Navajo reservation and the
particulars of the crime indicate the perpetrator was
Navajo, then a suitable reference population would
be a random sample of Navajos.

It has also been argued that frequently it is not
reasonable to assume that the suspect and eviden-
tiary samples are random draws from the reference
population, under Hy. For such cases the model for-
mulation can be expanded to allow the evidentiary
sample and suspect sample to be drawn from closely
related individuals or individuals from a cluster in
the population.

Suppose LR = 10%; typically 1/LR = Pr(9) is pre-
sented to the jury and interpreted as the probability
of observing G in a random draw from the population.
This presentation can be confusing because the value
of LR might be considerably larger than the number
of people in the set of potential donors of the eviden-
tiary sample. The appropriate interpretation is not
as a probability at all, but as a likelihood ratio: the
evidence is a million times more likely to have arisen
if the crime scene material were left by the defendant
than if it were left by some unrelated person. An-
other way to interpret the data is via culprit-based
sampling. Let us condition on the suspect’s geno-
type, G;. Under H,, if G, = G, = G, then the likelihood
of observing G is 1; while under H,, the evidentiary
sample is obtained as a random draw from a hypo-
thetical reference population (excluding the suspect)
and the likelihood of observing a matching genotype

_is Pr(9): 1/LR = Pr(S, | G, Ho) = Pr(9), provided

G, = G, = G. Once again, this argument has nothing
to do with the number of potential donors of the ev-
identiary sample. If one were to correct for a finite
sample, then a small pool of potential perpetrators
increases the probability of H,. Moreover, if DNA
profiles were unique, then Pr(§) = 0 for any-sized
reference population, and LR = co.

Multiplying LR by the prior odds of H; (assessed
on the basis of all the pertinent evidence apart from
the DNA profile) yields the posterior odds that the
same individual was measured twice,

3) odds(H, ) = %m.

The presentation of posterior odds in the courts was
argued for by Berry (1991) and cautioned against by
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Kaye (1991), who notes that outside of civil suits,
Bayesian methods have not gained much of a foothold
in the courts (see also Geisser, 1990). For a review of
the legal issues see Kaye (1988, 1991, 1993).

2.2 A Probability Model for Continuous Data

With conventional genetic markers (e.g., blood
groups, serum proteins), the laboratory techniques
are accurate enough that observations can usually
be classified to distinct alleles and (2) is presented as
the weight of the evidence for H;.

Although a VNTR allele can be thought of as a cat-
egorical random variable, distinguished by the num-
ber of tandemly repeating core sequences, it is usu-
ally thought of as a discrete quantitative measure-
ment, defined by its length. Observations of a pair of
VNTR alleles are obtained by indirectly measuring
the lengths of a pair of alleles, using gel electrophore-
sis and autoradiography. For VNTR’s, because there
is an enormous number of alleles (typically m > 100),
even a small amount of measurement error makes it
impossible to directly classify the fragments into al-
leles (Balazs et al., 1989); that is, the unobservable
pair of fragments (A1, As), which are discrete random
variables, are measured with error, yielding observ-
able pairs of measurements of alleles (X;, X,) atlocus
£ for a randomly chosen individual:

X]_ =A1+81,
X2 =A2+€2,

4)
where £;andey are the measurement errors. The ran-
dom error ¢ is a function of the allele size A. Given
A = a()), it is commonly assumed that ¢ is distributed
N(0,0?), where 0j = ¢ x a(j). From experimental
data, the normality assumption appears reasonable.
The value of ¢ is determined experimentally and is
known to be laboratory dependent (Devlin, Risch and
Roeder, 1991b; Berry, Evett and Pinchin, 1992). In
the laboratories involved in DNA testing, however,
the standard error oj is of the same magnitude as the
difference between adjacent alleles, |a(j) — a(j — 1)|.
While the alleles (A1, As) are commonly assumed to
be independent, the molecular methodology causes
the pairs of measurement errors (g1, £2) to be corre-
lated (Figure 2). This correlation, which is a function
of the allele sizes and percent difference, can be es-
timated from repeated measurements of the same
alleles. In brief, the correlation function can be de-
scribed as follows: it is 1.0 for A; = Ay, ensuring that
X; = X, (a homozygote always appears as a single
band on an autoradiograph, and the forensic scien-
tist records the same measurement for both alleles);
the correlation decreases as |A; — Ag| increases, but
this decrease is slower for larger fragment pairs than
for smaller fragment pairs. [See Devlin, Risch and

Longer Allele

Shorter Allele

F1G.2. A portion of the two-dimensional space of allele pairs (grid)
for two loci (top, bottom) with different measurement error relative
to the allele spacing: the bivariate normal distribution of measure-
ment error for a given allele pair is superimposed on the space of
possible single-locus genotypes. Note the increased correlation in
allele pairs of similar size.

Roeder (1992) for more details.]

Given (A1,45) = (a(@),a())), (X7, X,) are assumed
to follow a bivariate normal distribution with mean
(a@),a(y)) and variance-covariance matrix deter-

mined by the mean. The corresponding density eval-

uated at (x1,x5) will be denoted by ¢;(x1,x2). (Note
that when A; = Ay, the distribution degenerates to
a univariate density.) Let +(i, j) denote the probabil-
ity of sampling the genotype {a(i),a(;)}; under H-W,
~(, j) is given in (1). It follows that the marginal dis-
tribution of (X7, X) is that of a normal mixture with
density

®) fler,xg) =) G, ) dyjler, x2).

i<j

Because fragments are visualized on an autora-
diograph, the corresponding bands have substantial
width. This introduces a complication if A; and A,
are very similar but not identical in length. In this
case, the bands may be indistinguishable because
they blur together and only one length z = (x; +x2)/2
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is observed. This phenomenon is called coalescence.
The probability of this event is a function § of the
mean z and the difference ¢ = |x; — x3|/2 of the al-
lele sizes. The coalescence probability §(¢,z) can be
estimated from the data (Devlin, Risch and Roeder,
1990). Coalescence will not be discussed in detail
here. The interested reader is referred to Devlin,
Risch and Roeder (1990, 1991a, 1992).

Figure 3 illustrates the estimate of the allele dis-
tribution {y(k),k = 1,...,m} for two loci commonly
used by forensic laboratories. (These allele distri-
butions are estimated from Lifecodes Corporation’s
Caucasian database; Lifecodes is an independent
testing laboratory. See Section 6 for further expo-
sition on the methods used to obtain the estimate.)
Due to innate properties of these two VNTR loci
(Devlin, Risch and Roeder, 1991b), the distribution
on the top (D17S79) is estimated with substantial
accuracy, while the estimator on the bottom (D2S544)
has substantial variance. Notice that D17S79 is not
especially informative: although it possesses about
53 alleles with (k) > 0, four of these alleles make
up about 60% of the probability. D2S44 is much
more informative: it possess about 172 alleles with
~(k) > 0, and none of them dominates the distribu-
tion. Furthermore, the estimated distributions do
not differ substantially by ethnic group (race) (Devlin
and Risch, 1992b).

The idea of using a likelihood ratio for continuous
measurements to assess the weight of evidence in a
forensic setting was first proposed by Lindley (1977).
In this article, a brief review of methods for summa-
rizing the evidence without discretizing the data is
presented in Section 6. For an extensive review of
methods used to summarize genetic information for
both paternity and criminal cases, see Devlin (1993).

2.3 Match/Binning Methods

To apply (2) to discrete random variables, we first
determine if G, = G; if so, we calculate the probabil-
ity of observing this genotype in the reference pop-
ulation. There is no obvious extension of this sim-
ple method for the continuous VNTR data. Because
forensic scientists and the legal community have
decades of experience with discrete genetic markers,
however, they created a method that mimicked the
discrete approach.

To apply analogues of (2) to continuous random
variables, it is necessary to construct a rule that clas-
sifies a pair of profiles as potential observations of
the same genotype (a match) or not (an exclusion).
When a match is declared, the probability of observ-
ing a match is calculated using a method called bin-
ning. These methods are known as match/binning
methods because of the two stages of the procedure.
To illustrate an approach used in the courts (prior

D17S79
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FiGc. 3. The allele distribution estimates of the D17S79 locus (top)
and the D2S44 locus (bottom): the probabilities of 98 alleles for
D17S79 and 329 for D2S44 are estimated. The horizontal axis is
the number of repeating units.

to the NRC report) let us consider the method used
by Lifecodes Corporation. If the DNA of the suspect

- and evidentiary samples appear sufficiently similar,

the samples are declared a match. Roughly speak-
ing, if any fragments are separated by more than
three standard deviations (SD) of the measurement
error, the profiles are declared nonmatching, LR =0
and the suspect is excluded as a possible donor of
the evidentiary sample. However, because the mea-
surement errors are known to have positive corre-
lations, the forensic experts exercise some judgment
in their declarations, possibly declaring near misses
as matches (which may or may not be accepted by
the court) and ruling out apparent matches due to
unlikely patterns of measurement error. (The term
“match” is actually a convenient misnomer; a match
is actually a failure to exclude. On rare occasions a
locus is declared to be inconclusive.)

Because the standard error is proportional to the
length of the allele, one frequently compares band
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sizes to evaluate “matching” in terms of a percent
error. For example, the Lifecodes match criterion
(3 SD) is referred to as a 1.8% match window be-
cause their standard deviation is o, = 0.006y. Con-
fusion may occur because an equivalent window for
the Forensic Science Service (a testing laboratory
in Great Britain) would require a somewhat larger
match window because their laboratory techniques
lead to larger errors.

A floating bin method is used to obtain “allele”
probabilities. This probability is estimated by the
proportion of fragments in the reference population
{21j,295,J = 1,...,r} within three standard devia-
tions of the evidentiary sample:

R 1 r 2
y) = EZZI{ly—z,ﬂ < 30y}

Jj=1li=1

The multilocus probability is obtained by multi-
plication within a locus and between loci with one
exception. [A single-banded pattern may be due to
homozygosity, to difficulties in distinguishing frag-
ments of similar lengths or to an allele too small to
be measured. The second problem does not occur
when certain laboratory techniques are used. To ac-
count for the two physical artifacts which may have
occurred, the following adjustment is made: replace
7(y)? with 279(y) or 29(y)? if the methodology em-
ployed in the laboratory makes the second technical
difficulty unlikely. As mentioned in Berry (1991),
this adjustment more than compensates for the dis-
turbance.] Finally, mimicking (2), LR is calculated.

