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Tree-Indexed Processes
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Abstract.

This article examines a recent body of work on stochastic

processes indexed by a tree. Emphasis is on the application of this new
framework to existing probability models. Proofs are largely omitted,

with references provided.
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1. INTRODUCTION

Tree-indexed processes are not really new sto-
chastic processes, but rather new ways of looking
at already existing probability models. Consider, by
way of analogy, ordinary continuous-time stochastic
processes. These are of course “merely” collec-
tions of random variables indexed by the positive
reals; but when viewed as random trajectories,
powerful concepts such as filtrations and stopping
times naturally arise, which are fruitful—indeed,
necessary—for successful analysis of the original
problems. Similarly, many probability models in-
volving trees may be described as follows. First pick
a tree, either deterministically or at random. Then
attach some randomness to the tree (think of real
random variables on each edge or vertex) and ask
questions about the resulting structure. The tree-
indexed viewpoint is to think of this as a random
field indexed by the space of paths through the tree
and taking values in the space of sequences of real
numbers. [As far as I know this viewpoint dates
from 1990, when the preprint of Evans (1992) was
circulated.]

My main concern in this article is to illustrate
how the tree-indexed view may be applied to a va-
riety of well-known models, and to show how some
general theory may be used to extract informa-
tion about these models in ‘a relatively painless
‘way. Just as potential theory (the study of poten-
tial, energies and capacities) is almost synonymous
with the classical theory of Markov processes, the
potential theory of trees is behind most of the
theorems surveyed here, and in fact I will not
draw a distinction between tree-indexed theory
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and potential theory or second-moment methods on
trees. Since trees are easier to analyze than lat-
tices, there are many papers proving results on
trees as a somewhat unmotivated alternative or
a “high-dimensional analogue” to Euclidean space
(mea culpa). In this survey I will emphasize mod-
els where the trees are there because nature put
them there. I will also discuss several applica-
tions of tree-indexed processes to questions that do
not appear at first glance to involve trees. Indeed,
the applications of tree-indexed theory to the in-
tersections of random subsets of Euclidean space
via the tree representation of [0, 1]¢ are some of
the most compelling justifications of tree-potential
theory.

There are two ways I can indicate the scope of this
survey. One is to begin by listing the models and
the questions that are addressed by tree-indexed
theory. The other is to state the basic definitions
and the fundamental theorems. This section takes
the former approach, discussing questions sus-
ceptible to tree-indexed theory. These questions
predate by far the emergence of tree-indexed the-
ory, so much of the background given here is quite
classical. In particular, problems in branching pro-
cess theory and fractal geometry which motivate
some of the tree theory are discussed on an ele-
mentary level. Readers impatient to see technical
definitions should skip ahead to Section 2.1 and
read those before continuing, then read Section 2.2
for a prototypical application and Section 2.3 for
statements of all the theorems. Section 3 applies
these to branching models and discusses several
of the ways that analysis of branching random
walk may be applied to models of disparate phys-
ical phenomena. Section 4 applies the tree theory
to the geometry of random Cantor-like sets. Fi-
nally, Section 5 mentions some problems of interest
that are internal to the theory of tree-indexed
processes.
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1.1 Branching Models

The simple, or Galton—Watson, branching process
models the family tree of descendants from a single
progenitor. This individual has a random number of
children (possibly zero), each of which in turn has
a random number of children, and so on, with each
of these random numbers being independent picks
from the same offspring distribution. The resulting
random tree was studied in the previous century by
Bienaymé, by Galton and Watson and, subsequently,
by others; see Heyde and Seneta (1977) for some of
the history.

Many variants have been considered. The mul-
titype process separates individuals into different
types (usually finitely many), where each type
1,..., m has a different distribution for the vector
(X4,...,X,,) of the numbers of offspring it will
have of each of the m types. Instead of varying
according to the type of the parent, the offspring
distribution may vary with each successive genera-
tion. A branching process in a varying environment
(BPVE) has, instead of a single offspring distribu-
tion, a sequence of distributions, and all individuals
in generation n have numbers of offspring that are
independent draws from the nth offspring distribu-
tion. The genetic applications of these models are
obvious. Interest from another angle was sparked
in the 1930’s and 1940’s by the study of cosmic
ray cascades, of electron—photon cascades and of
nuclear chain reactions.

Suppose now that each individual is born at a
specified location, displaced from its parent by a
random vector, and that these vectors are indepen-
dent and identically distributed. If v is a vertex of
the tree (i.e., an individual), let X(v) denote its dis-
placement from its parent and.let S(v) be its loca-
tion, which is the sum of X (w) over all ancestors of
v including v itself. This process is called a branch-
ing random walk. Branching random walks model
many physical phenomena, and the study of their
properties is far from exhausted. Geneticists and
population biologists use branching random walks
to model dispersion of species, of genes and of in-
fectious diseases. An example along these lines is
discussed in detail in Section 2.2. The remainder of
this section is devoted to describing the various ap-
plications of branching random walks'to other prob-
ability models and the mathematical questions that
these generate.

Interpreting the iid displacements as time lags
gives a model called firsi-passage percolation. The
basic question is: What generation is reached by
what time? This was originally intended to model
the diffusion of liquid in a porous material (the

graph being a Euclidean lattice rather than a tree).
To model a chain reaction, one would naturally use
a tree whose vertices represented the events in the
chain reaction; one could also model the progress
of a parallel computation by first-passage percola-
tion on the decision tree. First-passage percolation
may be applied to the characterization of a random
set known as diffusion-limited aggregation. This is
a model for the growth of a cluster of particles in
which each subsequent particle sticks to the exist-
ing cluster at a random location, distributed accord-
ing to the hitting measure of a random walk started
at infinity (Barlow, Pemantle and Perkins, 1993).

Reinterpreting the displacements as resistances
of segments of wire gives a random electrical net-
work that is mathematically equivalent to a random
walk on a tree in which the transition probabilities
are themselves random (a random walk in a ran-
dom environment); see Doyle and Snell (1984) for
the connection between random walks and electri-
cal networks. The random walks in random environ-
ments are in turn equivalent to certain reinforced
random walks (RRW), in which the probability of
a transition increases each time the transition is
made (Pemantle, 1988). Reinforced random walks
are models for learned behavior, and, while trees
are not the natural graphs on which to run RRW’s,
they are to date the only graphs on which RRW’s
are at all tractable (with the possible exception of
some essentially one-dimensional graphs).

