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Comment

Anand Gnanadesikan

It is always easy to find flaws in a review paper
which attempts to cover the whole of one’s field. It
is a persistent feature of such papers that they will
inevitably omit what someone considers the central
issue of the field. While the present report does con-
tain some such omissions, it also raises a great many
important issues. The application of a number of
these issues to the field of satellite remote sensing
is well presented in the report and is, in my opinion,
important to the development of the field as a whole.
In this discussion, I would like to amplify some of
the issues raised, by looking at some different ex-
amples than those presented in the text. The use of
these examples should not be taken as denigrating
the importance of satellite-based remote sensing for
understanding oceanic dynamics. Rather, I would
like to show how some of these issues raised are of
broad interest to a range of oceanographers.

In making comparisons between theoretical mod-
els of the ocean and real data, a number of problems
may arise. In this paper I will focus on four such
problems, illustrating each with a separate example.

1. Are the fundamental assumptions of the the-

ory statistically valid? If not, does this explain
the difference between theory and data or dif-
ferences between different measurements?

2. Can we find a theoretical quantity that means

something?

3. Can we extract this quantity from the data?

4. What are the errorsinvolved in making the mea-

surement and do they explain any discrepancies
between theory and data?

> One example where the statistical validity of a
theory has been the subject of much discussion
in the oceanographic literature is the question of
microstructure and eddy diffusivity. Section 1 of the
report noted that mixing in the equations of motion is
often parameterized using an eddy viscosity (in the
case of momentum) or diffusivity (in the case den-
sity). One of the standard ways of estimating the def-
fusivity is by looking at the velocity shear on scales of
a few centimeters. The turbulent dissipation ¢ (rep-
resenting the conversion of kinetic energy to heat)
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may be estimated from the small-scale shear
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where v is the molecular viscosity, u is the horizontal
velocity along some axis, z is the vertical direction
and ( ) denotes averaging of the shear variance over
a wavelength range from 100 cm to the order of 1
cm. Within the stratified interior, the turbulent dis-
sipation is forced by instabilities with scales of order
100 cm associated with the field of internal gravity
waves. The assumption is made that the turbulence
over some portion of the water column is in a sta-
tistical steady state and that some fixed fraction of
the energy f (of order 0.2) goes to transporting den-
sity. Then if the density flux is given by —K,0p/0z,
where K, is the vertical eddy diffusivity and dp/dz
the density gradient, then

KN = K59
p Oz

is the energy flux required to support this density
flux and

__f ¢
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(N is the buoyancy frequency—of order 0.001 to 0.01

.Hz—which is the natural frequency of oscillation of

a fluid parcel in a stably stratified water column).
These measurements yield eddy diffusivities of order
0.1-0.5 cm?/s (Gregg, 1987; Polzin, 1992).

If one looks at closed basins where ocean water en-
ters at one temperature, is warmed by diffusion and
upwells throughout the basin at the warmer temper-
ature, it is possible to estimate the required eddy
diffusion coefficient (Munk, 1966; Hogg et al., 1982,
Johnson, 1990). Using these methods, the required
eddy diffusivities are of order 1-5 cm?/s, a difference
of an order of magnitude. Explaining this discrep-
ancy is one of the more interesting problems in phys-
ical oceanography today.

In a series of papers in the 1980’s, Gibson (1986,
1987) proposed that the reason turbulence measure-
ments underestimate the diffusivity is that the ac-
tual mixing events are themselves very rare. He
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noted that the underlying distribution for ¢ is approx-
imately lognormal and intermittent. By estimating
Ome from a number of data sets Baker and Gibson
(1987) argued that profilers were missing most of
the energetic mixing events and grossly underesti-
mating the real diffusivity. He also argued that far
larger samples (hundreds or thousands rather than
dozens) of profiles were actually necessary to esti-
mate the true diffusivity.
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Fic. 1. Illustration of chaotic advection: (a)—(d) stream function
of the underlying flow field (given by equation (3) for Ly = Ly = 1,
w = 27/10) at various times illustrating a half-cycle of a blinking
vortex; contour interval is 0.1; (a) T = 0; (b) T = 3.33; (c) T' = 4.17;
) T = 5; (e)~(g) particle trajectories over five cycles (T = 0-50)
for three points initially close together; (e) trajectories starting at
X = 0.5, Y = 0.5; (D) trajectories starting at X = 0.49,Y = 0.5; (g)
trajectories starting at X = 0.51,Y = 0.5.