A competing match/binning technique relies on a
fixed bin (Budowle et al., 1991b) or histogram ap-
proach to calculate LR. The histogram is formed
based on arbitrary fixed boundaries which define the
bins. Certain conservative adjustments are made
with this method: for example, if any bin contains
fewer than five observations from the reference data
set, then adjacent bins are pooled until this lower
limit is achieved.

" The forensic laboratories have sampled large num-

bers of DNA profiles from each major ethnic group
to use as reference populations (Caucasians, African
Americans, Hispanics, Asians, etc.; see Section 5.2).
LR is calculated for most, or all, of these reference
populations, and usually all of the calculations are
presented to the jury.

2.4 Recommendations of the NRC Report

The NRC report (NRC, 1992) made many recom-
mendations concerning DNA profiling, including one
chapter on the statistical interpretation of the evi-
dence. This section will explore some of the statis-
tically relevant suggestions that have affected the
calculation of LR.

The NRC panel dismissed methods for calculating
LR based on (5), espoused by Berry (1991) and others,
which bypass the matching step (see Section 6) on
the basis that they are too complicated. They also
opposed the use of expert judgment in the declaration
of a match, endorsing only objective methods.

The NRC panel proposed a novel method for cal-
culating genotype “probabilities.” Their suggestion,
dubbed the ceiling principle, is to obtain samples of
100 unrelated individuals from 15-20 “relatively ge-
netically homogeneous” populations, with examples
being English, Germans, Russians, Navajos, Puerto
Ricans and West Africans, among others. One would
estimate allele probabilities from these populations
for the VNTR loci commonly used for forensics. Then
for any particular DNA profile, one would choose the
maximum allele probability found among the study
populations (the ceiling). In addition, they add the
condition that no allele probability should be below
10% (the floor). Until these samples are obtained,
they recommended an interim ceiling method.

The committee was motivated by the following con-
siderations. Strictly speaking, the assumption of in-
dependence depends on the absence of population
heterogeneity, an issue discussed further in Section
3. The committee correctly inferred that “in a popu-
lation that contains groups each with different allele
[probabilities], the presence of one allele in a per-
son’s genotype can alter the statistical expectation of
the other alleles in the genotype.” Although the com-
mittee notes that empirical studies have detected no
violations of independence within or across loci, they
chose “to provide a method for estimating population
frequencies in a manner that would adequately ac-
count for [population heterogeneity].”

When considerable population heterogeneity ex-
ists, the choice of the reference population has a sig-
nificant impact on the weight of the evidence. There-
fore, “the committee recommends approaches of mak-

- ing sound estimates that are independent of the race

or ethnic group of the subject.” They claim “the ceil-
ing principle eliminates the need for investigating
the perpetrator population, because it yields an up-
per bound to the [probability] that would be obtained
by that approach.”

The NRC panel suggested a second calculation,
which they dubbed the “one-on-N” rule. That is,
if the appropriate reference population database is
of size N, and if no one in the database matches
the evidentiary sample, then 1/N should be pre-
sented as an upper bound on Pr(G,). This calcula-
tion would be presented to the jury along with or in-
stead of the ceiling principle calculation. As noted
by the panel, however, the “one-on-N” rule seems
to be at odds with analyses of existing databases:
“pairwise comparisons of all five-locus DNA pro-
files in the FBI database showed no exact matches;
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the closest match was a single three-locus match
among 7.6 million pairwise comparisons. Those stud-
ies are interpreted as indicating that multiplication
of gene [probabilities] across loci does not lead to
major inaccuracies in the calculation of genotype
[probabilities].”

3. THE QUESTION OF INDEPENDENCE

Forensic scientists typically assume approximate
independence of alleles both within and between loci.
This assumption stirred most of the initial contro-
versy. A population or ethnic group (e.g. Caucasians)
composed of subpopulations (Irish, Italian, French,
etc.) having different allele probability distributions
is considered heterogeneous. The most likely vio-
lations of independence result from population het-
erogeneity (also known as population substructure).
Population heterogeneity causes dependencies of al-
leles within and between loci (Li, 1969). Several au-
thors have suggested that population heterogeneity
could lead to a serious underestimate of the proba-
bility of two DNA profiles matching (Lander, 1989,
1991a, b; Cohen, 1990; Cohen, Lynch and Taylor,
1991). Other geneticists and statisticians have coun-
tered that, while the argument that heterogene-
ity causes dependence is theoretically correct, hu-
man populations rarely exhibit enough heterogene-
ity to have a substantial impact on forensic calcula-
tions (Devlin, Risch and Roeder, 1990; Chakraborty
and Kidd, 1991; Chakraborty and Jin, 1992). Ex-
ceptions exist, they argue, but these exceptions oc-
cur in extremely isolated populations such as a few
Amerindian tribes.

In Section 3.1, a probability model for population
heterogeneity is developed. This model predicts an
excess of homozygotes. In fact, the first paper claim-
ing violations of independence based this claim on an
apparent excess of homozygotes. In Section 3.2, this
claim is shown to have been the result of a physical
artifact (coalescence). In the remaining subsections,
various tests of independence are described. Valid
tests for independence find (approximately) the pre-
dicted number of rejections when a large number of
tests have been performed. Tests for independence
that do not model the physical artifacts (coalescence
and correlated measurement error) have routinely
yielded spurious rejections of the null hypothesis. Of
course, as the sample size increases, even minute
violations of independence will eventually lead to a
rejection of the independence hypothesis. In Section
3.6, a Monte Carlo experiment illustrates the neg-
ligible effect on profile probabilities observed when
the dependence between a pair of loci is ignored.

3.1 The Model

To understand the effect that allele distribution
variation has on the calculation of genotype proba-
bilities, consider the single-locus case. The model
of population substructure assumes independent as-
sortment of alleles within a subpopulation (random
mating) and limited matings between subpopula-
tions. This population substructure model is prob-
abilistically equivalent to assuming that the vec-
tor of allele probabilities for a given subpopulation
G =(G(1),G(2),...,G@m)) possibly varies by subpop-
ulation and that, conditional on G, an individual’s
pair of alleles is sampled independently. For exam-
ple, in Figure 4 the estimated allele probability dis-
tributions at D4S139 and D10S28 are depicted for
four subpopulations of Asians: Chinese, Koreans,
Japanese and Vietnamese. Ignoring the nonnegli-
gible sampling error in these allele distributions, the
probability of observing a particular genotype from
a Japanese person can be calculated by multiplying
the Japanese allele probabilities

2G;DG,()),

£id)
® Pr({at),a(i}) = { e gy
J )

ifi=J.

Comparing the result of this calculation to a simi-
lar calculation for a Korean person yields essentially
identical genotype probabilities for locus D4S139,
but somewhat different results for D10S28. (Much of
this difference could be due to sampling error; data
obtained from Orange County Coroner’s office.)

Suppose the perpetrator of a crime is known to be
Asian, but his subpopulation is unknown. If an ad-
equate reference database for each subpopulation is
available, the genotype probability can be calculated
as a weighted average over the various subpopula-
tions:

Pr ({a(i), a(j)})
o ] 2 ij wk) GDG()), ifi #),
T Y w®) GR6, ifi =,
k

where w(k) is the relative frequency of the kth sub-
population in the population. This calculation yields
the true probability of drawing genotype {a(i),a())}
from the Asian population provided H-W holds in the
defined subpopulations. If no information is avail-
able concerning the allele probabilities in the sub-
populations, the forensic scientist might make his
calculation based on the mixed Asian reference pop-
ulation, assuming H-W holds (approximately) in the
mixed population. If v(-) is the marginal probability
of observing a(-) in the population, then the probabil-
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Fic. 4. Fixed bin distribution (histogram) for two loci and four
Asian subpopulations (used with permission from John Hart-
mann): the boundaries of the 30 bins (vertical axis) are determined
by the FBI, these bins are not of equal length. Sample sizes (num-
bers of individuals) for Chinese, Japanese, Korean and Vietnamese
are 103, 125, 93 and 215 for D45S139 and 120, 137, 100 and 193
for D10S28. The horizontal axis is the bin number; bins are not of
equal length.

ity of observing the genotype {a(i),a(j)} is calculated
using (1).

In general, assuming the population substructure
model, the probability of observing the genotype
{a(i),a(j)} in a random draw from a population is
correctly calculated as

Pr ({a(i),a()})
® (2960 +20v[GO), GG, ifi i,
~ 6@ + var [GG)], ifi=j.

Assuming H-W in the cntire population is equivalent

to assuming there is no heterogeneity in the popula-
tion: in other words, discarding the second term in
both cases. Clearly this leads to an underestimate of
the probability when i =, and it will usually lead to
an overestimate when i #.

A genetic model, based on evolutionary theory,
leads to a one-parameter model for the variances and
covariances in (8),

E[G()] = 1G),
9) var[G()] = s [1 — 7(@)],
cov[G@), G())] = —Os7GN ()

(see, e.g., Weir, 1990). In genetic parlance, s is anal-
ogous to Fgy of Wright (1951). A parametric model
for G with the same moments is the Dirichlet

G = (G),G®), .., Gim)
~ Dirichlet(y(1),%(2), .. .,v(m); bs).

3.2 An Excess of Homozygotes?

An obvious consequence of (8) is that population
heterogeneity leads to an excess of homozygotes in
the mixed population. This result is well known to
geneticists. Indeed, the controversy over indepen-
dence assumptions was ignited by a claim that an ap-
parent excess of homozygotes indicated a “spectacu-
lar deviation from H-W” (Lander, 1989). Specifically,
an excess of 9 and 13% homozygotes was claimed for
D17S79 and D2S44, respectively. To obtain insight
into the extreme heterogeneity implied by these fig-
ures, examine Figure 5. Consider a mixture of two
populations: one population constructed by drawing
pairs of alleles from the upper distribution and the
other constructed by drawing pairs of alleles from
the hanging distribution. A population composed of a
50-50 mixture of these two extremely disparate pop-
ulations leads to only a 5% excess of homozygotes! In
fact, no relevant populations have shown the amount
of differentiation illustrated in Figure 5.

3.2.1 A physical artifact masquerading as
population substructure

The data Lander based his claim upon were from
Lifecodes Corporation. Devlin, Risch and Roeder
(1990) reexamined these data, in large part because
such a huge excess of homozygotes would be unusual
for two reasons: (i) extreme heterogeneity would
rarely lead to such an excess; and (ii) relevant hu-
man populations are not very heterogeneous (see
Mourant, Kopec and Domainewska-Sobczak, 1976;
Nei and Roychoudhury, 1982).