The iid displacements may be interpreted as en-
ergies. This results in a thermodynamic ensemble
having density exp(—BH) with respect to product
measure, where H is the energy of a state. Lyons
(1989) discusses an Ising model, in which a state is
an assignment of +1 or —1 to each vertex and H
is the sum of all edge energies. Derrida and Spohn
(1988) discuss a polymer model in which the states
are paths of length n in a regular tree of depth n
and H is the sum of energies along the path. In ei-
ther case, an exponentially small probability (with
respect to the reference measure) of an underaver-
age value of H can greatly influence the partition
function, and hence information about the behav-
ior of a typical element of the ensemble. Since H is
determined from partial sums of iid random vari-
ables, one is led again to the extremal value the-
ory of branching random walks. In these models the
tree structure is not completely natural, but is in-
stead an approximation to the mean-field limit in
high dimensions; see Derrida and Spohn (1988) for
a fair amount of justification of the model. Inter-
preting the iid displacements as intensity factors
of rainfall gives the cascade model for spatial dis-
tribution of rainfall studied by Gupta and Waymire
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(1993). These random, stochastically self-similar, hi-
erarchical spatial distributions have been studied
in other contexts by Kahane and Peyriere (1976),
by Waymire and Williams (1994a, b), and others.
Finally, we will see in Section 4 how branching ran-
dom walks may be used to encode and solve prob-
lems in fractal geometry.

One basic question that arises in all these ap-
plications is the extremal value question. If the lo-
cations are one-dimensional, one might ask for the
maximal displacement likely to occur in generation
n as a function of n. To the first order, this is lin-
ear in n and the method of computing the constant
is well known; this will be discussed at length in
Section 3. The deviation from this was computed by
Bramson (1978) and Derrida and Spohn (1988). An-
other kind of extremal behavior is to ask whether
there is an infinite line of descent which exhibits
a property which has probability zero for any fixed
line of descent. For example, is there a line of de-
scent staying within a bounded region (Benjamini
and Peres, 1994b)? Is there a line going to infinity
at a specified rate (Pemantle and Peres, 1994)? The
classical questions about branching processes (time
to extinction, rate of growth) may also be phrased
in terms of the extremal value question, although a
discussion of this would be too far afield.

The classical method for studying branching mod-
els is via generating functions. Generating functions
for the population at generation n may be written
exactly in terms of the generating function for the
offspring of each individual. This method is power-
ful, but often breaks down when events are weakly
dependent rather than independent. By contrast,
the tree-indexed.method proceeds as follows. First,
calculate the probabilities of seeing various things
along a single line of descent. The probability of a
single line staying in a given region or escaping to
infinity at a given rate is a classical computation
since the increments are iid. Multiplying the ex-
pected size of generation n by the probability of a
given behavior gives the mean incidence of that be-
havior. The probability of observing the behavior is
bounded by the mean incidence, but may be less;
. a second-moment computation will distinguish be-
tween these cases. In other words, the mean inci-
dence tells you the one-dimensional distributions of
a random field indexed by the boundary of the tree,
and the second moments give you enough informa-
tion about the joint distributions to get probability
bounds.

Results on branching models are worked out in
Section 3, with a prototypical argument previewed
in Section 2.2. While the sharpest results on tree-
indexed processes are all stated in terms of poten-

tial theory, the previous paragraph should serve as
a guide to the structure of the arguments for non-
experts in potential theory.

1.2 Random Sets with Stochastic Self-similarity

In Section 4, it will be shown how to make a
correspondence between paths in an infinite ho-
mogeneous tree and points in Euclidean space,
which preserves the potential-theoretic structure.
Consequently, questions about random subsets of
Euclidean space may be analyzed in terms of the
corresponding random trees. In particular, certain
stochastically self-similar sets correspond to well-
understood random trees, such as Galton—Watson
trees, making knowledge especially easy to trans-
fer. Self-similar and stochastically self-similar sets
are usually fractals, meaning that they have a non-
integral dimension. These have been widely studied
in the last 20 years, both as complex mathemati-
cal objects and as visually beautiful objects whose
scale-invariance captures some intriguing aspects
of natural law; see Falconer (1985) for a mathemat-
ical introduction, and consult the science section of
your local bookstore for pretty pictures.

Consider the following Cantor-like set. Let
Ay, ..., Ay be a collection of subcubes of the d-
dimensional unit cube. We allow N and A;,..., Ay
to be random but require that their law wu con-
centrate on collections with disjoint interiors. Let
C, = U,A,, or, in other words, throw out ev-
erything not in one of the sets A;. Apply this
recursively to each A ;: choose a collection of sub-
cubes A 4,..., A N, independently from the image
of u under the similarity that maps [0, 1]¢ to A I
and throw out everything in A; \ U, A;,. The
limiting set C is stochastically self-similar in an
obvious sense. Familiar examples are as follows.
If d = 1 and u is a point mass at the collection
{[0, 1/3],[2/3, 1]} one gets the usual (determinis-
tic) Cantor set. If d = 1 and u picks {[0, a], [b, 1]}
with (a, b — a, 1 — b) having Dirichlet(1/2,1/2,1/2)
distribution, then C is distributed as the zero set
of a Brownian bridge. [Many other distributions for
(a, b) generate the Brownian zero set as well; the
present example may be found in Perman, Pitman
and Yor (1992).] If d = 2 and u gives probabil-
ity p*(1 — p)®* to every subcollection of size % of
the partition into nine squares of side 1/3, then
one gets the so-called canonical curdling process
studied by Chayes, Chayes and Durrett (1988) and
Dekking and Meester (1990).

Hawkes (1981) computes dimensions of a large
class of such sets. Graf, Mauldin and Williams
(1988) compute precise Hausdorff gauges. Chayes,
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Chayes and Durrett (1988) and Dekking and
Meester (1990) discuss connectivity properties, but
these problems seem to be hard and no general
criteria are known. The approach carried out in
Section 4 is to determine properties such as dimen-
sion by establishing close connections between the
random sets and the representing trees, then to use
known facts or relatively easy theory to analyze the
trees. An advantage to this method is that the di-
mension may be bounded below without exhibiting
a measure meeting the appropriate regularity con-
dition. In some sense, the methods used by Hawkes,
by Graf, Mauldin and Williams, by McMullen (1984)
and, earlier, by Carleson and Frostman are all based
on the idea of a tree representation.

Another question about a random set is its in-
tersection properties. For example, can you tell
when two random sets have positive probability
of intersecting? Two independent Brownian mo-
tions intersect in dimensions less than 4, while
three or more intersect only in dimension 2. A
complete characterization exists of which sets in-
tersect Brownian motion with positive probability
(Kakutani, 1944), but only recently was it deter-
mined which sets have a common intersection with
two Brownian motions. Fitzsimmons and Salisbury
(1989) solve this problem using classical poten-
tial theory, settling a conjecture of Evans and of
Tongring, while Peres (1994a) has a much simpler
proof translating the problem to trees. This ap-
proach also shows how to compute the drop in the
dimension of a set when intersected with various
stochastically self-similar sets including the range
of a Brownian motion. Peres (1994b) describes sev-
eral other applications resulting from translating
geometric questions about Brownian motions to
trees. Related to these results are two theorems of
Marstrand, showing that positive one-dimensional
capacity is sufficient for a set to intersect a random
line with positive probability (the converse fails but

not by much) and that the dimension of the inter-

section is, generically, one less than the dimension
of the original set. A derivation of the latter from
. the former may be established by tree methods.
Section 4 discusses these results in more detail.