Very few oceanographers accept this argument.
There are good reasons for their stance. Profiler ob-
servations have been found to be relatively consis-
tent and repeatable. A recent paper (Gregg, Seim
and Percival, 1993) showed that for a number of data
sets the spread in ¢ could be understood by normaliz-
ing the rate with amplitude of the internal wave field.
When a single data set representing a homogeneous
wave field was considered, much of the spread van-
ished. They argued that the large values of oy, . were
the result of mixing data from different data sets with
different levels of energy in the wave field and thus
differnt mean values of €. Additionally, new mea-
surement techniques which use very tiny amounts
of passive tracers to measure diffusivity seem to be
yielding results consistent with the turbulence pro-
filers (Ledwell, Watson and Law, 1993). Nonetheless,
the discrepancy between basin-averaged diffusivities
and point-averaged diffusivities remains a nagging
one. While the recent paper by Gregg, Seim and Per-
cival is a major step in the right direction, informed
statistical comment on this issue might provide use-
ful insight.

We have seen how uncertainty about the funda-
mental statistics governing oceanic mixing can affect
our estimate of the vertical eddy diffusivity. Turning
now to the horizontal diffusivity, we will consider a
process where the theory may be well defined, but it
is unclear how to convert the theoretical results into
something that might be meaningfully tested. The
process is known as chaotic advection (see Ottino,
1989, for a review). Its basic premise is that one can
take a flow field which is perfectly deterministic in
the Eulerian (fixed point) sense, and end up with par-
ticle trajectories which are chaotic. It is an excellent
illustration of the problem, summarized well in Sec-
tion 3 of the report, of going between a Lagrangian
and Eulerian representation of flow fields.

A simple example of chaotic advection may be
gained by considering the model flow field

fl—: =u=2(y-1/2) - sin(zgx)
(3a) Ty N
cos (L_) (1 +cos (wt)),
'y
%— =v= 2%5 cos(zl_fx)
(3b) Y . *
.sin( 2 (1 +cos(wt)),
'y

where u is the east—-west velocity and v is the north—
south velocity. The flow field is shown in Figure 1
a—dforL, =L, =1,wt =0,7/2, 57/6 and w. The flow
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corresponds to a linear shear with superimposed vor-
tices which “blink” on and off. Figure le, 1f and 1g
shows trajectories of three particles in the above flow
field which start off close to each other and diverge
over time. In a remarkable paper, Ridderinkhof and
Zimmerman (1992) showed that chaotic advection
similar to that described above may actually occur
in the field as a result of tidally driven flows. In such
cases, the question of what the actual “horizontal dif-
fusivity” should be a difficult question and would de-
pend critically on the scale over which one was work-
ing. For spatial scales long compared with L, and
temporal scales long compared with T, one might
treat chaotic advection as a random-walk problem
and use wL? as a reasonable approximation for the
diffusivity. On spatial scales small compared with
L, and temporal scales small compared with 1/w it
is not clear at all that this would be the right scale to
use. (Another question of interest in connection with
this flow field is how many Lagrangian floats would
be needed to characterize such a flow accurately.)

We have seen that non-Gaussianity and nonlinear-
ity may make for difficulty in matching a theoretical
prediction with field data. The fact that the data it-
self is nonlinear may also cause problems. To see
this, we turn to yet another example from the field of
oceanic turbulence.