In the absence of measurement error, it would
be simple to construct a test to determine if there
are significantly more homozygotes in the population
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F16.5. Two allele distributions used to create a mixed population:
the distribution for D17S79 (upper distribution) and its mirror
image (hanging distribution). The horizontal axis is the number
of repeating units.

than we would expect based on (8) and (9) (Levene,
1949). Let us consider a simple extension, which al-
lows for continuous measurement error. Let

. 0. - E.
¢~ War(O. - E.)’

where
(10) (0] =lil{|zl~—22-|<e}
€ rj=1 J j

is the observed number of e-homozygotes (fragments
which are separated by no more than ¢). One can es-
timate the expected number of e-homozygotes under
H-W using a U-statistic

2r
1
(11) E€=2r_121{|zi—zj|<s},

i<j

where {z;,i = 1,...,2r} is the collection of fragments
from the population of interest, ignoring the pair-
ings. If t. is large relative to a standard normal, one
can conclude there is an excess of homozygotes. For
e = 0.0001, ¢, is highly significant for several loci
and several populations. For example, ¢, = 84.5 for
the Caucasians at D2S44; but if ¢ is increased, ¢, de-
creases and quickly ceases to be significant (Devlin,

Risch and Roeder, 1990). The most likely explana-
tion for this phenomenon is coalescence (Section 2.2).
With some effort, the coalescence function can be
estimated from the data using natural generaliza-
tions of (10) and (11); a smooth logistic curve fits the
data. For ¢ large enough that the probability of coa-
lescence is less than 0.01, £, is no longer significant
for the data sets examined (Devlin, Risch and Roeder,
1990). Therefore the apparent excess of homozygotes
can be explained by close heterozygotes masquerad-
ing as homozygotes, rather than a serious violation
of model assumptions.

It is important to bear in mind that this composite
test is not a complete test of H-W. Nevertheless, it
has reasonable power to detect population substruc-
ture. To demonstrate this fact empirically, Devlin,
Risch and Roeder (1991a) created mixed populations
by randomly sampling from Lifecodes African Amer-
ican and Caucasian databases. For such mixtures
of 1000 profiles from each ethnic group, they found
nearly 100% power to detect mixture for at least
one of the three loci (D17S79, D2S44 and D14S13).
On the other hand, Devlin and Risch (1992b) found
such mixtures induced only relatively small errors in
genotype probability estimates. These experiments
suggest that the amount of population heterogene-
ity within the forensic databases is substantially
less than the amount of variability observed between
Caucasians and African-Americans. One weakness
of this test, however, is that it can be affected by cor-
related measurement error (Green and Lander 1991;
Devlin, Risch and Roeder, 1991a) and so must be in-
terpreted carefully.

3.2.2 A Bayesian analysis of the data

Slight violations of the independence assumptions
are to be expected in any human population. Ideally
we would like to obtain a posterior distribution of g
that would indicate the variability of G over subpop-

“ulations. Based on the posterior distribution, adjust-

ments to LR indicated by (8) could be made that rely
on the covariance structure indicated in (9). Roeder
et al. (1993) have obtained a result of this type us-
ing a hierarchical Bayes approach. Their model has
five levels; each level is supported by theory and/or
experimental data:

1. (X;,X;) appear as (X; + X5)/2 with probability
determined by the coalescence function.

2. (X1,X5), given (A1,Ay), are distributed as a bi-
variate normal with mean, variance and covari-
ance determined by (A1, A»).

3. (A1,Ay), given G, are independent samples from

4. G, given (v,0g), is distributed as a Dirichlet
(7 03).
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5. Aprior for v is obtained from experimental data,
and a conservative prior for fs, based on previ-
ous studies, is beta(1, 49).

In their analysis they obtain posterior distribu-
tions of s with modes (and upper percentiles) near
0. For example, in D17S79, D2S44, D14S13 and
D18S28 the posterior mode (95th percentile) for Cau-
casians is approximately 0.0015 (0.007). This indi-
cates that there is almost no variability in the allele
distributions of Caucasian subpopulations. It would
be simple to incorporate an estimate of fg into correc-
tions to the LR calculations. For example, assuming
that the covariance structure in (9) is approximately
correct and that s is known, Pr({a(i),a(;)}) can ob-
tained by substituting (9) into (8) to obtain

Pr (S, S5|H4)
(12) [ 1@? + 057D [1 - 1G], ifi=j,
2@y (A - bs), ifi #j.

A full Bayesian correction involves integrating (12)
over the posterior distribution of §;. Corrections to
(2) that allow for population heterogeneity are devel-
oped further in Section 4.

3.3 Classical Tests of Independence

Of course, mixture of subpopulations is not the only
possible violation of the H-W assumption, and efforts
have been made to check for other violations of the in-
dependence assumption. Perhaps the simplest test
relevant to VNTR data is Fisher’s intraclass corre-
lation. This test is equivalent to testing for corre-
lation in the set of pairs of fragments in the refer-
ence population {(zyj,29),(29,21j),j = 1,...,r*} and
{(z4j,29j), j = r*,...,r}, where the first r* measure-
ments denote the heterozygotes. Such analyses re-
veal little, if any, relationship between paternal and
maternal fragments (Budowle et al., 1991a; Berry,
Evett and Pinchin, 1992; Weir, 1992a; Chakraborty,
Srinivasan and de Andrade, 1993). An advantage of
the intraclass correlation is its insensitivity to some
of the electrophoretic phenomena discussed in Sec-
tion 2.2, unlike other methods below.

Testing the assumption of H-W for a popula-
tion is often straightforward for classical genetic
marker data. These tests measure the difference
between the observed and expected number of each
distinct genotype in a sample from the population
(Hernandez and Weir, 1989). Initial efforts to test H-
W by applying standard x? methods to binned data
were plagued by difficulties. At first, ad hoc tech-
niques were applied in which the number of bins and
the position of bins were selected to maximize or min-

imize the test statistic. Not surprisingly, contradic-
tory results were obtained.

Presumably to circumvent these difficulties,
Geisser and Johnson (1992) recently proposed a
quantile x? test for H-W. The steps of the test are
as follows: (i) Order the 2r fragments by size z() <
Z@@) < -+ < z(gp. (il) Decide a priori how many quan-
tiles will be used; call this number q. (iii) Choose bin
boundaries b;,...,b,_; that divide the ordered vari-
ates into g subsets, each with f = 2r/q members. (iv)
Since z3; < zy;, in two dimensions the ¢ boundaries
divide the space into g(g + 1)/2 bins. The number
of fragments falling in each bin is called O;;. Define
E;j=r/q?ifi = jand E; = 2r/q? ifi #j. (v) Un-
der reasonable choice of g, the Pearson’s x? statistic
obtained from this procedure is distributed x? with
q(q — 1) degrees of freedom under the H-W hypothe-
sis.

Geisser and Johnson (1992) claim that the only as-
sumption of their test is bivariate exchangeability.
This claim is challenged by Devlin and Risch (1993),
who show via simulation that physical artifacts con-
found the test of H-W. Their arguments are based on
the complications introduced by coalescence and cor-
related measurement error that are not allowed for in
Geisser and Johnson’s test. Coalesence causes an ex-
cess of mass in the bins on the diagonal and a dearth
of mass in the adjacent off-diagonal bins. The effect
of correlated errors is more complicated, although it
is clear that the potential for confounding is present
from (4). The goal is to assess violations of inde-
pendence in (A;,Aj); however, the test is based on
(X;,X5) which are clearly correlated through (¢4, £2).
The test is more sensitive to this effect when the al-
lele distribution is very uneven, with a few very com-
mon alleles creating “ridges” in the two-dimensional
surface (Figure 2).

Weir (1992a) also examines the question of inde-
pendence using binned data. He uses the fixed bins
set by the FBI, discarding the bins on the diago-
nal to remove the effect of coalescence. (Weir cor-
rectly points out that there is no need to be concerned
about the H-W assumption for homozygotes, using
the FBI’'s method, because H-W is not assumed for
homozygotes — only one allele is used in the calcu-
lation.) He forms a test statistic using the likeli-
hood ratio test. Because the data are sparse, he uses
a bootstrap resampling procedure to determine the
null distribution of the test statistic. Unfortunately
this test is also sensitive to correlated errors and co-
alescence because of the dearth of mass in the off-
diagonal cells. Notably, even with this disturbance
in the data, Weir shows most loci and most databases
conform to H-W expectations. In a similar analysis
of the Lifecodes database, he obtains results gener-
ally supporting H-W and linkage equilibrium (Weir,
1992b).
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3.4 Tests of Linkage Equilibrium

Mixture of subpopulations, as well as evolution-
ary forces such as selection, may induce associations
between alleles at different loci. Weir (1992a, b), us-
ing tests similar to those described above, has thor-
oughly analyzed the VNTR databases for violation
of linkage equilibrium. Again his analyses reveal no
large deviations from independence.

3.5 Composite Tests of Independence between
Loci

Population substructure causes an association
among alleles in VNTR profiles. According to those
critical of the forensic scientists’ evaluation of the
DNA evidence, this association can be substantial. If
the association is strong, some VNTR profiles would
occur substantially more often in the mixed database
than would be predicted under independence. For
discrete data, a classical test of independence for two
loci requires the construction of a two-way table with
rows consisting of possible genotypes for the first lo-
cus and columns consisting of possible genotypes for
the second locus. Using a nonparametric approach
that reduces this extremely large, sparse table to a
2 x 2 table, Risch and Devlin (1992a, b) examined
both the FBI and the Lifecodes databases to deter-
mine if an excess of matching occurs in the databases.

To estimate match probabilities for individual loci,
they made all r(r — 1)/2 possible comparisons of the
r individuals in each database. A match was de-
clared if the corresponding measurements differed
by no more than four standard deviations. This is an
estimate of the probability that a random, innocent
suspect and an evidentiary sample would be declared
a match by chance.

Under the independence assumption, the occur-
rence of genotypes at pairs of loci should be indepen-
dent. Therefore, the probability that two individuals
have matching genotypes at a pair of loci should be
the product of the single-locus match probabilities.
To test for violations of pairwise independence, they
constructed 2 x 2 tables from the r{r — 1)/2 compar-
isons, with match—-no match at the first locus being
the two rows and match-no match at the second lo-
cus being the columns. The expected values for the
cells are obtained from the product of the single-locus
match probabilities. Although the test statistic they
used has the form of Pearson’s x2, it does not fol-
low a x? distribution under the null hypothesis. Be-
cause the entries in the table are U-statistics, the
test has greater variance than a classical test of in-
dependence. Using the method of bootstrapping to
obtain the null distribution of the test statistic, they
did not find evidence for significant violations of in-
dependence. See Herrin (1993) for similar results
using different databases.