1.3 Other Motivations

A significant part of the motivation for studying
the potential theory of trees came from random
walks on trees. The geometry of a Riemann-
ian manifold can be analyzed in terms of the
behavior of Brownian motion on the manifold (see
Ledrappier, 1988). Negatively curved manifolds
may be discretized so that Brownian motion on the
manifold corresponds to a random walk on an em-

bedded tree. Symmetric spaces give rise to periodic
embedded trees, manifolds of negative curvature
bounded away from zero have embedded trees of ex-
ponential growth and so on. Lyons (1993) discusses
behavior at infinity of random walk on periodic
trees, while Peres, Lyons and Pemantle (1995) dis-
cuss the randomized counterpart, where the tree
is Galton—Watson. Conditions for the recurrence or
transience of random walks on arbitrary trees (in
terms of capacities) were obtained by Lyons (1990)
and by Benjamini and Peres (1992b).

Homogeneous trees are Cayley graphs of free
groups, and random walks on trees qua Cayley
graphs have been studied by many people; see Mo-
har and Woess (1989) for some references to studies
of random walks on homogeneous trees. Sawyer
(1978) proposes a random walk on a tree as a model
for the dispersion of genetic types along a river
system. The model is very rough, but the spec-
tral and boundary theory there is shown to answer
natural questions about the distribution of types.
While random walks on trees do not constitute
tree-indexed processes (for which the tree should be
the index set, not the range space), they share the
same techniques. For instance, the classification of
recurrence or transience of random walks on a tree

.in Benjamini and Peres (1992b) results in the same

capacity criterion as for a certain set to be polar in
Pemantle and Peres (1995a); this is not entirely a
coincidence, and a more explicit connection is made
at the end of the final section of this article. At any
rate, random walks on trees and tree-indexed ran-
dom walks have cross-fertilized each other enough
to warrant mention here of the latter.

In addition, the generalization of branching ran-
dom walks in which the branching part is deter-
ministic and given by an arbitrary tree has been
studied for its own interest. The first mention of
this is by Joffe and Moncayo (1973), although it was
not wholeheartedly pursued until Benjamini and
Peres (1994a), having been generalized meanwhile
to Markov chains indexed by trees in Benjamini and
Peres (1992a, 1994b).

2. TECHNICAL OVERVIEW

2.1 Definitions

A tree is a connected, undirected graph with no
cycles. All trees are assumed as well to be locally
finite (i.e., finitely many edges incident to each ver-
tex) and to have a distinguished vertex known as
the root. The name used most often for a generic
tree is I', and its root will most often be denoted p.
The name b* is reserved for the infinite b-ary tree,
in which each vertex has b children (neighbors at
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greater distance from the root). The notation x € I’
will be used for “x is a vertex of I'” since no confu-
sion results. Let |x| denote the number of edges in
the path connecting x to the root, and let I, denote
the set {x € I": |x| = n} of vertices in the nth level or
generation of I'. For vertices x, y € I', define x < y
to be the relation that holds if x is on the path from
p to y, and let x A y denote the greatest lower bound
of x and y (i.e., the vertex at which the paths from p
to x and y diverge). For reasons to be seen shortly,
trees are usually assumed to have uniform height.
A tree of height N < oo has uniform height if all its
leaves (vertices without children) are at level N; a
tree of uniform height oo has no leaves at all. The
boundary JI" of a tree I' of height N < oo is the
set of self-avoiding paths of length N starting from
the root. If I" has height N but not uniformly, then
A" contains paths through only those vertices with
descendants at level N; since JI' is of fundamental
interest, vertices with no descendants at level N be-
come irrelevant, whence the assumption that there
are none. Extend the symbol “A” to JI" x JI" by let-
ting x A y denote the greatest vertex of I" contained
in both x and y.

Sometimes the trees are random, the most com-
mon type of random tree being a Galton—Watson
tree. This is the family tree of a branching pro-
cess in which each individual has a random num-
ber of children and all these numbers are iid. The
usual notation for Galton—Watson trees is in effect:
f(2) = a,z" is the offspring generating function,
where a,, is the probability of having % children and
f'(1) = > ka, is the mean number of offspring per
individual. The law of a Galton—Watson tree with
offspring generating function f is denoted GW’, or
just GW when [ is clear from context.

Let u be a probability distribution on a measure
space S, often taken to be the real numbers, and
let {X(v): v €T’} be a collection of iid random vari-
ables, indexed by the vertices of I", having common
law u and defined on the measure space (0, 7, P).
Give S the discrete topology, in which all sets are
open (though not necessarily measurable), and give
S¥ the product topology, which is discrete unless
N = oco. Let B € SV be any measurable closed set.
Define an event A depending on I', B and () by

A(; B; Q)

={3 (p, v1, Vg, ...) € l": (X(vy), X(vg),...) € B}.
In other words, A is the event that there is some
path for which the sequence of values of the X’s lies
in the prescribed set, B. The quantity P(A(T; B; 1)),

which depends on Q only through u, is denoted
P(T; B; u), or when p is understood, just P(T; B).

Viewing the probability space  as defining an S¥-
valued random field on dT', the first natural question
is which sets B are “hit” by the random field (inter-
sect its range with positive probability). Sets B for
which P(T'; B) = 0 are called polar by Evans (1992),
and thus the classification of sets as polar or non-
polar becomes the primary object of study.
A special case is when B is the product set

[0,a;] x[0,aq] X ---.

This is called Bernoulli percolation by Lyons (1992).
In this case one may imagine killing vertices ran-
domly and independently, killing a vertex in gener-
ation n with probability 1 — a,,; then B is the set of
paths all of whose vertices remain alive. The inde-
pendence makes this case easier to analyze, and the
first and sharpest theorems were obtained here.

2.2 The Basic Idea: Second Moments

In order to illustrate the use of potential theory, I
devote this section to working out a simple branch-
ing random walk example. Consider a flower ger-
mination model, beginning with a single individual,
which sends out during the course of its lifetime &
spores, the locations of which are displaced from the
parent by vectors that are iid ~ u. I have assumed
for simplicity that the branching is deterministic.
In the notation of the preceding section, I' = b,
S = R%Z and N = oo. Fix a region G C R? repre-
senting hospitable terrain, and suppose that spores
alighting outside of G fail to germinate. Such mod-
els and variants thereof can be found in Levin, Co-
hen and Hastings (1984) and Bergelson, Newman
and Floresroux (1993), among other places.

