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magnitudes of dispersion hyperparameters which
are often unknown. As an example, consider the
simple balanced, a_ldditive, two-way ANOVA model,

Yp=n+to+B+ey, i=1,..1
j= 1’--~;J,k= 1,...,K,
where ¢,;;, ~ N(0, 0.2), a; ~ N(0, 0.2), B, ~ N(, %2)

and we place a flat prior on u. Let n, = u + «; and
p; = m + B;, so that n; centers «;, and p; centers B;.
Then we can consider four possible parameteriza-
tions: (1) w-a-B; (2) u-n-B8; (3) w-a-p; (4) p-n-p.
Gelfand, Sahu and Carlin (1994b) discuss, under
varying relative magnitudes for g,, o, and o, which
of these parametrizations is best in terms of mixing
(using the diagnostic of Gelman and Rubin, 1992b),
which affects the rate of convergence, and in terms
of within-chain autocorrelation, which affects the
variability of resultant ergodic averages used for
inference.

Each of the four parametrizations produces a
distinct Gibbs sampler. Following our earlier re-
marks, we create a fifth MCMC algorithm, which
consists of cycling through these four parametriza-
tions in sequence, running one complete single-site
updating for each. To keep matters simple, we fix
the values of the variance components, set I = J =
K = 5 and use a sample of data generated from our
assumed likelihood. Two interesting cases are
shown in Figures 1 and 2, which display monitoring
plots, estimated Gelman and Rubin scale reduction
factors (labeled “G & R”) and lag 1 sample autocor-
relations (labeled “acfl”) for five initially overdis-
persed parallel chains of 500 iterations each under
the five algorithms. (To conserve space, we show
results only for «,;, @y, B;, B, and w.) The first
figure sets o, = 1, o, = 10 and o3 = 1, while the
second sets o, = 1, 0, = 10 and o3 = 20. In Figure
1, the algorithm based on parametrization #2 (a’s

Comment

Charles J. Geyer

The authors are to be congratulated on this very
nice paper, a tour de force in which all of various
aspects of MCMC are completely mastered. I find
myself largely in agreement with everything in this
paper. What comments I have are not really dis-
agreements but mere differences in emphasis.

Charles J. Geyer is Assistant Professor, School of
Statistics, University of Minnesota, Minneapolis,
Minnesota 55455.
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centered) is unequivocally the best of the first four,
as predicted by the theoretical work in Gelfand,
Sahu and Carlin (1994a, b). Matters are less clear
in Figure 2, with each of the individual parametri-
zations having problems with one or more of the
parameters. Notice that in both figures, for each
component of the parameter space, the fifth algo-
rithm achieves mixing which is as good as that of
any of the first four. In fact, in Figure 2, the
behavior of w is satisfactory only for this composite
algorithm. Note also, however, that the lag 1 auto-
correlations for the fifth algorithm are fairly high,
arising as weighted averages of those from the first
four, so the corresponding samples must be used
carefully in computing expectations via Monte Carlo
integration.

Hence with regard to convergence, in using deter-
ministic cycling through a medley of transition ker-
nels, the analyst is able to achieve the benefits of
each (and possibly more) without having to identify
their relative quality. The computational effort in
switching transition kernels in our examples only
requires changing from one linear parametrization
to another, and thus is quite efficient. Lastly, in
situations where Metropolis steps are to be used
within Gibbs samplers, thus necessitating proposal
densities, adaptive adjustment of the dispersion of
these proposals can be implemented concurrently
with the deterministic switching of transition ker-
nels.

ACKNOWLEDGMENTS

The work of the first-named author was sup-
ported in part by NSF Grant DMS-93-01316, while
the work of the second-named author was sup-
ported in part by National Institute of Allergy and
Infectious Diseases (NIAID) FIRST Award 1-R29-
AI33466.