Under the population substructure hypothesis,
more matches are expected than are predicted by in-
dependence, provided the different subpopulations
actually have different allele probability distribu-
tions. The analyses suggest that, whatever disequi-
librium exists among loci, it has little effect on the
probability of two random individuals having match-
ing genotypes. Risch and Devlin explain their results
as indicating that subpopulations do not differ much
in their allele distributions, at least for the ethnic
groups they studied. In fact, they argue (see also
Devlin, Risch and Roeder, 1993a, b) that the geno-
type probabilities differ more between ethnic groups
than within ethnic groups—contrary to the argu-
ments of Lewontin and Hartl (Lewontin and Hartl,
1991; Lewontin, 1993). Indeed other results support
this supposition (see Section 5.1). For instance, in
mixed databases formed by randomly selecting equal
numbers of African American and Caucasian single-
locus profiles (500 and 1000 each), a greater num-
ber of two- and three-locus matches are observed
than are predicted by the independence model, usu-
ally significantly greater (Devlin, Risch and Roeder,
1994).

To evaluate the power of this test to detect popu-
lation substructure, Devlin, Risch and Roeder (1994)
again create artificial populations by mixing equal
proportions of Lifecodes African American and Cau-
casian profiles (see Section 3.2). For each subpopu-
lation, they randomly sampled and combined single-
locus profiles, thereby ensuring equilibrium in each
subpopulation. When each subpopulation consisted
of 500 individuals, the power to detect mixture was
69, 61 and 58% for the locus pairs D2S44-D17S79,
D2S44-D14S13 and D14S13-D17S79, and 33% for
the three loci. For 1000 individuals in each subpop-
ulation, power exceeded 95% for each pair of loci and
was 81% for the triplet.

It is important to recall two facts regarding these

“results: (i) such mixture does not cause large (rel-

ative) errors in genotype probabilities (Devlin and
Risch, 1992b); and (ii) Risch and Devlin (1992a) de-
tected no violations of independence in the actual
Lifecodes data for these loci, consisting of over 3000
Caucasians and 2000 African Americans. (Unfortu-
nately this test, like the other composite test, can be
affected by correlated measurement error.)

3.6 Sensitivity of LRto Assumptions

The implicit assumption required for multiplying
genotype probabilities across loci is either homoge-
neous populations or random mating. Critics argue
correctly that the populations of interest are neither
homogeneous nor randomly mating, and then argue
that it must be wrong to multiply probabilities. As
Evett, Scranage and Pinchin (1993) point out, clas-
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sical tests of significance do not address the issue
of interest directly: tests may fail to reject the in-
dependence hypothesis because they lack power or,
on the other hand, they may reject the independence
hypothesis even though there are no practical conse-
quences of the failure of the assumption.

Therefore, Evett, Scranage and Pinchin (1993)
performed a Monte Carlo experiment to examine
the practical significance of independence violations.
The Metropolitan Police Forensic Science Laboratory
database consists of a file of r individuals, each with a
three-locus profile (D1S7, D7S21, D12S11). For any
two loci, they calculated LR, under Hy, for all possible
pairwise comparisons [i.e., r(r — 1)/2 =~ 1.2 x 109] for
two settings: (i) the database itself (dependence as-
sumed) and (ii) a database constructed by randomly
reassigning the profiles of one locus (independence
certain). The expectation is that the vast majority of
the LR’s will be essentially zero under either (i) or
(ii), but LR will be stochastically larger for (i) under
the population substructure model because, if there
is an association between alleles in a subpopulation,
a comparison between persons in the same subpopu-
lation should lead to inflated values of LR.

In the three between-locus comparisons, they
found only one significant difference between distri-
butions (D1S7, D7S21), but even for this pair of loci
these distributions did not differ to a degree deemed
practically significant. For example, the observed
frequency of reporting an LR in excess of 1000 is
about 3.7 cases per 100,000, compared with an ex-
pected rate of 2.7 cases per 100,000.

See also Brookfield (1992) for a discussion of the
effect of population subdivision at a single locus.

4. REFERENCE POPULATIONS

There is little doubt that one of the thorniest issues
in the DNA fingerprinting debate is that of selecting
an appropriate reference population. A basic ques-
tion is treated in Section 4.1: Should the reference
population consist of individuals of the same ethnic
group as the suspect? Assuming that an innocent
suspeéct is unrelated to the donor of the evidentiary
sample, the answer is no, his ethnicity is irrelevant
unless his guilt is presupposed. In some cases it can
be argued that this assumption should be weakened,
allowing for various degrees of relatedness between
the culprit and the suspect, from assuming that the
culprit and suspect are members of the same sub-
population to assuming that the culprit and suspect
are brothers. It is possible to adjust LR to allow for
these weaker assumptions. For reasons of grammati-
cal ease, I refer to the individual donating the eviden-
tiary sample as the culprit, throughout this section,
although this is legally incorrect. In Section 4.2 the
suspect is assumed to be from the same subpopula-

tion as the culprit, and in Section 4.3 the suspect is
assumed to be a close relative of the culprit.

The conclusions of this section can be summarized
as follows. The ethnicity of the suspect is not rele-
vant, unless the suspect and culprit are assumed to
be from the same subpopulation. Because usually
little is known about the culprit, it is generally as-
sumed that the suspect and culprit are possibly, but
not necessarily, from the same subpopulation (un-
related). Some people argue that they should be
assumed to be from the same subpopulation in all
cases (Nichols and Balding, 1991). This distinction
isnot as important as one might initially expect. The
correction for the suspect and culprit being from the
same subpopulation has little effect on the weight of
the evidence, unless the heterogeneity is consider-
ably larger than that observed in most forensically
important populations. When the suspect and cul-
prit are close relatives, the correction may have a
large impact. Brothers are considerably more likely
to have matching DNA profiles than are unrelated in-
dividuals. Ignoring relatedness of first cousins also
leads to an inflation of the weight of the evidence;
however, it is not dramatic.

4.1 Whose Ethnicity Matters?

In Vermont, the defense succeeded in blocking
the admission of DNA evidence by demonstrating
that the suspect was of mixed Amerindian, Italian
and French ancestry and then arguing that the FBI
lacked an appropriate reference population for this
case because it did not have a database of individuals
of this ethnic mix (Weir and Evett, 1992). Was this
ruling based on fallacious thinking?

In order to clarify the key issues, assume that
the genotypes in (2) can be ascertained without er-
ror. A question arises: is Pr(§) to be calculated
based on a reference population composed of individ-
uals of the same ethnic mix as the suspect (suspect-
based sampling) or individuals who could have com-
mitted the crime by virtue of having access to the
crime scene, fitting eyewitness description and so
on (culprit-based sampling)? The NRC report states
that “Some legal commentators have pointed out that
frequencies should be based on the population of pos-
sible perpetrators, rather than on the population to
which a particular suspect belongs. Although this
argument is formally correct, practicalities often pre-
clude use of that approach.” Regardless of any “prac-
ticalities,” it is critical that the legal system give se-
rious consideration to the appropriate reference pop-
ulation in any particular case. To clarify the issues,
let us look at the formal logic put forth by Evett and
Weir (1992), which supports culprit-based sampling.
The argument is based on two key assumptions that
have been the subject of debate.
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Let J, and J; denote relevant information about the
culprit and suspect, respectively, such as the ethnic
background. The objective is to calculate the likeli-
hood ratio

- Pr (9ev gs | Hl» jeajs)
Pr (gea gs | HO» jeajs) '

(13) LR

AssuMPTION 1. The relevant information about
the culprit is consistent with the information about
the suspect: J, C J;.

The consequence of this assumption is that the in-
formation must not be contradictory, such as the sus-
pect is white and the culprit is known to be black,
because then the probability of H; is 0. Taking the
viewpoint of suspect-based sampling, write LR as

Pr (ge | gs,Hl,jeajs) Pr (93 | Hl»jeajs)
Pr (9e | gsvHOaje,js) Pr (93 | HOaje, js) .

(14)

LR can be equivalently represented as

Pr (93 | Se,Hl,fJe,Js) Pr (Se |H1,3e,53)
Pr (93 | 9e,H0, je» Js) Pr (98 I HOaje)jS) ’

(15)

which may be a more convenient representation from
the viewpoint of culprit-based sampling.

AssuMPTION 2. Independence model. If Hy holds,
then G, is independent of G; and Js; furthermore, G;
is independent of G, and J..

By Assumption 2, if G, = G, then (14) and (15)
simplify to

Pr (93 ‘Hlajeajs)

16 )
(16) Pr (gs I Js) Pr (ge | je)
and

Pr (ge | Hl,je,js)'

1 s
un Pr (S, | 3)) Pr (S, | %)

respectively. Because (14) and (15) are identical,
Pr(S, | H1,9.,7s) = Pr(S. | H1,7¢,7s). From Assump-
tion 1 the lack of symmetry in the problem comes into
play—the numerators of both equations simplify to
Pr(G; | Js). We conclude that LR = 1/Pr(G, | J.): the
information about the suspect’s ethnicity cancels out
of the equation. The court’s reasoning was fallacious,
under these assumptions.

4.2 Subpopulations

By Assumption 2, the suspect and culprit are as-
sumed to be unrelated, that is, they are not from

the same family nor necessarily from the same sub-
population. Occasionally a good case can be made for
some sort of relatedness between the suspect and the
culprit under H,. For example, suppose a crime oc-
curred in Seneca, Kansas, where most residents are
of German descent, and both the victim and the sus-
pect are Senecans. If the circumstances of the crime
indicate that the culprit is a local, chances are fairly
high that the culprit is of German descent.

The statistical properties of population substruc-
ture were first described by Wright (1951), and fur-
ther elaborated by Cockerham (1969, 1972); these
theoretical developments have been recently used to
extend the calculation of LR to allow for some re-
latedness (Nichols and Balding 1991; Balding and
Nichols, 1994; Morton, 1992; Weir, 1994).

AssuMPTION 3. Affinal model. The culprit and sus-
pect derive from the same subpopulation.