Let B = {(xy,%g,...): Xi_1%; € G for every n}.
Then A(T; B) is the event of nonextinction of this
flower’s family tree. Suppose G is a nice set: a com-
pact closure of a connected domain. Let m,(B) de-
note the projection of B onto the first n coordi-
nates, that is, those paths staying in G for at least
the first n steps. The probability P(I'; B) is the de-
creasing limit of probabilities P(T'; 7,(B)). Now for
a single line of descent, the probability w”(,(B))
of staying inside G for n steps is easy to estimate:
it is asymptotically a constant multiple of A", where
A is the maximal eigenvalue of the region G. Let
W, be the number of survivors in generation n,
so EW, = (bA)" up to a constant factor. Obviously
the process must die out when A < 1/b. To show
that the process may survive when A > 1/b, we
show that EW?/(EW,)? is bounded by some con-
stant C independent of n. This directly implies that
P(W, > 0)"! < C for all n, and hence P(I'; B) > C~!
[see Aldous (1989) for some other uses of this impli-
cation].
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To compute EW?Z, sum over pairs (v, w) € I'? the
probability that both v and w have lines of ancestry
staying completely inside G. Clearly this probability
depends only on n and |v A w|. In fact, conditioning
on Y ,_, .. X(2) shows it to be bounded above by a
constant multiple of A2"~**%l_ Thus we may write

EW% <c /\Zn—|v/\w| bA —2n
(EW,)?

v,wel,
= c [[ Al dpu(o) dps(w),

where p is the uniform measure on I',,. An easy com-
putation shows this is finite when A > 1/b, which
finishes the demonstration.

As a preview, consider what would have happened
if I' were not a homogeneous tree. Let K(v, w) de-
note A~1""I_ If K has a finite integral against the
product uniform measure, then the same argument
shows that a branching random walk indexed by
I' has a line staying in G with positive probabil-
ity. In fact, making W a weighted sum of indicator
functions of lines of descent staying in G shows that
the measure one integrates against need not be uni-
form. Furthermore, any measure u on JI" with

//K(x, y)du? < oo

projects to a measure u, on each I', for which the
integrals of K against u? are bounded. Thus one
obtains the following result: if /T supports a prob-
ability measure u with [/ K(x, y)du? < oo, then
P(T; B) > 0. Restating the hypothesis of this result
in the language of potential theory gives the basic
theorem of the next section.

2.3 Statements of Theorems

Since the notions of energy and capacity are fun-
damental to the results surveyed here, I include

a brief discussion. A few definitions and exam-.

ples are no substitute for familiarity, so the reader
is referred to Carleson (1967, Chapters I-IV), or
to Falconer (1985, Chapter 6) for geometric facts
about metric capacity. The relation between capac-
ity and dimension is that the capacity of a set A in
gauge x~“ will be positive if dim(A) > « and zero if
dim(A) < a.

Given a probability measure u on a metric space
and given a monotone function g on the positive
reals tending to infinity, at zero, the energy of u
with respect to g is defined by

&) = [[ e(d(x, v)) du(x) du(),

where d(x, y) denotes distance. The g-capacity of a
set A is defined by

cap,(A) = [inf{&,(u): u(A) =1}

There is a natural class of metrics on JI' gotten
by letting d(x, y) be any function of |x A y| that
decreases to zero as |x A y¥y| — oo. The notion of
metric energy and capacity on JI" for these metrics
may be formulated directly in terms of functions
f: Z* — R* that increase to infinity:

Ep(w) = [[ F1x A y1) dualx) dpa(y)

for probability measures u on JTI', while caps(A) is
the reciprocal of inf{&;(u): u(A) = 1}, as before.

In this language we may restate the result from
the previous section, stated and proved in Peman-
tle and Peres (1995a) but already implied by Lyons
(1992).

BASIC SECOND-MOMENT THEOREM. Let I', N, S, B,
pand {X(v): v €T} be as in Section 2.1. Let W de-
note the set of vertices v such that (X (vq), X(vs), ...,
X(v)) € m,(B), where p,vy,,,...,0 is the path
connecting the root to v and 1, is the projection onto
the first k coordinates. Suppose there is a positive,
nondecreasing function f: ZT — R™ such that, for
any two vertices v, w € I' with |v Aw| =&,

1) P,weW)<f(k)P(ve WPweW).
Then
P(I'; B) = cap(4T).

REMARK. Usually, when a second-moment (also
known as L?) method is used, there is a question as
to whether the result is sharp. If you followed the ar-
gument in the previous section, you will notice that
the property of W stated in (1) is enough to imply
the conclusion regardless of whether any variables
{X (v)} underlie the definition of W. One cannot ex-
pect sharpness without using further properties of
W, which will now be explored.

Typically, the second-moment method shows some
property to hold if a set satisfies capy(A) > 0, while
a simpler first-moment estimate shows the converse
to hold if A has zero Hausdorff measure in gauge f;
this leaves a small gap. [In all nontrivial cases for
which I know the resolution of the gap, the capacity
criterion is sharp, not the measure criterion. See
Kahane (1985) for some instances of the gap, e.g.,
Theorem 5 on page 246 and (5) on page 236; see
Shepp (1972) for a resolution of the gap in one case,
in favor of the capacity criterion.] One circumstance
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in which the basic theorem is sharp, up to a factor of
2, is when B is Bernoulli. Recall that B is Bernoulli
if it is a product. set, B = [],[0, a,]. In this case
f(k) may be taken to be P(v € W)~ ! = u*(m,(B))
for v € I',. This is clearly the least f can be [take
w=vin (1)].

SHARP BERNOULLI THEOREM (Lyons, 1992). If B is
Bernoulli and f(k) = P(v € W)™ for any v € T},
then

(2) 2¢cap;(JI') = P(T; B) > cap(dI').

Cases where f(k) may be taken as CP(v € W)~}
are called quasi-Bernoulli. Here too the gauge func-
tion is as small as possible (constant multiples being
inconsequential) and a converse is conjectured; see
Section 4.

Many potential-theoretic results from Markov
process theory are of the following form: a Markov
process hits a set A with positive probability if A
has positive capacity in a certain gauge (determined
from the Green’s function of the process). The most
famous of these is due to Kakutani (1944) and is
sharp: Brownian motion in R?, d > 3, hits a set A
with positive probability if and only if cap,(A) > 0,
where g(x,y) = |x — y|?>~?. The previous results
were dual to this, in that they gave capacity con-
ditions on I' rather than on B. Here is a direct
tree-indexed analogue of Kakutani’s theorem.