SEPARATION OF CONCERNS

Let me begin my comments with a digression.
Dijkstra (1976) in his seminal book on formal anal-
ysis of the correctness of computer programs intro-
duces the notion of “separation of concerns.” In
computing we have “the mathematical concerns
about correctness [of algorithms and. programs im-
plementing them] and the engineering concerns
about execution [speed, memory requirements, user-
friendliness, featurality]” and these should be kept
separate. There is no point in worrying about speed

v

Statistical Science. NIKORE ®

WWW.jstor.org



BAYESIAN COMPUTATION AND STOCHASTIC SYSTEMS 47

before one has a program that produces correct
results.

In MCMC, of course, speed and correctness can-
not be kept completely separate, since a sampler
that is perfectly correct in the sense that the com-
puter code correctly implements a Markov chain
with a specified stationary distribution can mix so
slowly that astronomical computing times would be
required before the samples were representative of
the stationary distribution. So a millionfold in-
crease in speed might be the difference between a
useful sampler and a useless one. A 10-fold or even
a 100-fold increase will usually not make such a
difference, however much it may affect ease of use.
Thus speed and correctness are concerns that can
usually but not always be separated.

This notion of “separation of concerns” can be
extended beyond computing. We have scientific con-
cerns about how well our statistical models and
methods mesh with the scientific facts and theories
that apply to the data at hand. We have concerns
about the philosophy of statistics, whether to apply
Bayesian, likelihood, decision-theoretic and so on
theories and methods, and we have purely technical
statistical concerns about details of procedures.
These concerns should also be kept clearly sepa-
rated, from each other and from the correctness
and efficiency concerns, although they often are
not.

The authors deserve high marks for dealing with
scientific concerns. The analysis of gamma-camera
images in Section 6 and the even more impressive
analysis of SPECT images in Weir and Green (1994)
fully incorporate the relevant physics. There seem
to be no places where computational or mathemati-
cal statistical convenience is permitted to interfere
with analyzing what is the scientifically correct
model.

I am less happy about the separation of philo-
sophical and computational concerns. Indeed, the
first two words of the title “Bayesian computation”

confuse the two. Although no one seems to have"

exactly said “MCMC is a strong reason to become
Bayesian,” many people seemr to have picked up
this message somewhere. Some of the statements in
this paper could be interpreted to say something
like this, whether or not this is what the authors
intend. Although commonplace, it bears repeating
that there is nothing Bayesian about MCMC. It is
potentially useful anywhere in statistics where
there are technical difficulties in computing proba-
bilities, expectations and distributions. As this pa-
per and many others show, MCMC has brought
tremendous progress in Bayesian statistics. As is
shown by Geyer and Thompson (1992) and other
papers cited in the Introduction, to which I would

like to add Gelfand and Carlin (1993) and Geyer
and Mgller (1994), similar progress has been made
in likelihood inference. Complex dependence, miss-
ing data, conditional likelihood inference, inequal-
ity constraints on the parameters are all easily
handled. It seems likely that this pattern would be
repeated if MCMC were applied to other areas.
Computational convenience is a poor substitute for
philosophy.

I realize that Besag, Green, Higdon and
Mengersen probably did not intend what they said
to be read with the meaning I am criticizing. The
point about Bayesian methods being most useful for
ranking and selection, for example, is philosophical
rather than computational. I say this only to fore-
stall a very common reading of such language.

I am also somewhat unhappy with the emphasis
on “full conditionals” as a basis for MCMC, explic-
itly stated in the first sentence of Section 2.3.1. This
shows inadequate separation of concerns. Strictly
speaking, conditional probability has nothing what-
soever to do with MCMC. It plays no role, for
example, in a “random walk Metropolis” sampler. I
realize the tremendous role that the local Markov
property has played in spatial statistics, following
Besag (1974), and in many other areas, such as
graphical models. However, this is a philosophical
concern relating to what distribution to simulate—
what is the statistical model? It should have no
effect on our computational concerns. We should
start writing code with a clean slate. If Gibbs-like
samplers using full conditionals are most efficient,
well and good. If not, they should be avoided. Be-
sag, Green, Higdon and Mengersen realize this,
since they always avoid Gibbs whenever it becomes
difficult. But why any preference for Gibbs?