Under the affinal model, the appropriate reference
population is the subpopulation of the suspect; how-
ever, typically, the crime laboratory possesses an in-
sufficient amount of data for this approach. Never-
theless, calculations can be based on the larger ref-
erence population. We illustrate these ideas using
a one locus marker. Assume G, = §; = {a@@),a())}
and calculate 1/LR = Pr(S, | G5, Hp) by extending the
reasoning used to obtain (9),

Pr (ge | 9svH0)
( 9 [93 +(1- 03)7(1)] [es +(1- os)’Y(J)]
(1+6,)1 +26;) ’
(18) ifi #J,
[265 + (1 — 6:)7(D)I[365 + (1 — 6:)7(2)]
(1+6,)1 +26,) ’
\ ifi =j.

These formulas can be derived based on the moments
of the Dirichlet, which happen to agree with evolu-
tionary theory (Balding and Nichols, 1994); similar
formulas have been derived directly from evolution-
ary theory by Weir (1994).

If 5 is bigger than 0, then this calculation yields
less evidence for H; than the independence model.
However, as noted in Section 3, for Caucasians
fs ~ 0.0015. This small estimate for g is typical; see
Morton (1992) for a table of values of §5 obtained from
demographic information concerning human popula-
tions that do not include U.S. populations. U.S. eth-
nic groups, being a melting pot of subpopulations,
are expected to have smaller values of 5. See also
Chakraborty and Jin (1992). The results of these
studies, and others, can be summarized as follows:
some major ethnic groups in the United States ex-
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TABLE 1
Allele distribution for Poles and Italians, obtained from Lewontin and Hartl (1991; LH) and Chakraborty and Kidd (1991; CK) MGP =
Pr(G), assuming independence (H-W) and population substructure (True)

LH CK
Locus Allele Poles Italians Poles Italians
Rh cDe 0.047 0.006 0.042 0.033
Cde 0.044 0.015 0.030 0.011
Kell K 0.058 0.015 0.043 0.049
k 0.942 0.985 0.957 0.951
ABO A 0.370 0.370 0.259 0.239
B 0.220 0.070 0.145 0.142
MGP HW 3.69 x 106 5.24 x 106
MGP True 1.19 x 10—€ 5.69 x 10—6

hibit almost no heterogeneity (African Americans,
Caucasians), some exhibit a minor amount of hetero-
geneity (Hispanics), while some exhibit enough het-
erogeneity to have an impact on the calculation of LR
(Amerindians). For the latter, separate databases
are generally kept for the tribes that are largely iso-
lated, such as the Navajos.

The calculations in this section highlight a logical
flaw commonly made by critics of the DNA method-
ology (e.g., Lewontin and Hartl, 1991; Hartl and
Lewontin, 1993). Arguing from the position that
a subpopulation is the “appropriate” reference pop-
ulation, they take the ratio of the allele probabili-
ties in the appropriate reference population to those
in another subpopulation as a measure of the error
induced by typical forensic calculations. This ra-
tio is not relevant because it is a general database,
composed of many subpopulations, that is used by
forensic scientists. Therefore the error in calcula-
tion is the ratio of a calculation like (6) to (1), not
the ratio of particular allele probabilities of subpop-
ulations. Take the example presented by Lewontin
and Hart] (1991) and rebutted by Chakraborty and
Kidd (1991). Allele probabilities for Poles and Ital-
ians are presented for several blod group loci (see
Table 1). Although Lewontin and Hartl express con-
cern that the ratio of the Polish genotype probability
to the Italian genotype probability is 247, the ap-
propriate comparison is the genotype probability of
Poles (7.4 x 1075) to the genotype probability ob-
tained assuming H-W in the mixed Polish-Italian
population (3.7 x 10~%), only a 2.0-fold difference. In
a number of this magnitude, this is hardly an error
of practical importance. In fact the data presented
in Lewontin and Hartl are flawed. [These data are
taken from an outdated reference and include ty-
pographical errors (Chakraborty and Kidd, 1991;
Morton, Collins and Balazs, 1993). Repeating the
experiment with the full set of published data, the re-

sults change dramatically. The multilocus genotype
probabilities are 5.74 x 1075, 4.73 x 1076, 5.24 x 1076
and 5.69 x 108 for the Polish, Italian, H-W and
true mixed probabilities, respectively (Chakraborty
and Kidd, 1991). See Morton, Collins and Balazs
(1993) for further discussion. Apparently there is
little harm in assuming H-W and/or using a general
mixed population rather than a subpopulation in this
instance.]

In general, if the appropriate reference population
is a particular subpopulation and only an estimate
of fs is available, then the magnitude of the error
can be obtained from a comparison of Pr(G, | Gs,Ho)
calculated using (1) versus (18).

4.3 Relatives

A more serious concern is based on the defense “the
culprit was my brother” (Evett, 1992b). Using stan-
dard genetic principles, LR can be calculated when

* the culprit is assumed to be a relative of the suspect.

For example, at a particular locus, identical twins
share both alleles identical by descent (inherited from
the same parent); full sibs (regular brothers) have a
25, 50 and 25% chance of sharing both alleles, one al-
lele and no alleles identical by descent, respectively.
Of course they can also share alleles by chance, which
is called identical by state. From this we can infer
that no matter how polymorphic the genetic markers,
there is at least a (0.25)F chance that an individual
matches his brother at L loci [the exact probability
for full sibs is [1+ 2%, y(k)? +2(,v(R)%)? — Tpy(R)*] /4
(Weir, 1993)].

AssUMPTION 4. Cognate model. The culprit is a
relative of the suspect with probability ¢, of hav-
ing p alleles identical by descent (Cotterman, 1940)
and genotypes of the parents of the suspect are
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unknown.
If G, = Gs = {a@®),a())}, then

Pr (ge I gs, HO)
cg +c17(0) + cov(@)?,
(19) _ if =j)
cg +¢1 [Y@) + ()] /2 + 2cov @),
if i #j.

Clearly LR obtained from this calculation is consider-
ably larger than that obtained in (2) when the culprit
is allowed to be as closely related as a brother (for full
sibs cg = 1/4, ¢1 = 1/2, ¢ = 1/4). For individuals as
closely related as first cousins, the effect is already
relatively unimportant as c; =0 and ¢; = 1/4.

Suppose the courts want to entertain two null hy-
potheses:

Hyo: the samples were obtained from unrelated
individuals;
Hy;: the samples were obtained from brothers.

In this situation the posterior odds of H; no longer
factor as in (3), hence the probability of the competing
hypotheses enter into the calculation in a meaningful
way,

odds (H;)
PI‘(H]_) PI‘ (93» gelHl)

= Pr(Hoo) Pr (S, %e[Hoo) + Pr (Hor) Pr (S5, SelHor)

Two legal avenues have been used by the prosecution
in situations where relatives of the suspect are also
under suspicion. The first is to verify that all near
relatives either have a solid alibi and/or their DNA
does not match. If this avenue is not viable, then the
jury is presented with L®R’s calculated under the two
competing hypotheses separately.

5. GENETIC DIVERSITY AND SAMPLING ISSUES

For a trial involving matching DNA profiles, the
forensic scientist, the prosecuting and defense attor-
neys and the judge are charged with conveying the
significance of the match to the jurors. The signif-
icance depends on the reference population(s) that
are appropriate to the case. The initial decision on
the proper reference population is made by the foren-
sic scientist and the prosecuting attorney; others can
be advanced by the defense or, less frequently, by the
judge. For the majority of cases, forensic scientists
believe the general population is the appropriate ref-
erence population, evaluating the profile probability
in each of several ethnic databases gathered for this
purpose. Frequently, even if the crime is committed

in a region where the vast majority of the people be-
long to a subpopulation (e.g., German ancestry) of an
ethnic group (e.g., Caucasian), the forensic scientist
evaluates the evidence based on the ethnic group,
not the subpopulation. To justify this approach two
arguments are made: (i) individuals of other sub-
populations had access to the crime scene; (ii) there
is little difference between the subgroup and ethnic
group profile probabilities, and this difference is mi-
nor relative to their conservative evaluation of the
evidence.

It is true that binning methods generally yield
smaller LR’s than the statistical methods (see Sec-
tion 6). Nevertheless, from the statistical perspec-
tive, the forensic scientist’s argument invites two
questions: Are the differences among subgroups
small relative to the variation among individuals
within a subgroups (known to be vast) and the vari-
ation among groups (known to be relatively small)?
Are the reference databases a reasonably accurate
reflection of the ethnic group? These questions will
be addressed in Sections 5.1 and 5.2, respectively.

One basic conclusion can be drawn from this sec-
tion. Despite concern about heterogeneity among
subpopulations, the data show DNA profile prob-
abilities are quite similar across subpopulations:
the dominating source of genetic diversity can be
attributed to differences among individuals within
a subpopulation. The relevant literature demon-
strates diversity among subpopulations is less than
diversity among ethnic groups. Because of the
tremendous amount of genetic variability among in-
dividuals, variability among ethnic groups has little
practical impact on the calculation of DNA profile
probabilities for most cases. Moreover, this variabil-
ity can be observed and reported. Variability among
subpopulations has even less effect than variability
among ethnic groups. Results of a study that pur-
ports to have shown otherwise are explained by a
bias in the statistical methodology; the study did not

‘account for sampling error. .,

Concern about the quality of reference populations
obtained by convenience sampling can be eased by
the same reasoning. Obviously, a reasonable effort
must be taken to obtain a representative sample of
unrelated individuals; however, it appears that a
well-designed experiment may not yield results that
differ measurably from a reasonable convenience
sample. This point is illustrated by examining a his-
torical database; allele probabilities obtained from a
stratified random sample are remarkably similar to
results obtained from a convenience sample.

5.1 Partitioning Diversity

From the existing reference populations that have
been classified by major ethnic group (e.g., Cau-
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casian, Hispanic and African American), it is appar-
ent that there is tremendous variability between in-
dividuals within an ethnic group and limited vari-
ation between ethnic groups. In fact the variability
within an ethnic group is so great that the probability
of two unrelated individuals matching is vanishingly
small (Risch and Devlin, 1992a). One would like to
conclude from this that the choice of reference popu-
lation is of little importance. The relevance of this re-
sult is questionable, however, if there is substantially
greater variability between subpopulations within
an ethnic group (subpopulation diversity) than the
variability between ethnic groups (ethnic diversity).
Under this scenario there exist clusters of individu-
als with similar DNA profiles. Hence, although two
individuals picked at random from the mixed popu-
lation may be unlikely to match, two people picked
from the cluster may be considerably more likely to
match.