DUAL SECOND-MOMENT THEOREM. Suppose w is the
uniform distribution on the set {1,2,...,b}. Let I' =
m™ be the homogeneous m-ary tree, that is, a tree
where the root has m children and each other vertex
has m + 1 neighbors, those being the parent and m
children. Observe that the closed set B is naturally
encoded as a subset B of the boundary of the b-ary
tree. In this notation,

2cap;(dB) > P(I'; B) > cap;(9B),

where f(k) = kif m = b, and f(k) = (b/m)* if
m < b. When m > b, P(T; B) > O for all nonempty
B. .

Note that the dual second-moment theorem is
sharp (“if and only if”) but at the expense of re-
stricting to homogeneous trees, which is analogous
to restricting to Bernoulli sets. This theorem was
first proved by Evans (1992) with a factor of 16
instead of 2 and by Lyons (1992) with a factor of
4. The proof with a factor of 2 follows from the
methods of Benjamini, Pemantle and Peres (1995).

The next two theorems give conditions for one tree
to have all the polar sets that another tree has. Such

comparisons are useful because only in the case of
homogeneous trees are the polar sets easy to com-
pute. Say that a tree I'! is at least as polar as I'? if
every polar set for I'? is a polar set for I'!, and call
two trees equipolar if they have the same polar sets.
A tree I is called spherically symmetric if each ver-
tex v in I',_; has precisely f(n) children for some
function f.

COMPARISON THEOREM. Suppose I' is spherically
symmetric, and let I be any tree with |I',| < |I',,| for
all n. Then P(I"; B) < P(I'; B) for any B and p.

As mentioned earlier, the tree I' may itself be ran-
dom. The following is a “universality class” theorem
for Galton—Watson trees, saying that, in the finite
variance case, trees with the same mean growth are
equipolar and thus essentially the same from a tree-
indexed process point of view.

EQUIPOLARITY THEOREM. Let GW; and GW,, be the
Galton-Watson measures, corresponding to two off-
spring distributions with the same mean m > 1 and
each having finite variance. (Zero variance is al-
lowed in the case that m is an integer.) Then for G x
Gy-almost every (I',T?) there exist almost surely
constants 0 < ¢ < C < oo depending on T'! and
I'? such that, for all u and all sets B,

cP(T}; B) < P(T'% B) < CP(T%; B).

In particular, T' and T'? are equipolar. If instead T'!
has infinite variance, then the above does not hold,
and in fact T has strictly more polar sets.

The fact that the trees are not equipolar when one
offspring variance is infinite should provide some
resistance against the notion that the equipolarity
theorem is obvious. For more evidence, consult Graf,
Mauldin and Williams (1988), wherein it is shown
that Galton—Watson trees do not behave the same as
deterministic trees of the same mean with respect
to Hausdorff measure. The comparison theorem is
from Pemantle and Peres (1994), and the equipolar-
ity theorem is from Pemantle and Peres (1995b) and
Pemantle (1993b).

3. APPLICATIONS TO BRANCHING MODELS

For any tree-indexed process (I', B,()) whose
state space is a group, one may define partial sums
(or products in the non-Abelian case) by

S)y= > X(),

p<w=v
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for each v € I'. If the state space is R, define the
extremal values by

M, = max{S(v): |v| =n}.

Questions about M, have arisen in the contexts of
random distribution functions (Dubins and Freed-
man, 1967), directed polymers and partition func-
tions for high-dimensional limits of random fields
(Derrida and Spohn, 1988), branching random
walks (Bramson, 1978), a more general “Markov
branching random walk” (Suhov and Kelbert, 1995),
reinforced random walks (Pemantle, 1988), random
walks in random environments (Lyons and Peman-
tle, 1992), as well as indirectly in the study of
explosions in first-passage percolation (Pemantle
and Peres, 1994).

Consider a reasonably simple case. Suppose that
I' = b* is a homogeneous tree and the common dis-
tribution u of the {X(v)} is bounded. If &« > m =
EX(p), then a standard large-deviation estimate
yields

3) P(S(v) = alv]) = (C, + o) o] 2u(a),

where u(a) is the rate function. Clearly, if u(a) <
b~1, then M, < an with high probability. Pick « €
(0, 00) to be the infimum of « for which u(a) < b71.
Is a the correct limit of M, /n? To complete the
picture, one must show that M, > (ay — €)n for any
£ > 0 and sufficiently large n. The first proof is due
to Hammersley (1974), who proved convergence in
probability of M, /n; here is a tree-indexed proof of
almost-sure convergence.
Let B be the set

Jjk

{(xl,xz,...): >

x; > (ag — €)k for all j}.
i=(j-1)k+1

It is easy to verify quasi-Bernoullicity, hence
P(T'; B) > cap/(dI'), where f(|v]) = CP(v € T) L
The choice of ¢, guarantees that, for fixed &
and large enough k, f(k) < (2 — 8)* for some
8 > 0. The binary tree has positive (2 — §)-
capacity for every 6 > 0, so P(2%; B) > 0. On this
event, liminf M, /n > ay, — ¢. However, the event
liminf M, /n > ay — ¢ is a tail event in the {X(v)},
so it has probability 1, and since & > 0 is arbitrary,
this yields lim M, /n = «y.

As we discuss this argument, let us compare the
result in varying degrees of generality to a string
of such results proved in the last 25 years. Dubins
and Freedman (1967) consider the case where I is a
binary tree and the {X(v)} are Bernoulli(p). They
observe that, when p > 1/2, there is a path with
only finitely many 0’s, and they ask what the max-
imum density of 1’s along a path is for p < 1/2.

They solve the easy half, using Borel-Cantelli to
show that the density can be at most the value «
above, leaving the other direction as an open prob-
lem (Dubins and Freedman, 1967, page 207). From
the modern perspective, it is striking that this ques-
tion was difficult to settle at the time!

The earliest solution I know of in the mathematics
literature was by Kingman (1975), in the context
of first-birth times. He allows an arbitrary common
distribution on the positive reals for w and considers
the tree I' to be the family tree of a Galton—Watson
branching process with mean growth m, conditioned
on survival. Kingman’s proof is quite specific to this
particular problem, relying on exact computation of

E[ > S(v) exp[—GS(v)]].

|lv|=n

The result is that M,/n — ay(m), where ay(m)
is obtained by replacing the 2 in (3) by m. Biggins
(1977) allows X (v) to take negative values, provided
the moment generating function exists in a neigh-
borhood of 0, and provides a simpler proof based
on finding a supercritical branching process in a
tree derived from I' by looking only at vertices in
levels 0, k, 2k, ...; essentially the same proof ap-
pears in Pemantle (1988). Biggins also computes the
asymptotic number of v in level n for which S(v) >
an when a < «p. Lyons and Pemantle (1992) are
the first to provide a proof via quasi-Bernoullicity;
see also Kesten (1978). For the particular result
M, /n — g, Biggins’ proof is the simplest and best.
The main advantage in the potential-theoretic proof
is its wider scope, allowing for completely general
trees or general growth rates of the M,,. The result
immediately generalizes from Galton—Watson trees
of mean growth m to any tree that has positive ca-
pacity for gauges f(rn) = r® when r < m and not
when r > m; these trees include periodic trees of
mean growth m (defined, e.g., in Lyons, 1993) as
well as most reasonably small perturbations of ho-
mogeneous and Galton—Watson trees.