In Walden, Henry David Thoreau noted that when
the wind blew “I see where it dashes across the water
by the streaks” (Thoreau, 1854). Langmuir (1938)
showed that these streaks were due to helical vor-
tices aligned with the wind which created slicks in
their convergence zones. In honor of his pioneering
investigations, the vortices have come to be known as
Langmuir cells. Figure 2a shows contours of stream
function from a numerical model of Langmuir cells
which I have developed as part of my dissertation
work. The arrows show the direction of the cross-
cell velocity. Figure 2b shows contours of velocity in
the alongcell direction. There are strong plumes of
alongeell velocity (denoted by the “+” marks) asso-
ciated with downwelling zones. These plumes are
strongly nonlinear. More than one scale of cells
may be present at one time. In between the plumes
there are regions of low alongcell velocity (denoted by
the “—” marks) which are associated with upwelling
zones. The velocities associated with these plumes
are of order 5-10 cm/s. When attempts are made to
measure the velocities of Langmuir cells with cur-
rent meters, they are made in an environment with
surface gravity waves (with frequencies of 0.1-1 Hz
and velocities of order 100 cm/s) and low-frequency
tidal and inertial motions (with frequencies of 10~*
Hz and velocities of order 50 cm/s). Langmuir cells,
as noted in the report in Figure 2.1, fall in an inter-
mediate band in frequency and have much smaller
velocities.

Our group at Woods Hole has attempted to isolate
structures similar to those seen in these model runs
by looking at data from strings of current meters
suspended off of stable platforms and off of buoys.
Our basic hope was that the low-frequency currents
would sweep cells past the current meter array, so
that the time series from a vertical array of current
meters would correspond to a two-dimensional spa-
tial slice. While we have had very occasional suc-
cess with reconstructing cells from the current me-
ters (Weller et al. 1985) and have been able to relate
the overall variance to dynamical quantities (Weller
et al., 1993; Gnanadesikan, 1994), it has been hard to
extract consistently features which we could identify
in all confidence as Langmuir cells. Part of the prob-
lem is that the velocity structures associated with the
plumes are highly nonlinear. As a result, the energy
associated with the plumes may have a large spread
in frequency space, making simple band-passing dif-
ficult. Additionally, velocities in the alongcell and
crosscell directions are out of phase. As a result,
empirical orthogonal function analysis will tend to
split a single wavelength of cells into alongcell jets
and crosscell vortices. This is illustrated in Figure 2c
and 2d, where the empirical orthogonal functions are
computed from the model velocity fields in Figure 2a
and 2b. The solid lines show the horizontal velocity
in the crosscell direction, the dashed lines the hori-
zontal velocity in the alongcell direction and the “+”
marks the vertical velocity. The first mode (contain-
ing 39% of the variance) isolates the horizontal ve-
locities associated with the vortices, while the second
mode (containing 15% of the variance) isolates strong
vertical and alongcell velocities associated with the
downwelling zones. Simple time domain EOF’s are
clearly not the right method for isolating structures
of this sort.

The problem of isolating signal from noise is closely
related to the fourth issue mentioned earlier, that of
characterizing errors associated with measurement
techniques. While space does not permit me to ex-
plain the problem fully, I feel it would be remiss not
to point out one context in which considerable room
for interaction between statisticians and oceanogra-
phers exists, that of acoustic tomography. The reader
will doubtless be familiar with the concept of the
CAT scan, in which an array of x-rays is used to cre-
ate three-dimensional images. This problem is one
of the outstanding examples of inverse theory. Re-
cently, similar techniques have been proposed to look
at oceanic circulation. A schematic of how this works
is shown in Figure 3. In much of the ocean, the profile
of sound speed with depth has a minimum at about
1000-1500 meters depth. This low-sound speed layer
acts as a waveguide along which sound can propagate
for distances of thousands of kilometers. Because
there a pulse of transmitted sound will be received
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Fic.2. Isolating Langmuir cells from model data: (a) crosscell stream function field associated with Langmuir circulation from a numerical
model; arrows show the direction of flow; (b) alongcell velocity field associated with Langmuir circulation from a numerical model, showing
plumes of high alongcell velocity (+) and regions of low alongcell velocity () (c) velocity structure versus depth for first EOF of the velocity
field shown in (a) and (b); (solid line) crosscell horizontal velocity, (dashed line) alongcell velocity, (+) vertical velocity; (d) same as (c) for

second EOF.