The authors of the NRC report base their recom-
mendations on this conjecture, espoused by Lewontin
and Hartl (1991) and based on research by Lewontin
(1972). Much attention has focused on the historical
records of markers such as blood antigens which have
been classified by both ethnic group and subpopula-
tion. These results are relevant to the debate because
the results reflect the mating and demographic char-
acteristics of human populations. The analyses of
these historical databases, as well as some modern
VNTR databases, are discussed below.

Let us start by establishing some notation: let
j index subpopulations within ethnic groups, j =

.,dJ; let i index ethnic groups, i = .,I; and let
c 1ndex sampled allelés within subpopulatlon Jj and
ethnic group i, ¢ = 1,...,2C. For simplicity of no-
tation, assume an equal number of individuals C is
randomly sampled per subpopulation, and likewise
an equal number of subpopulations JJ is randomly
sampled per ethnic group.

For the cth allele, let W;;.(k) be 1if the allele is a(k)
and 0 otherwise. Random mating is assumed within
a subpopulation so there is no need to distinguish
Between alleles within or between individuals.

Within the (,j)th level, the probability Wyc(k) =
is 7;j(k). Asin Section 3.1, I assume 7;;(k) varies over
the subpopulations and has conditional expectation
~:.(k) and variance ;.(k)(1 — v;.,(k))ds. Such variabil-
ity induces correlation in the genes of individuals of
a common group:

E[Wyiok) | 7:.(B)] = 7.(B),
E Wy (R)Wiie: ()| 7..(R)]
= ’yi.(k)z + ’)’i.(k)(l — ’yi.(k))as

Following the same pattern we allow ~;.(k) to vary
over ethnic groups with expectation v (k). This

induces correlation between alleles sampled from
the same ethnic group with parameter 6z denoting
coancestry of alleles in common ethnic groups, but
different subpopulations,

E[Wi ()| 7. ()] = .(k),
E[Wyo(R)Wyier(R) | .. (R)]
=7 (B2 +7. (k) (1 —.(k)6g

Lewontin (1972) proposed a partition of diversity
based on a hierarchical application of the Shannon
Information criterion. To measure individual diver-
sity, Lewontin suggested

1
1= 17 ZL: zj: Zk: 7ij(k) log v;i(k).
To measure subpopulation diversity, he suggested
1
-7 Z;’n.(k)log%,(k) b1 =g — bn.

Finally, to measure population diversity, he sug-
gested

=3 . (&) log . (k) — ¢ = 63 — a.
k

Because each level of this partition is a convex com-
bination of the level before, the estimated diversities
must be nonnegative.

Of course, to obtain estimates of the components of
diversity, ¢1 o and 3 are obtained by replacing the
unknown allele probabilities by their corresponding
estimates. To study the effect of using estimates of
allele frequencies rather than the true values, we use
a Taylor series expansion of 5(k) about ~(k), to obtain

the expected value of (k):

E[5(k) log7(#)]

(20)
~ (k) log (k) +

5 k)var [F&)].

It follows from the approximation (20) that ¢1, ¢>2
and ¢3 are biased estimates. Because the number of
alleles sampled to obtain the estimates 7¥;(%), 7;.(k)
and 7..(k) increases rapidly, the variances decrease
rapidly. The ultimate effect is that the subpopulation
diversity estimate tends to possess a strong positive
bias (Devlin, Risch and Roeder, 1993b, 1994). This
bias depends on s and 8z and is reduced for large C.

Applying this method to small samples of subpop-
ulations from around the world, including groups as
remote as Pygmies, Lewontin obtained the follow-
ing breakdown: ethnic diversity and subpopulation
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diversity accounted for 6.3 and 8.3%, respectively, of
the total diversity, while the remaining 85.4% was at-
tributable to variation among individuals of the same
subpopulations.

In the 21 years since this surprising result was
published, standard methods for partitioning vari-
ance have been developed (Cockerham, 1969, 1972)
and a large body of consistent results exists (Smouse,
Spielman and Park, 1982; Nei and Roychoudhury,
1982; Chakraborty and Jin, 1992; Morton, Collins
and Balazs, 1993). These results indicate that sub-
population diversity is dominated by ethnic diver-
sity. Even a study (Latter, 1980) using Lewontin’s
methods, as well as similar populations and loci, but
with substantially larger samples found that 5.6% of
the diversity was attributable to differences between
subpopulations and 10.4% to differences among eth-
nic groups.

Neither Lewontin’s nor Latter’s results are com-
pletely applicable to industrialized societies like the
United States because they give as much weight to
small isolated populations (e.g., tribes of Pygmies)
as to the large open subpopulations that have pop-
ulated the United States. In this regard, Nei and
Roychoudhury’s results are more applicable. They
also found that ethnic groups accounted for about
10% of the diversity, but only 0.5% or less was at-
tributed to differences among English, Germans and
Italians. In industrialized societies like the United
States, the estimate of diversity based on variance
of VNTR allele frequencies among subpopulations is
usually quite small—approximately 0.1% (Morton,
Collins and Balazs, 1993; see also Budowle et al.,
1994). -

The calculations and empirical results presented
in this section suggest that Lewontin’s contradictory
results can be explained, in part, by sampling er-
ror. His method for partitioning diversity fails to ac-
count for sampling error and hence leads to biased
results. Competing methods (e.g., Cockerham, 1969,
1972; Weir and Cockerham, 1984) are based on stan-
dard partitioning of variance and do account for sam-
pling error. ’

5.2 Construction of Reference Databases

From the statistical perspective, the construction
of a reference database (say, U.S. Caucasians) is a
straightforward if onerous proposition: simply col-
lect a stratified random sample from U.S. Caucasians
and obtain the genotypes of that sample. Human
population geneticists and forensic scientists are less
fastidious. To construct a Caucasian database, they
generally collect and type samples that are conve-
nient; for example, from blood banks and law enforce-
ment officers for the FBI database, and mothers and
putative fathers from paternity cases for the Life-

codes database. The forensic scientists (and human
geneticists in general) argue, based in part on results
presented in the previous section, that there is little
difference between a stratified random sample and a
convenience sample for their purposes. Statisticians
without knowledge of human genetics are naturally
skeptical of this claim.

There are reasons, however, to believe this claim is
correct; for instance, consider the implications of the
observations about genetic diversity in the previous
subsection. There are also data that bear directly on
thisissue, in particular, the results of a stratified ran-
dom sample of traditional genetic markers (DHEW
1980), which are described below.

A study that obtained a stratified random sam-
ple of traditional genetic markers (ABO; RH-C, D,
E; Secretor status; haptoglobin; and transferrin) was
sponsored by the Department of Health, Education
and Welfare during the years 1967-1970. The study
stratified according to ethnic group (African Amer-
ican, Caucasian), sex, geographic region (North-
east, Midwest, South and West), income and edu-
cation. Justification for the study was that, while
there existed numerous studies of these markers
from U.S. samples (compiled in Mourant, Kopec and
Domainewska-Sobczak, 1976), “none had been ran-
dom or systematic, and none had been systematic
representative samples of the U.S. population.” In-
deed, the statement is true, but the authors perhaps
overstate the need for their study (especially given
their results) when they argue that published allele
frequencies could not “be considered a representative
sample of the U.S. or any U.S. geographic region.”

What is striking about the results of this study
is how little variability there is among geographic
regions. See Table 2 for the regional data for Cau-
casians. None of the regional differences in allele
frequencies have a probability of occurrence smaller
than 0.05 for either ethnic group. There are also
striking similarities between the results of the strat-

" ified random sample and the studies published in

Mourant, Kopec and Domainewska-Sobczak (1976).
As an example, one such study (Niederman, Gilbert
and Spiro, 1962) examines two markers from a sam-
ple of 1000 Yale students, all Caucasian males. The
results of this study are given in Table 3. Appar-
ently one must conclude that there is not much ge-
netic heterogeneity in U.S. Caucasian populations or
that Yale was doing an excellent job of obtaining a
representative sample of U.S. Caucasians during the
years 1958-1959, or both.

Regarding the VNTR databases themselves, there
are again striking similarities between allele distri-
butions from different regions of the United States
for all major ethnic groups (Budowle et al., 1994),
despite the fact that sampling error must be large
for these relatively small databases. Chakraborty
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TABLE 2
Genotype distributions for Caucasian population, by locality [INE=Northeast (n = 1428), MW=Midwest (n = 1582), S=South (n = 1206),
W=West (n = 1519); U/nd=Unsatisfactory/not donel

Locus Genotype NE MW S w
ABO (0] 0.430 0.410 0.463 0.474
A 0.356 0.358 0.334 0.353
Ay 0.060 0.071 0.081 0.062
B 0.114 0.115 0.093 0.083
AB 0.029 0.032 0.016 0.019
Ay,B 0.011 0.012 0.012 0.008
Rh-D D+ 0.850 0.859 0.829 0.846
D~ 0.147 0.141 0.167 0.152
D 0.003 0.000 0.004 0.002
Rh-C cC 0.180 0.175 0.165 0.188
Ce 0.495 0.510 0.484 0.512
ce 0.325 0.315 0.350 0.300
Rh-E EE 0.031 0.030 0.037 0.027
Ee 0.254 0.259 0.266 0.294
ee 0.714 0.711 0.696 0.679
Secretor status Set 0.762 0.780 0.719 0.754
Se~ 0.202 0.203 0.249 0.225
U/nd 0.037 0.017 0.031 0.021
Haptoglobin 1-1 0.150 0.179 0.152 0.171
2-1 0.460 0.470 0.464 0.475
2-2 0.350 0.325 0.321 0.320
U/nd 0.024 0.010 0.035 0.018
Transferrin cc 0.959 0.967 0.947 0.966
BC 0.007 0.020 0.011 0.011
DC 0.005 0.003 0.007 0.005
Other 0.002 0.000 0.001 0.000
U/nd 0.028 0.010 0.034 0.018
TABLE 3

Genotype distributions for Yale Caucasian male students (n = 1000) versus the stratified random sample of Caucasian population

Locus Genotype Yale NE MW S w
ABO (0] 0.431 0.430 0.410 0.463 0.474
A 0.422 0.416 0.431 0.415 0.415
B 0.110 10.114 0.115 0.093 0.083
AB 0.037 0.040 0.044 0.038 0.027
Secretor status Set ) 0.773 0.791 0.793 0.743 0.770
’ Se~ 0.227 0.209 0.207 0.257 0.230

(1993), who analyzed these regional data using a
method to partition diversity that does not account
for sampling error, found that only 0.4% of the di-
versity occurred among localities within an ethnic
group. Contrast this with Lewontin and Hartl’s
(1991) characterization of the similarity of the re-
gional data: “vague claims of the similarity in the
‘shape’ of the VNTR distribution ... are irrelevant.”