If S(v) is interpreted as (the negative of) an en-
ergy function, as in Derrida and Spohn (1988),

then one is interested in the behavior of the par-

tition function Z, def 2 joj=n €XP(S(v)), and there

should be a limit (log Z,)/n — B. The contribu-
tion to Z, from vertices v € I', with S(v) = An is
exp[(A — ¢(A))n], where ¢(A) is the large-deviation
rate for the average variables that are iid ~ w to ex-
ceed A. In other words, the rate is the same as if the
values of S(v) were independent for v € I',,. [Lyons
and Pemantle (1992) give a short proof, but in fact
this was proved by most of the authors cited above:
Kingman, Biggins, Derrida and Spohn, and by
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Kahane and Katznelson (1990) and Waymire and
Williams (1994a, b) in the context of cascade spec-
tra.] Taking

4) B =sup{A — d(A): A <y}

gives the correct limit: (log Z,)/n — B almost
surely. Observe for application in Section 4 that if
exp(S(x A y)) defines a (random) metric on éI' and
B < 1, then this shows the Hausdorff dimension
of I' to be at most log b/|log B|. In fact Theorem 4
of Lyons and Pemantle (1992) shows that this is
exactly the dimension.

The equipolarity theorem gives universality re-
sults for the extremal problem. In the special case
where I' is a binary tree and u gives measure 1/2 to
0 and 1/2 to 1, Bramson (1978) shows that the me-
dian value of M, differs from the linear estimate
by K loglogn, where K = (log2)~!. The distribu-
tion is tight around its median as n — oo. Bramson
and later Derrida and Spohn (1988) carry out their
analyses on a binary tree, where an exact recur-
sion reduces the problem to a nontrivial analysis
of the Kolmogorov—Petrovskii—Piskunov equation.
Their results may immediately be extended to the
case of a general, mean-2, finite-variance branching
mechanism as follows. Let

B=B,;={(xy,xg,...): x, > 1}.

Apply the equipolarity theorem to Galton—Watson
trees with mean 2 and finite variance (including the
deterministic binary tree), to conclude that there is
almost surely some ¢ for which the a quantile of
M, on the Galton—Watson tree is bounded above
and below by the 1—(1—a)/c and a/c quantiles, re-
spectively, for M, on the binary tree 2. This gives
the new result that M, — Kloglogn is tight for
Galton—-Watson trees as a result of being tight for
2%, Similarly, the equipolarity theorem shows that
survival with positive probability in the flower ger-
mination model of Section 2.2 depends only on the
region and the mean offspring, but not on the par-

ticular offspring distribution as long as it has finite

variance.

The comparison theorem turns out to be use-
ful in the analysis of first-passage percolation.
As mentioned before, first-passage percolation
has been used to describe a randomly growing
subtree (Knuth, 1973; Aldous and Shields, 1988;
Barlow, Pemantle and Perkins, 1994). Andjel (per-
sonal communication) raises the question of how
quickly I' may grow and still have the minimum
m,(I) def min{S(v): |v| = n} tend to infinity.
(This arises in a construction of an infinite parti-
cle system via a mapping from a collection of iid
exponential random variables.) The answer, given

in Pemantle and Peres (1994), is that when T is
symmetric, with growth function f in the sense
that every vertex in T', has precisely f(n) chil-
dren, then, for increasing growth functions and
exponential random variables X (v),

(6) m, —> oo as. ifand onlyif } f(n)™! = oo.

The following sketch shows how the comparison
theorem is instrumental in obtaining a similar re-
sult in the case where f is not necessarily increas-
ing. For any g, let I'# denote a spherically symmetric
tree with growth function g. Now choose a partic-
ular g, namely, the pointwise greatest increasing
integer function for which [1;_; g(k) < [1s_; f (k)
for all n (it is an easy exercise to verify the ex-
istence of such a g and give other descriptions of
it). I will show that (5) holds with the f on the
right replaced by g. By definition, [I'| < |T',| for
all n. The comparison theorem applied to the sets
B,; = {(x1, xg,...): x, < [} implies that m,(I'?)
is stochastically greater than m,(I'). This, along
with (5) for the increasing function g, proves that
supm, < oo whenever Y g(n)~! < oo. To prove the
other half, 3 g(n)™! = 00 = m, — oo, only a
slight modification of the proof for increasing func-
tions is needed.

The comparison theorem is also used in Peman-
tle and Peres (1995b) to prove one direction of the
equipolarity theorem: almost every Galton—Watson
tree of mean growth m has at least the same polar
sets as a certain spherically symmetric tree with
more than C;m" children in generation n, showing
the half of the equipolarity theorem that does not
rely on finite offspring variance.

4. DIMENSIONS AND INTERSECTIONS
OF RANDOM SETS

The following correspondence between trees and
Euclidean space is vital to all of the applications
in this section. For convenience, I consider the unit
cube [0, 1]¢ rather than all of R<.

Let € be the collection of closed binary subcubes
of the unit cube, that is, cubes of the form

d

[1(7.27", (J; +1)27"],

i=1
where n > 1 and 2" > j;,..., j4 = 0. The elements
of € may be viewed as the vertices of a homoge-
neous b-ary tree (b = 2%) in an obvious way: a cube
is a descendant of another if it is a subset. Thus
the root is the unit cube, and each cube has 2¢ chil-
dren (descendants with no intervening lineage). The
identification of ¢ with the vertices of b™ induces a
map ¢ from 6b™ to [0, 1]¢, namely, ¢ of a sequence
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of cubes is the unique point in their decreasing in-
tersection. Putting the metric

dist(x, y) := ~/d 2711

on Jb%, it is clear that ¢ is continuous and is in
fact a contraction. If A is any closed subset of the
unit cube, ¢~1[A] is a closed subset of Jb*® and is
therefore also the boundary of a subtree of b™. Since
¢ is a contraction, it is immediate that, for any g,
the metric capacities satisfy

cap,(¢~'[A]) > cap,(A)

(the pullback of any measure has smaller or equal
energy). In fact, the reverse is true as well:

capg(¢~'[A]) < Cycapg(A),

where the constant C; depends only on d, not on
g or A. The proof of this fact is based on a trick of
Benjamini and Peres (1992b) and appears as Theo-
rem 3.1 of Pemantle and Peres (1995b).

