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Discovering Disease Genes: Multipoint
Linkage Analysis via a New Markov Chain
Monte Carlo Approach
A. W. George and E. A. Thompson

Abstract. Multipoint linkage analyses of data collected on related individ-
uals are often performed as a first step in the discovery of disease genes.
Through the dependence in inheritance of genes segregating at several linked
loci, multipoint linkage analysis detects and localizes chromosomal regions
(called trait loci) which contain disease genes. Our ability to correctly detect
and position these trait loci is increased with the analysis of data observed
on large pedigrees and multiple genetic markers. However, large pedigrees
generally contain substantial missing data and exact calculation of the re-
quired multipoint likelihoods quickly becomes intractable. In this paper, we
present a new Markov chain Monte Carlo approach to multipoint linkage
analysis which greatly extends the range of models and data sets for which
analysis is practical. Several advances in Markov chain Monte Carlo theory,
namely joint updates of latent variables across loci or meioses, integrated
proposals, Metropolis–Hastings restarts via sequential imputation and Rao–
Blackwellized estimators, are incorporated into a sampling strategy which
mixes well and produces accurate results in real time. The methodology is
demonstrated through its application to several data sets originating from a
study of early-onset Alzheimer’s disease in families of Volga–German ethnic
origin.

Key words and phrases: Linkage analysis, joint Gibbs updates, integrated
proposals, Metropolis–Hastings restarts, sequential imputation.

1. INTRODUCTION

Within the nucleus of every human cell are 46 chro-
mosomes, long threadlike structures of double-stranded
DNA. Organized into homologous pairs (chromosomes
of almost identical DNA material), one chromosome
is inherited from the father and one chromosome is
inherited from the mother. Chromosomes are passed
from parent to offspring via a biological process called
meiosis. It is during meiosis that gamete cells (sperm
and egg) are produced which later combine to form
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a new offspring. In forming the paternal (maternal)
gamete, the father’s (mother’s) chromosome pair ex-
change complementary segments of DNA. That is, the
DNA of a gamete chromosome switches from being
a copy of the parent’s paternal (maternal) chromo-
some to being a copy of the parent’s maternal (pater-
nal) chromosome. The exchange points are known as
crossovers.

At a single position on a chromosome pair, known
as a locus (a very small segment of the DNA), one
of several variant DNA types (alleles) may be present.
Since chromosomes come in pairs, it follows that there
are two alleles at every locus where the unordered
pair of alleles represents an individual’s genotype at
this locus. The segment of DNA passed from parent
to offspring is called a gene. An individual may have
two copies of the same allele at a locus (e.g., aa), but
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one allele is associated with a paternally inherited gene
and one allele is associated with a maternally inherited
gene. Genes segregate (are inherited) according to
Mendel’s probabilistic rules (Mendel, 1866):

• At a locus, each individual has a gene inherited from
the father and a gene inherited from the mother.

• The paternally (maternally) inherited gene is a copy
of a randomly chosen one of the father’s (mother’s)
two genes.

• The random choice of genes passed from different
parents to a child and from a parent to different
children is independent.

When two or more loci are being considered, the
chromosomal locations of the loci become important.
If two loci, M and N , are locations on different
chromosomes, the loci are said to be unlinked and the
genes segregate independently. However, if M and N

are locations on the same chromosome, the loci are
linked and the genes segregate dependently. The closer
two loci are, the stronger the dependence.

A recombination event occurs between two loci
if the paternal (maternal) chromosomes of a child
at locus M and locus N originate from different
parental chromosomes of the father (mother). It is
through the recombination frequency that the strength
of dependence between two loci is measured. The
recombination frequency between loci M and N ,
denoted by ρMN , takes on values between 0 and 0.5,
where ρMN = 0.5 implies the loci are unlinked and
ρMN = 0 implies the loci are completely linked. At
unlinked loci the genes are independently inherited.

In a linkage analysis we seek to estimate the recom-
bination fraction between a trait locus of unknown lo-
cation and genetic markers of known location and to
test whether this recombination fraction is significantly
different from 0.5 (the trait locus is unlinked to the ge-
netic markers). In this way we are able to detect and
localize unknown trait loci. If the observed data are
such that the parental origin of the underlying genes
can be determined unambiguously, the likelihood used
in a linkage analysis is a simple multinomial. However,
data collected on large human pedigrees are often
sparsely observed with many individuals unavailable
for sampling. Thus, calculating probabilities on ex-
tended pedigrees is a latent variable or missing data
problem.

Traditionally (Elston and Stewart, 1971) multilocus
genotypes were used as the latent variables in calcu-
lating probabilities of genetic data observed on related
individuals. Multilocus genotypes are the set of allele

pairs at multiple linked loci where we know the phase.
That is, we know which allele in each pair belongs to
the paternal chromosome and which allele belongs to
the maternal chromosome. Alternative latent variables
are meiosis indicators, binary variables which spec-
ify the grandparental origins of alleles and hence trace
the passage through a pedigree of identical-by-descent
(ibd) genes (sometimes called “founder alleles”). Two
genes are ibd if they originate from a common founder
(an individual for whom we have no parental informa-
tion) in the pedigree. We will give an example of meio-
sis indicators and how they specify the passage of ibd
genes in Section 2.