The FBI's database has been subject to the most
criticism, in large part because it is reputed to be
composed predominantly of FBI agents. (In fact,

about 25% of the Caucasian samples are FBI agents.)
It has been argued that analyses demonstrating the
rarity of DNA profiles matches (Risch and Devlin,
1992a) were meaningless because they involve the
FBI database. These criticisms were based on the be-
lief that there are large (genetic) differences between
Caucasian FBI agents and the average Caucasian
American (Geisser, 1992). An analysis of the VNTR
data suggests otherwise. Comparing the FBI agents
to the remainder of the Caucasian database (blood
bank samples), no locus demonstrates a significant
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difference between the fixed-bin allele distributions.
Figure 6 plots the allele probabilities for FBI agents
against the remaining sample for two loci, D2S44 and
D4S139.

It appears that human geneticists are correct: the
databases constructed by convenience sampling are
reasonable proxies for stratified random samples.
Does this mean that the evaluation of DNA profiles
could not benefit from statistical considerations? Of
course not. The regional databases are small and
therefore subject to substantial effects of sampling
error, as well as minor inherent regional differences.
It would seem that this is an ideal setting for ap-
plication of ideas from empirical Bayes methods. A
forensic scientist in Minnesota may wish to use her
Minnesota data, yet draw strength from the numer-
ous other databases from around the country. With
an estimate of fs and an estimate of the the sampling
error, empircal Bayes estimates of allele frequencies
are directly available.

6. CALCULATING LRWITHOUT DECLARING A
MATCH

Berry (1991) introduced a method for obtaining
LR that obviates the need to declare a match. In
Section 6.1, I review the current literature on this
topic, motivating it from a perspective somewhat dif-
ferent from Berry’s. Methods of this type bypass the
matching step of the match/binning method, thereby
potentially avoiding a great deal of argument in the
courts. Although, in theory, LR # 0 for any profile,
in practice, when there are large differences between
comparable fragments, LR ~ 0. Methods based on
continuous versions of the likelihood ratio enjoy some
use in the United Kingdom. Unfortunately, in the
United States, their use is limited to theoretical cal-
culations and comparisons.

6.1 The Likelihood Ratio

To derive LR for VNTR data, first consider the sin-
gle locus case. For simplicity of exposition, ignore
the complications introduced by coalescence. From
the physical properties of the data, it is known that
ifA; < Ay, then X; < X,. This holds (approximately)
in the bivariate normal model, too, because the cor-
relation is large for alleles of similar size. When
(X1,X5) are measurements of a(t) < a(j), then with
high probability X; < X, (as in Figure 2). Hence-
forth, by convention, take X; to be the smaller of the
two measurements.

Let (x1,x2) and ( y1,y2) denote the suspect and the
evidentiary samples, respectively. Under H,, the
samples are obtained as a random draw from the

i [§)
Te)
2° 0
3
L %2 o
m o
S| &
Q
o o]
S18° . .
0.0 0.05 0.10 0.15
Other Caucasians
[aV]
- o
o
1 o
o) o O
€no o
£ S | o °
g
- 00
<
Eg- O%O
- o
4 ooo
o (o]
o %e T T T T T T T
0.0 0.04 0.08 0.12

Other Caucasians

F1G. 6. A plot of the fixed-bin allele probabilities of D2S44 (top)
and D4S139 (bottom) for a partition of the FBI's Caucasian
database: this partition is all FBI agents in one group, and the
remaining Caucasians in the other group.

population and hence the likelihood is

(1) lik(x1,%2,y1,¥2 | Ho) = f(x1,%2) f( y1,¥2)-

Under H; the samples must be from the same alle-
les; they may differ due to measurement error only.
Therefore

lik(x1,x2ay17y21H1)
(22) = Z Y@, ) i1, x2) Bii(y1, y2)-
i<,j

Finally,

_ lik(xq,%2,91,52 | H1) L1

23 LR =
(23) lik (x1,%9,51,2 | Ho)  Pr(S.)

as the measurement error goes to zero. Notice that,
when measurement error is greater than zero, itis no
longer clear whether or not the samples have match-
ing genotypes and hence LR is never precisely zero.

To calculate LR an estimate of v, the genotype
probability distribution, is required. A method for
approximating the likelihood ratio was pioneered
by Gjertson et al. (1988) for paternity cases using
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VNTR’s. A few years later the ideas were further de-
veloped in three articles (Berry, 1991; Berry, Evett
and Pinchin, 1992; and Devlin, Risch and Roeder,
1992).

Devlin, Risch and Roeder (1992, subsequently
DRR) take a direct modeling approach to obtain the
maximum likelihood estimate of the genotype dis-
tribution, 7(-,-). An approximation to the likelihood
ratio is then obtained by substituting 7(, -) into (5)
and (22).

Because they assume the alleles are independent,
it suffices to estimate the allele distribution and in-
voke (1). This method requires an estimate of the
location of the grid of alleles {a(k), 2 = 1,...,m}
and the associated weights {y(k), £ = 1,...,m}. For
the VNTR’s they studied, the distance between sup-
ports a(k) — a(k — 1) is a known quantity, hence
the support can be estimated with great accuracy.
For the purpose of exposition, assume the supports
{a(k), k =1,...,m} are known quantities.

Let (z; < 2g),j = 1,...,r, represent the r or-
dered pairs of observations of fragment lengths in a
reference population of size r. Recall from (4) that
these measurements are comprised of allele pairs
convolved with measurement errors (g1, €5) which are
assumed to be normally distributed. Assuming H-W
and ignoring the correlated measurement error (for
the purpose of estimating « only), the likelihood of
the data in the reference population is that of a nor-
mal mixture,

r 2 m 1
lik(y) = v(k)
Eg ; Y 271'0,%

: exp{ - rig[ i —a(k)]z}.

The maximum likelihood estimate for -y is unique and
consistent. The properties of this estimator are ex-
plored in Devlin, Risch and Roeder (1991b). For a
given genotype, what is the effect of estimating LR(v)
with LR(7)? As one would expect, DRR found that
the variance increased as the observed genotype be-
came more rare. Specifically, the variance increased
almost linearly as a function of LR(¥). This had little
practical effect, however, as a 95% confidence inter-
val about LR(J) continued to be large if LR(Y) was
large.

The DRR approach could also be used to obtain an
estimate of the genotype distribution without assum-
ing independence of alleles; however, the variance of
7(-,-) would be substantially increased, perhaps to
the point of having practical impact.

Berry, Evett and Pinchin (1992) obtain a smooth
estimate of the joint distribution of (A;,Ag) by con-
volving the pairs of observations in the reference

population with a bivariate normal kernel, obtaining
a continuous estimate of the genotype distribution.
The genotype distribution is estimated by

_1y “=20 ey 0
H(u,v) = rgw{(v_zzj),(bc) (0 2) [

where b is a smoothing parameter. The authors sug-
gest that setting &6 = 1 accounts for measurement
error while setting b > 1 accounts for sampling vari-
ation as well [but see Chernoff (1991) and DRR].

Berry, Evett and Pinchin (1992, BEP) estimate (21)
with

2 / / o1, 2) dH(u, 0)

u<v

-2//¢uu(y1,y2)dH(u,v)

u<v

and (22) with

2 / / Guoe1, 22)0u(y1, y2) dH(w, v).

u<v

By assuming independence across loci, the multi-
locus LR can be obtained by multiplying the single
locus LRs obtained from either method.

6.2 Comparison and Performance

This subsection examines the performance of the
various statistical methods for calculating LR. Be-
cause of the tremendous variability in the popula-
tion, LR < 10715 in the vast majority of cases when
the DNA profiles of two randomly selected individu-
als are compared, even with as few as two loci. For
example, using the BEP method and a three-locus
system, Evett, Scranage and Pinchin (1993) found
that, under Hy, LR > 0 in only eight cases out of a

“million while, under H;, LR is typically as large as a

million and often as large as a billion. Similar results
were obtained for other two- and three-locus systems
(Berry, Evett and Pinchin, 1992; Devlin, Risch and
Roeder, 1992).

The BEP and DRR methods perform similarly,
even though they are mathematically quite different
in their formulation. While technically it is correct
to deconvolve (DRR) rather than convolve (BEP) to
obtain an estimate of v, the DRR method has the
disadvantage of having a larger variance and being
more complicated than the BEP method. The BEP
method, on the other hand, reduces its variance at
the expense of introducing a slight bias: it overesti-
mates the weight of the evidence for common pheno-
types and underestimates the weight of the evidence
for rare phenotypes.
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In principle the methods designed for continu-
ous data are better at discriminating between the
two competing hypotheses than the match/binning
method because they avoid the ambiguity of declar-
ing a match and hence have zero chance of false nega-
tives. In addition, when H; holds, the match/binning
leads to an estimate of LR that is typically one to
several orders of magnitude smaller than the value
of LR obtained using (23) (Berry, Evett and Pinchin,
1992; Devlin, Risch and Roeder, 1992; Evett, Scran-
age and Pinchin, 1993). It is difficult to compare
the match/binning method to the continuous meth-
ods when H, holds because forensic scientists use
subjective and objective criteria to declare matches.
In an experiment to assess the probability of false
negatives (and to underscore the inadvisability of the
NRC report’s recommendation to use strict objective
criteria), Evett, Scranage and Pinchin (1993) found
that a method with a match window of three stan-
dard deviations falsely declares an exclusion for 6%
of the cases. Under Hj, they also found that the
match/binning method was less conservative than
the BEP method when a strictly objective match cri-
terion was implemented: 27 and 9 cases out of a
million obtained LR > 1 for the match/binning and
BEP methods, respectively. Using subjective criteria
many of these false positives would be removed from
consideration (Evett, 1993). Unfortunately, the NRC
report calls for objective match criteria, denying the
value of expert judgment. In the absence of expert
judgment, the match/binning method is an unneces-
sarily crude statistical tool.

7. OPEN ISSUES

In this section, I describe a few topics that have not
received extensive coverage in the literature. These
topics include the issue of when DNA profiles can
be assumed to identify unique genomes, database
searching to find suspects, and laboratory error.