as a series of pulses at a receiver, each correspond-
ing to a different path, each received pulse will sam-
ple a slightly different portion of the water column.
Since the sound speed is a strong function of temper-
ature, one can use changes in the travel time of vari-
ous pulses to infer changes in the temperature struc-
ture. For more details, the reader is advised to refer
to Munk and Wunsch (1979), which introduces the
concept of acoustic tomography, and Chester (1993),
which discusses results from a field experiment.
One question which arises in regard to measure-
ments of this type is their “response function” to

oceanic phenomena. What kinds of signals will tomo-
graphic measurements pick up and what phenomena
will they miss? Can the measurements be tuned so as
to better pick up certain features? It is clear that in-
sight from statisticians would be of help in this area.

To summarize, I would like to reemphasize the
points made in the NRC report that oceanic flows
are frequently nonlinear, often nonstationary and
sometimes non-Gaussian. These facts can lead to
problems in comparing models of oceanic processes
with field observations. The problems may arise be-
cause the underlying statistical nature of the phe-
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FiG. 3. Cartoon illustrating the concept of acoustic tomography.

nomenon is not well understood, because it is difficult
to decide how to go from theory to data, because ex-
tracting nonlinear structures from data is difficult or
because the sensitivity of measurement techniques

Comment
Greg Holloway

The panel has done a commendable job of collect-
ing material of such diverse nature into a concise,
readable overview which recounts a brief history of
the subject, present state of the art and also some
research outlook. Here I only mention a research
thread which is not included in the report—mnot in-
cluded for good reason: the topic is sufficiently con-
troversial that it may well be set outside of more
“mainstream” directions. The question is to what
extent methods from statistical mechanics may help
clarify what we suppose are the “equations of motion”
for oceans.

First reaction to this question is often dismay. Al-
though ability to observe the ocean is limited, and
ability to model the ocean numerically is limited, at
least we have the equations of motion. They come
from textbooks after all. Yet, when we think of some
of the very reasons that move us to statistics (viz.,
limited ability to observe a noisy system), we may
reconsider the confidence with which we know the
equations of motion. When a numerical model com-
putes temperature or velocity or elevation at some
grid point at some time, do we really mean that is
supposed to be the temperature at that point at that
time? Or do we have in mind some expectation for
some space-time “lumped” temperature? Conceptu-
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to various phenomena is not well understood. In-
formed statistical expertise is essential to alleviate
these difficulties.
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ally we might pose the problem as follows: Given
a probability distribution for possible states of an
ocean at time £y, and given a probability distribu-
tion for forcing functions (possibly also probabilistic
boundary geometries), what is the probability distri-
bution for states of the ocean at later time #;? In prin-
ciple one might imagine solving a prognostic equa-
tion for evolution of probability. In practice this is too
ambitious. However, if one had probability at ¢;, then
it would make sense to ask for temperature, velocity,
kinetic energy, etc. as moments of probability. If we
cannot realistically hope to solve for time-dependent
probability, perhaps we can write equations of motion

~only for moments of probability. Here our dilemma

becomes clear: which textbooks give us equations of
motion for moments of probability of ocean states?
It is in this sense that we may not have the right
equations of motion. Is this only fancy talk that
makes a hard problem harder? It is possible—but
here is the controversy—that we might start mak-
ing skillful ocean modelling easier. At least we may
identify systematic corruptions in the presently as-
sumed equations of motion that can be improved
upon. There are theoretical hurdles. The few prob-
lems that can be dealt with carefully from statistical
mechanics are so idealized (such as unforced, invis-
cid, finite degrees of freedom, quasi-geostrophic) that
they are too far from oceanic reality to be deemed
meaningful. More meaningful applications includ-
ing forcing and dissipation can be approached from
disequilibrium statistical mechanics but the effort is