Multipoint (use of several linked markers) linkage
analysis involves likelihood computations for numer-
ous hypothesized locations of a trait locus on a fixed
marker map. In this paper these trait locus locations
are discrete and denoted by λ, λ ∈ {0,1, . . . ,K}, with
λ = 0 denoting that the trait locus is unlinked, and
1, . . . ,K are fixed locations within the marker map.
Each λ corresponds to a different set of recombination
fractions between a trait locus and genetic markers. For
example, suppose we wish to calculate the likelihood
for three hypothesized locations of a trait locus given
data on three linked genetic markers. Then the sets of
recombination fractions associated with each test posi-
tion are given in Figure 1.

FIG. 1. The sets of recombination fractions associated with three
different hypothesized locations of a trait locus T with respect to
linked genetic markers L, M and N . The hypothesized locations
of T are indexed by 0, 1 and 2, where λ = 0 is an unlinked position
(the trait locus is on another chromosome). The triangles denote
genetic markers, the diamonds denote hypothesized locations of T

and ρij denotes the recombination fraction between locus i

and locus j . In linkage analyses the recombination fraction
between marker loci L and M (ρLM) and between marker loci
M and N (ρMN) is assumed known. We also show the relationships
that exist between the recombination fractions when we assume
recombinations occur independently across loci intervals.
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The multipoint likelihood is the probability of the
observed data given a trait locus at hypothesized
position λ, under an assumed genetic model θ . The
observed data include information on some individuals
for a trait (e.g., disease status) and/or several linked
markers (e.g., marker allele types). It is through the
genetic model that we specify the relationship between
observed data and underlying latent variables, the
chromosomal positions of the marker loci and the
frequency in the population of the alleles at each locus.
Once the K + 1 multipoint likelihoods have been
computed, lod scores are formed.

The lod score

lod(x) = log10

[
Pθ(Y|λ = x)

Pθ(Y|λ = 0)

]
(1)

assesses the support given by observed data Y for a
trait locus in hypothesized trait location x (H1 :λ = x)
versus an unlinked trait locus (H0 :λ = 0). A lod score
greater than 3 suggests that there is significant evidence
for linkage with the location of the trait locus given by
the location of the peak lod score (Morton, 1955).

Two algorithms exist for the exact calculation of
multipoint likelihoods: the Lander–Green algorithm
and pedigree-peeling algorithms. The Lander–Green
(Lander and Green, 1987) algorithm uses meiosis indi-
cators as the latent variables, and exact calculation pro-
ceeds almost directly from the Baum algorithm (Baum,
1972). The Baum algorithm is a deterministic proce-
dure for computing the likelihood of a hidden Markov
model with discrete-valued latent states. Through the
use of a recurrence relation, the calculation of the
multipoint likelihood decomposes into a series of
sums over the possible latent values of a single lo-
cus. Pedigree-peeling algorithms (Elston and Stewart,
1971; Cannings, Thompson and Skolnick, 1978) were
originally formulated using multilocus genotypes as
the latent variables but can also be implemented using
meiosis indicators (Thompson, 2000a). Exact calcula-
tion proceeds from a generalization of the Baum algo-
rithm. Lander–Green computations are linear in marker
number but exponential in pedigree size. Conversely,
pedigree-peeling computations are linear in pedigree
size but exponential in marker number, and are also
confounded by excessive pedigree complexity. Many
multipoint linkage analyses extend beyond the compu-
tational boundaries of exact methods.

An attractive alternative to exact computation is
Monte Carlo estimation of likelihoods via Markov
chain Monte Carlo (MCMC) methods. The first
MCMC method for Monte Carlo estimation of multi-
point linkage likelihoods was that of Lange and Sobel

(1991). Early MCMC methods sampled genotypes
(Thompson and Guo, 1991) or meiosis indicators
(Thompson, 1994a, b) via single-site updates. Al-
though these methods are easy to implement, ensuring
(practical) irreducibility of the realized Markov chain
is problematic since the missing data are highly con-
strained by the observed data and laws of Mendelian
segregation. More recently, several innovative schemes
for jointly updating blocks of genotypes (Jensen,
Kjærulff and Kong, 1995; Jensen and Kong, 1999) or
meiosis indicators (Heath, 1997; Thompson and Heath,
1999) have culminated in MCMC methods with im-
proved mixing properties. Generally, meiosis indica-
tors result in a smaller and less constrained latent space
for MCMC sampling given data at multiallelic marker
loci on sparsely sampled extended pedigrees.

Multipoint linkage analysis can also be conducted
within a Bayesian framework (Satagopan, Yandell,
Newton and Osborn, 1996; Uimari and Hoeschele,
1997; Daw, Heath and Wijsman, 1999). In this case,
not only the latent variables are sampled by MCMC but
also the location of the trait locus together with other
unfixed parameters of the trait or marker genetic model
or map. A Bayesian posterior distribution integrated
over these parameters is thus obtained. Although in-
creasingly used as a tool in the analysis of complex
traits, a Bayesian posterior distribution alone is often
regarded as insufficient, since the integrated posterior
lacks the familiarity and interpretability of a linkage
likelihood.