CHOICE AMONG SAMPLING SCHEMES

Separation of concerns tells us to keep apart
choices of sampling schemes made to avoid slow
mixing or nonconvergence and choices that make
minor improvements in efficiency. Mode jumping,
mentioned in Section 4.1, is a remedy for slow
mixing in some problems, but it requires a great
deal of problem-specific knowledge. The Swenden-
Wang algorithm and similar algorithms (grouped
under the name “cluster algorithms” by the physi-
cists) provide tremendous improvement over
single-site updating but are not applicable to all
problems. No cluster algorithms have been pro-
posed for large graphical models in genetics and
expert systems. Simulated tempering is a general
solution potentially applicable to all problems. It
may not provide convergence if the wrong form of
“heating” is chosen, but if a good form is found, it
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will force convergence. Whenever there are worries
about convergence, and no better problem-specific
acceleration scheme comes to mind, simulated tem-
pering should be tried.

Curiously, the existence of one possibly impor-
tant acceleration scheme seems to be denied in the
last paragraph of Section 2.4.5. It is not true that
block updating is “rarely practicable,” unless by
“small and discrete” state space the authors refer to
the state space at a single site. It is practicable,
although difficult. Jensen, Kong and Kjarulff (1993)
use block Gibbs sampling with very large blocks to
sample a genetics problem on a pedigree with 20,000
individuals. The secret is that sampling the large
blocks can only be done using so-called peeling
methods (Cannings, Thompson and Skolnick, 1978;
Lauritzen and Spiegelhalter, 1988). This entails
much computational complexity and theory going
far beyond ordinary Gibbs sampling, but it does
work, at least for some large problems.

The other choices among sampling schemes dis-
cussed here seem to help only with efficiency, not
with convergence. There the standard should be
computing time necessary to get a specified Monte
Carlo error (as used to select ¢ in Section 6.2).
Analogy with computer science says that there are
two important strategies for improving efficiency:
(1) radically change the algorithm and (2) speed up
the inner loop. The first really applies more to
methods such as mode jumping, cluster algorithms
and simulated tempering. In regard to the second, a
very good suggestion is the simple Hastings update
with a uniform proposal used in Section 6.2. It may
not be as efficient in terms of number of iterations
for a fixed precision-as more complicated samplers,
but the inner loop runs as fast as possible. This
may not always turn out to be the best, but it
should always be one of the samplers under consid-
eration.

From a somewhat different angle, it may be that
another simple sampler should always be a strong

candidate, at least for continuous state spaces. This
is the single “random walk” Metropolis or Hastings
update that updates all variables at once using a
Gaussian proposal. The reason here is not so much
computational efficiency (although because of its
extreme simplicity it may win here too), but be-
cause of its theoretical simplicity. Roberts and
Tweedie (1994b) give a geometric ergodicity theo-
rem for this algorithm that depends only on the
stationary distribution having exponential tails and
asymptotically round contours. It does not depend
in any way on the proposal distribution. Such a
result seems unlikely for more complicated sam-
plers composed of many elementary update steps.
Even if the complicated samplers are slightly more
efficient, something rarely investigated, the theo-
retical simplicity obtained when all variables are
updated simultaneously may be worth some loss of
efficiency. I am not sure I agree with this point
myself, but it is worth thinking about.

That having been said, I should like to propose a
reversible scan to add to those in Section 2.4.2.
Choose a variable uniformly at random, excluding
the one last updated. Then scan forward or back-
ward in numerical order, choosing the directions
with equal probabilities. This consumes only one or
two uniform random variates per scan, has little
other overhead, never updates the same variable
twice in succession, updates each variable once per
scan and is reversible.

SENSITIVITY ANALYSIS

I should like to point out Geyer (1991b) as an-
other independent proposal of sensitivity analysis
via importance sampling besides those of Besag
(1992) and Smith (1992) mentioned in Appendix 3.
Of course the real credit goes to those who actually
implement the proposals, as Besag, Green, Higdon
and Mengersen have done. Some other nice work
along the same lines has been done by Doss and
Narasimhan (1994).