7:1 Uniqueness

No two people have the same set of dermal finger-
prints. This fact is relied upon routinely by the courts
despite the fact that fingerprints are only technically
unique if a large portion of the pattern is measured.
In reality only a small fraction of the pattern (a set
number of points) is verified. Likewise, no two people
have the same genome (with: the possible exception
of identical twins). Paralleling dermal fingerprints,
sequencing the entire genome for any given crime
is not feasible or necessary. Although some loci are
considerably more informative than others (Devlin,
Risch and Roeder, 1992), much evidence suggests
that five locus profiles may be variable enough to ap-
proach uniqueness for persons who are not closely

related (henceforth, unrelated persons). This invites
the question, What constitutes a proof of uniqueness?

This question is partly motivated by the sugges-
tion that the courts use the “one-on-N” rule (Lewon-
tin and Hartl, 1991); that is, if the suspect’s profile
does not match any of the N profiles in the appro-
priate reference population, then the courts present
1/N instead of 1/LR. The motivation behind this ar-
gument goes as follows. Of the N possible genotypes
that have been observed, the suspect does not match
any of them; therefore, the probability of observing
this genotype in a random draw from the population
is conservatively estimated as 1/N. Contrast this ap-
proach with the opposite extreme. Suppose we know
that there are n possible genotypes and that they
are all equally probable. Then the appropriate prob-
ability of drawing any given profile by chance would
in fact be 1/n. If profiles of unrelated persons are
unique, then n — oo.

Some preliminary attempts have been made to es-
timate how many distinct genotypes are possible for
a given battery of loci and how one might evaluate
an upper bound for the probability of the most com-
mon genotype. If the number of possible genotypes
is enormous relative to the population and if none
of the genotypes is overwhelmingly abundant, then
this evidence supports near uniqueness among un-
related individuals. The original work in this area
appears to be due to Risch and Devlin (1992a) and
was supported by a careful study by Herrin (1993).

Using techniques described in Section 3.5, Risch
and Devlin (1992a) argued that the number of five-
locus genotype-equivalents was so large that the
probability of a chance match was vanishingly small.
[The genotype-equivalent depends on their choice of
matching rule—2.4%. They subsequently expanded
the matching rule to 5% (Risch and Devlin, 1992b)
and reached the same conclusion.] When indepen-
dence of match probabilities across loci is assumed,

they estimated probability of a five-locus match for

each of the racial groups studies was approximately
10~12. If one were to consider genotypes as dis-
crete entities, the number of different genotypes
must be at least as great as the inverse of the
match probability—the minimum number of geno-
types would occur only when the genotypes are all
equally likely. Another approach to determining the
number of different genotype patterns, which does
not rely on independence across loci, is to use the
distribution of observed genotypes. This approach is
similar to that of estimating the number of unseen
species (Fisher, Corbet and Williams, 1943) and gives
an estimate which is O(10)!!. From these analyses,
it appears that the number of possible genotypes eas-
ily exceeds the total U.S. population size. They also
obtained a crude upper bound to the most common
genotype of approximately 10~6.
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Herrin (1993) repeated portions of this experiment
with other databases. He carefully analyzed the ef-
fect of the match window, allowing it to extend up
to 20%. The effect of this was a drastic increase in
the probability of matches. Nevertheless, he esti-
mated that the number of genotype-equivalents is
extremely large.

The question of a proof of uniqueness remains open
and depends strongly on the complications of related-
ness among individuals. The analyses of Risch and
Devlin (1992a, b) and Herrin (1993) are of unrelated
individuals only.

On a related topic, the methods discussed in Sec-
tion 2 apply when the suspect was selected based on
nongenetic evidence. By contrast, if a suspectisiden-
tified only through evidence obtained from a DNA
profile data bank, where a multitude of individuals
have their DNA profiles on file (analogous to dermal
fingerprint data banks), additional issues arise. Be-
cause DNA profiles are not considered unique, the
data must be interpreted carefully.

Similar issues have arisen in other court cases, for
instance, the Collins case; for details, see Solomon
(1982). In this case, a suspect was identified solely
based on the fact that he had a number of char-
acteristics in common with the culprit (e.g., model
and color of automobile.) This situation differs from
cases where the DNA is found to match, after the
suspect has been identified using other evidence. It
has been argued that the relevant probability in this
case is not the probability of observing a suspect
with the same characteristics as the culprit due to
chance alone. Rather, the appropriate calculation is
the probability that at-least one more individual ex-
ists in the reference population who has the charac-
teristics of the culprit, given that an individual has
already been observed with those characteristics.

Instances where a database of DNA profiles has
been searched to obtain a suspect have already arisen
in Minnesota, Illinois and Virginia. In the Minnesota
case, the DNA evidence used to search the database
was not entered into court. This approach, while
conservative (and recommended by the NRC report),
does not make full use of the information. The ap-
propriate statistical solution to this type of problem
is an open question.

7.2 Laboratory Error

Here we consider a laboratory error to have oc-
curred if, instead of comparing two samples to de-
termine if they match, the same sample was acci-
dentally analyzed twice. For a particular case, in-
formation is available that affects the probability of
a handling error: chain of custody documentation,
number of different profiles analyzed, various con-
trols and other biological information.

There has been very little statistical research on
laboratory error rates. The emphasis has been on
proficiency testing. Actually there is little informa-
tion on proficiency testing, and what little exists is
frequently misinterpreted. For example, consider
the data on laboratory error rates for the California
Crime Laboratory Directors tests (California Associ-
ation of Crime Laboratory Directors, 1988). Based
on these tests, it is often suggested that one labora-
tory’s error rate is 1/50 = 0.02 (e.g., Geisser, 1992).
It is true that 50 samples were sent to each test-
ing laboratory, and that one laboratory had one false
match; however, the tests were structured so that the
laboratory had to draw an inference for all possible
pairwise comparisons of the 50 samples. Even ignor-
ing the greater difficulty of these tests, compared to
the standard forensic case, the error rate for this lab
would be 1/1225 < 0.0008 if the laboratory indeed
made all possible comparisons.

I believe this emphasis on proficiency testing is
misplaced. A great deal of useful information con-
cerning laboratory rates under standard conditions
is available in the form of paternity suit data. In situ-
ations where it is impossible to do proficiency testing
(e.g., probability of a space shuttle disaster), methods
have been developed for incorporating related error
rates into the calculation (e.g., Hartigan 1990). Pre-
sumably a method could be constructed by which in-
formation from error rates in paternity testing, pro-
ficiency testing, and information specific to the case
could be combined to form a posterior probability of
a handling error for a particular case.

8. CONCLUDING REMARKS: CONTRASTING
THE VIEWPOINTS OF A STATISTICIAN
AND THE NRC PANEL

I have now covered many of the statistical issues
inherent in the forensic use of DNA. As I summarized

“in Section 2.4, a committee of the National Research

Council (NRC) recently discussed many of the same
issuesin their 1992 report. Unfortunately there were
no statisticians on the committee, even though a ma-
jor focus of the report was statistical in nature. The
consequences of this omission were numerous minor
and major errors regarding statistical theory and in-
terpretation of population genetic results, which are
now having an impact on the judicial process (Har-
mon, 1993). I will summarize the key issues covered
in this review by contrasting my interpretation of the
data and the literature with the interpretation voiced
by the NRC panel.

The NRC report dismisses the statistically based
likelihood ratio methods (Section 6) as Bayesian
methods that would be unacceptable to the courts,
favoring instead the match binning methods devised
by forensic scientists (Section 2.3). The report misses
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the point that the binning methods simply yield dis-
cretized approximations to a likelihood ratio (Section
2.1) that are somewhat less efficient (Section 6.2).
The arbitrary matching rule is a source of contention
in most cases that come to trial. I recommend that
the courts move toward adopting a continuous ver-
sion of LR so as to avoid unnecessary argument about
matching.

To evaluate the significance of matching DNA pro-
files, the report recommends the ceiling principle, a
method designed to be independent of the heritage
of the suspect (Section 2.4). This is not a satisfy-
ing solution to this complex problem. If the suspect
and evidentiary sample can be assumed to be drawn
independently, then it is the population of possible
perpetrators, not the heritage of the suspect, that is
relevant (Section 4.1). Even if the suspect and cul-
prit are assumed to be related, there are better ways
to adjust the calculation than the ceiling principle
(Sections 4.2 and 4.3).

The other motivation for the ceiling principle of
match/binning is population heterogeneity. In fact,
population heterogeneity has been the crux of the
arguments about quantifying the weight of the evi-
dence. One consequence of population heterogeneity
is that it leads to dependencies among events com-
prising a VNTR profile (Section 4.2). Another con-
sequence is that some DNA profiles will tend to be
more common in their cognate subpopulation than
in the mixed population (Sections 3.1 and 4.2).

Regarding population heterogeneity, the report re-
lies on only one study. Based on the findings of this
study, the NRC report claimed that there are larger
genetic differences between individuals of British,
French and Italian heritage than there are between
individuals of African American, Caucasian and Ori-
ental heritage. This curious finding about human
genetics results is based on a 1972 study that used
a method to partition genetic diversity that did not
account for sampling error and is inherently biased
toward providing such a result (Section 5.1). More re-
cent studies demonstrate the opposite is true: there
is greater diversity among African Americans, Cau-
casians and Orientals, but this diversity is dwarfed
by individual variability (Section 5.1). The conse-
quence is that DNA profiles obtained from three or
more loci are rare in all ethnic groups. Exactly how
rare depends somewhat on the choice of reference
population. For instance, the range may span one
to two orders of magnitude, ‘but such a range will
have little practical impact on LR’s as large as sev-
eral million.

Violations of independence also are indicative of
population heterogeneity. Tests of independence
rarely detect any deviations from independence (Sec-
tions 3.2-3.5). Moreover, when statistically signifi-
cant deviations are observed, they frequently do not

lead to deviations of practical importance (Section
3.6). The report argues, based on a two-allele lo-
cus, that statistical tests of independence lack power
to detect dependencies induced by population sub-
structure. In fact, such tests (Sections 3.2 and 3.5),
while not sensitive to weak dependencies, are pow-
erful if mixture induces meaningful differences be-
tween true genotype frequencies and those estimated
assuming independence.

Finally, statistical methods to account for any ex-
isting heterogeneity are readily developed and spring
naturally from population genetic theory (Sections
3.1 and 4.2). I recommend that corrections, when
necessary, be based on population genetic and statis-
tical theory. Ad hoc corrections such as the ceiling
principle are difficult to justify and sometimes ob-
scure the need for sensible corrections such as those
described in Section 4.3 where the suspect and cul-
prit are assumed to be close relatives.

It is my hope that this review has informed the
reader about the major statistical issues in this area,
as well as the results. Open statistical issues on the
forensic use of DNA exist (Section 7), and others will
become obvious as the technologies and databases
continue to evolve.
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