Let S be the random subtree of 4*° obtained from
the Bernoulli percolation with p, = n/(n + 1), that
is, each vertex at level n is killed with probabil-
ity 1/(n + 1). The map ¢ carries JS to a subset of
[0, 1]? which is potential-theoretically very similar
to the range G of Brownian motion run for a unit
time, but which is easier to analyze because there is
so much independence. This set may be used to de-
rive properties of the intersections of independent
Brownian motions. Kakutani’s theorem says a sin-
gle Brownian motion intersects precisely those sets
with positive logarithmic capacity, so one may think
of G as having “codimension” log. This heuristic im-
plies that the intersection of %k independent copies
of G should have “codimension” |log |¥, which was
conjectured in Tongring’s thesis (Tongring, 1988)
and first proved by Fitzsimmons and Salisbury
(1989). The simplified proof based on tree theory is
due to Peres (1994b) and goes as follows.

Let A be any subtree of 4. The sharp Bernoulli

theorem says the probability that /A N JS is
nonempty is estimated up to constants by the ca-
pacity of JA in a gauge f(k) = 1/(k + 1), which is
equivalent in the sense of Section 2.3 to the gauge
g(x) = |log x|. Kakutani’s theorem (or the quanti-
tative version found in Benjamini, Pemantle and
Peres, 1993) shows that P(¢[A] N G # ) is esti-
mated by capj,.($[A]), but this may be pulled back
to

P(A N ¢7[G] # ) ~ cap/(A).

Without abusing notation too much, we may identify
subtrees of 4° with closed subsets of 94*° and hence

with closed subsets of [0, 1]2. Thus S is intersection
equivalent to G in the sense that their probabilities
of intersecting a third set differ by a bounded factor.
Now several applications of Fubini’s theorem finish
the proof as follows.

Let S; and S, be iid copies of S, and let G; and
G, be iid copies of G. The key fact is that while
¢ G, N Gy is a mess, S’ e S1 N8, is a set with
the same intersection estimates as S except with
log? replacing log. Any set A intersects G’ with pos-
itive probability if and only if A N G intersects G4
with positive probability. This is true if and only if
ANG, intersects S, with positive probability, which
is true if and only if A NS, intersects G, with posi-
tive probability. This is true if and only if A N S, in-
tersects S; with positive probability, that is to say, if
and only if A intersects S with positive probability,
which we know to hold if and only if cap;,2(A) > 0.
Iteration extends this argument to common inter-
sections with £ independent Brownian motions.

Here is a similar argument due to Peres that
proves Marstrand’s intersection theorem:

PROJECTION AND INTERSECTION THEOREMS. (i) If
A C [0,1]? is closed and has positive one-dimen-
sional capacity, then A intersects a random line
with positive probability, where for specificity we
suppose the line is chosen by connecting two points
chosen independently and uniformly on the perime-
ter of [0,1]2. (ii) For any & > 0, with positive
probability the intersection has dimension at least
dim(A)—-1—e.

The proof of the intersection theorem (ii) from
the projection theorem (i) is as follows. Suppose
dim(A) > 1 and pick any a € (1,dim(A)). The
relationship between capacity and dimension (Sec-
tion 2.3) gives cap,(A) > 0. The claim is that
cap,_1(A N S) > 0 with positive probability, where
S is a Galton—Watson subtree of 4*° correspond-
ing to percolation with probability 1/2. Proof of the
claim is as follows. Let S, and S,_; be independent
Galton—Watson subtrees corresponding to percola-
tion with probabilities 2= and 2'~%, respectively.
Since SN S,=4S,_1, the sharp Bernoulli theorem
gives that cap,(A) > 0 implies P(ANS, # J) > 0
implies P((A N S)N S,_;) > 0, which implies
that cap,_;(A N S) > 0 with positive probability.
The claim is proved and (ii) follows immediately
from the relation between capacity and dimension.
For completeness we sketch a tree-based proof of
the projection theorem [although Falconer (1990,
page 103) considers the intersection theorem to
be the more difficult of the twol. Identify A with
a subtree of 4%, let ! be the random subtree of
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4% corresponding to a random line and notice
that W & 1n A is quasi-Bernoulli. The basic
second-moment theorem then implies (i).

The correspondence ¢ also preserves Hausdorff
measure with respect to an arbitrary gauge. This
has been known for at least 70 years and was used
by Frostman to prove a lemma which is still of
fundamental importance for the analysis of fractal
sets. Frostman’s lemma says that if a subset A of
[0, 1] has positive Hausdorff measure with respect
to a gauge h, then a measure u exists for which
u(A) > 0 and u(C) < h(diam(C)) for all sets C.
When transferred to the tree setting, this becomes
a special case of the min-cut-max-flow theorem. All
proofs I know (before 1994) of the existence of a
Frostman measure translate the problem first to the
tree setting (see, e.g., Carleson, 1967).

The type of argument used by Frostman is very
common; for example, see McMullen (1984), whose
sequence space is transparently isomorphic to a
regular tree. The following example, mentioned in
Section 1.2, illustrates the argument; see Falconer
(1990) for another discussion of trees applied to
random fractals.

Let C be a random set constructed from a measure
w on collections of subcubes of [0, 1]¢ as described
in Section 1.2. Let I" be a tree representing C as
follows: the vertices of I',, are the chosen subcubes
at the nth level of iteration, and X(v) = —logr,
where r < 1 is the side of the subcube correspond-
ing to v divided by the size of the subcube corre-
sponding to the parent of v. The collection {X(w)}
for all children w of v is iid as v varies, which is
enough independence to apply results such as (4).
It is easy to see-that the dimension of C is the
same as the dimension of JI" in the metric d(x, y) =
exp(—S(x A ¥)). One may now .proceed directly via
equation (4) as follows. One first computes the large-
deviation rate

—g(A) = ilgf{—a)t +log Eexp(aX)}
and then applies (4) to get
B = sup{A — g(/\):’ A <ag}

An improvement is to use convex conjugate func-
tions to see that the pair of optimizations leads to 8
solving

EY X(v)f =1,

summing over all children v of a given vertex.

In the deterministic case (self-similarity rather
than stochastic self-similarity), > X(v)* is con-
stant, and it is well known that B is the value of

o that makes this equal to 1. Graf, Mauldin and
Williams (1988) prove the stochastic version, giving
as well the exact Hausdorff gauge function. Their
proof of (4) is long, but if one only wants the di-
mension of I' then Lyons’ proof using percolation is
best.

5. FURTHER DIRECTION, SOME THEORY
AND SOME OPEN PROBLEMS

The most important open problem about tree-
indexed processes is to get a converse to the basic
theorem that would make the quasi-Bernoulli case
as sharp as the Bernoulli case.

CONJECTURE 1. Given a tree-indexed process (),
S, B, u, let f(n) = u*(m,(B))"! be the probability
that a sequence of n iid picks from u is extendable
to some sequence in B. Then P(T'; B) > 0 implies
cap/(I') > 0.

If this is true, then when B is quasi-Bernoulli
this combines with the basic theorem to show that
cap;(I') > 0 is necessary and sufficient for P(I’; B) >
0. The importance in obtaining sharp results is that
they can be used for the sort of back-and-forth
Fubini argument of the previous section. One way
to approach this conjecture is to try to understand
the nature of the event A(I'; B) when it occurs. For
example, does the existence of the witnessing path
(vg, 1, Vg, . . .) hinge on local luck (think of the ex-
istence of a point in a Poisson process of intensity
1 on [0,1]) or is it more a matter of there being
plenty of chances globally (think of a supercritical
branching process)? The following fact is mentioned
without proof in Pemantle and Peres (1995a), which
proves the special case that B is an increasing
event.

ONE-IMPLIES-MANY THEOREM. Let A(T; B) be the
event that there exist uncountably many paths
(vg, V1, Vg, -..) for which (X(v1), X(vy),...) € B.
Suppose that u>°(B) = 0, so that each fixed branch is
a witness with probability zero. Then P(A\ A) = 0.

In Fitzsimmons and Salisbury (1989) the neces-
sity of the capacity criterion is proved by showing
that almost any definition of first hitting time yields
a measure with finite energy. Salisbury (1995, last
page) asks for a similar inequality for homogeneous
trees. The following conjecture is similar to Salis-
bury’s problem and would imply Conjecture 1.

CONJECTURE 2. Given a tree-indexed process, let
x(w) be any random element of JI' which is a witness
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to A(T'; B) when A occurs and is undefined other-
wise. Let v be the law of x, which is a subprobability
measure of total mass P(T'; B). If P(T'; B) > 0, then
& ¢(v) < 0o, with f as in the previous conjecture.

Another set of questions has to do with the dom-
ination relation defined by I' > I'" if and only if, for
every u and B, P(I'; B;u) > P(I"; B; u). This rela-
tion is understood at present only for spherically
symmetric trees and trees of height 2; see Pemantle
and Peres (1994). Understanding this even for trees
of height 3 seems difficult. The notion of domination
may be generalized to graded graphs as follows. Say
that G is a graded graph if its vertex set may be par-
titioned into disjoint sets V, V4, ..., Vy such that
edges occur only between V; and V, ;. If Vj = {p},
say that p is the root of G. For such a graded graph,
associate iid random variables {X(v)} to the ver-
tices having common distribution u. Let P(G;B)
denote the probability that (X(v;),..., X(vy)) € B
for some graded path in G (a graded path being a se-
quence of vertices {v;} with v; € V; and consecutive

J
vertices connected by edges).

CONJECTURE 3. P(G; B) < P(G’; B), where G’ is
the graph consisting of M paths of length N disjoint
except at p, and M is the number of distinct graded
paths of G.

The comparison theorem implies this in the case
where G is the graded graph of a tree. An elemen-
tary proof in this case is given by Benjamini and
Peres (1992a). Sidorenko (1991, 1992), motivated by
the pursuit of other combinatorial problems, proves
special cases of this where N = 2 and the graph is
either acyclic or small.

Some tree-indexed processes that seem inter-
esting in themselves are the tree-indexed Markov
chains. These were first studied by Benjamini
and Peres (1992a, 1994b). Intuitively, these are
branching Markov chains, where the branching
structure is prespecified as some fixed tree. To
construct tree-indexed Markov chains as standard
tree-indexed processes, begin with transition proba-
bilities p(x, y) on a countable space Y. Let {X(v)}
be iid uniform on the unit interval, and, for each
yeY,let {A, ,: z €Y} be a partition of [0, 1] into
sets such that the Lebesgue measure of the set A, ,
is p(y, z). Define S(v) recursively by S(p) = y, for
some arbitrary y,, and if v is the parent of w, then
S(w) = z if and only if X(w) € Ag,) .. Thus, along
any single self-avoiding path'from the root, one sees
a Markov chain with transitions p(x, y).

When the Markov chain is a random walk on a
group, some regularity of behavior can be estab-

lished. Benjamini and Peres (1994a) discuss the re-
lation between recurrence properties of such a tree-
indexed random walk and the growth of the group.
Amenability of G, for instance, is equivalent to re-
currence of the walk for any symmetric u and any
I' that has positive capacity in some gauge f(n) =
exp(an), a > 0 (these are just the trees with positive
Hausdorff dimension in the metric of Section 2.3).
Here, recurrence means the almost-sure existence
of infinitely many v with S(v) equal to the iden-
tity. Recurrence can be determined from the Green’s
function if the group has polynomial growth, but not
if the group has a nontrivial Poisson boundary.

Many questions about tree-indexed random
walks are still open; here is just one. Con-
sider the case of a tree-indexed random walk
on R. Call x = (vg, vy,...) € II' an escaping ray if
S(v,) — oo as n — oco. Say that x is a bouncing ray
if oo > liminf S(v,) > —oc.

CONJECTURE 4. If u has mean zero and finite
variance and T almost surely has bouncing rays,
then I' almost surely has escaping rays.

This is known to be true only in the cases where
the w is normal or Rademacher (Pemantle and
Peres, 1995a). The proofs in these cases involve
a long detour through potential-theoretic equiv-
alences, conspicuously absent in the statements.
Probably the conjecture is true for the reason that
caps(I') > 0 is necessary and sufficient in both
cases, where f(k)=+/k. Is there an elementary
argument?

Finally, as I promised in Section 1.3, I will sketch
a connection between random walks on trees and
the potential theory of trees. A very detailed such
connection may be made via electrical network the-
ory, but the connection via potential theory seems
more germane here.

Suppose we wish to estimate the probability that
a simple random walk started from the root of a

finite tree I' of height N hits the boundary of the

tree before hitting a cemetery A attached to the
root. The set W of vertices of I'yy hit by a random
walk before hitting A is a random set satisfying (1)
of the basic second moment theorem. It also satis-
fies a certain Markov property, and these two facts
imply that this random set is intersection equiva-
lent to a Bernoulli percolation; the cumulative sur-
vival probabilities for this percolation turn out to
be 1/(n + 1) at level n, corresponding to a kernel
K(x, y) = |x A y|. Letting the height N — oo gives
a criterion for transience discovered by Benjamini
and Peres (1992b): simple random walk on I is tran-
sient if and only if JI" has positive |x A y|-capacity.
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