In this paper, an MCMC sampler is presented which
further advances the Monte Carlo estimation of
multipoint likelihoods of genetic data on extended
pedigrees. Here we focus on a binary trait, but the
methodology can be extended to include ordinal and
quantitative traits. The sampler explores the constrai-
ned space of latent variables through Metropolis–
Hastings (M–H) restarts and joint updates which com-
bine exact single-locus pedigree-peeling calculations
with Monte Carlo sampling. The problem is formulated
within a pseudo-Bayesian framework where a priori
priors no longer mirror belief but are chosen to enhance
the performance characteristics of the MCMC method.
Hypothesized trait locations λ are sampled from the
joint posterior distribution via an M–H acceptance ra-
tio integrated over the latent variables for the trait lo-
cus. A Rao–Blackwellized estimator is presented for
the Monte Carlo estimation of likelihoods.

2. MULTIPOINT LIKELIHOODS

Suppose observed data are recorded on a trait YT =
(Y·0) and L linked markers YM = (Y·1, Y·2, . . . , Y·L),
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where marker loci are ordered along a chromosome
1,2, . . . ,L and Y·j denotes observed data at locus j

across (related and unrelated) individuals. Some indi-
viduals may provide no observed data, and observed
individuals may not have data at all loci: Y·j simply
denotes whatever data are available at locus j . Under a
known genetic model θ , the multipoint likelihood of λ

based on the observed data Y = (YT ,YM) is

L(λ) = Pθ(Y|λ) = ∑
S

Pθ(Y,S|λ)

= ∑
S

Pθ(Y|S)Pθ(S | λ)(2)

= ∑
S

(
L∏

j=0

Pθ(Y·j |S·j )
)(

m∏
i=1

P (Si·|λ)

)
,

where S is the array of meiosis indicators Sij (i =
1, . . . ,m, j = 0,1, . . . ,L), Sij is 0 or 1 as the ibd
inherited gene at meiosis i locus j is the parent’s
maternal gene, or paternal gene, respectively, S·j is the
vector of meiosis indicators at locus j across meioses,
Si· is the vector of meiosis indicators at meiosis i

across loci and m is the total number of meioses in the
pedigree. The latent variables S trace the unobserved
passage of ibd genes through a pedigree.

For example, suppose data are collected on two
linked marker loci from 10 related individuals. Eight
individuals are observed and two individuals are un-
observed. For illustrative purposes only, we assume
the marker phase, whether the marker alleles at each
locus reside on the paternal chromosome or the mater-
nal chromosome of an individual, is known. Then Fig-
ure 2 shows how the binary meiosis indicators S can be
used to trace unobserved ibd genes through a pedigree
given the observed data. In fact, S given in Figure 2
is just one of a possible 1024 configurations consistent
with the observed data. If the marker phase were not
known, the number of possible S would be far greater.
Here and throughout this paper, we assume founders
are noninbred and unrelated. Each founder can pass
one of two unique ibd genes to his or her offspring at
each locus due to the founders being noninbred. Fur-
thermore, the ibd genes at each locus across founders
are unique due to founders being unrelated.

The single-locus probability Pθ(Y·j |S·j ) models the
relationship between observed data at locus j and
underlying latent variables at locus j . Calculation of
Pθ(Y·j |S·j ) is described in Thompson (1974). Briefly,
for genotypic observations,

Pθ(Y·j |S·j ) = ∑
A(j)

(∏
k

qj (a(k))

)
,(3)

FIG. 2. A simple pedigree with phase-known marker information
recorded at two linked marker loci for eight individuals; all other
individuals are unobserved. Founders are assumed to be noninbred
and unrelated; therefore, at each locus each founder can pass one
unique ibd gene to his or her offspring. The meiosis indicators
S1·, . . . , S2· fully describe the underlying passage of ibd genes
through the pedigree. At both loci (observed) marker alleles are
denoted by A, B, C, D and ibd genes are denoted by 1, . . . ,8.
The notation p|m denotes information inherited from the paternal
parent (p) and the maternal parent (m).

where the summation is over all valid assignments
A(j) of allelic types at (a marker or trait) locus j to
ibd genes, and the probability that a distinct gene k

is of allelic type a(k) ∈ A(j) is the population al-
lele frequency qj (a(k)). Kruglyak, Daly, Reeve-Daly
and Lander (1996) present a computationally effi-
cient algorithm for identifying all valid assignments.
See Thompson (1974, 2000a) for detailed examples
demonstrating the use of (3).

Assuming recombination events in disjoint intervals
between loci are independent, the probability Pθ(Si·|λ)

of the ith meiosis under θ when the trait locus is in
location λ is then

Pθ(Si·|λ) =
L+1∏
j=2

(1 − ρϕ(j−1;λ))
1−|β|

(4)
· (ρϕ(j−1;λ))

|β|,

where β = (Siϕ(j−1;λ) − Siϕ(j ;λ)), ϕ(j;λ) denotes
the j th locus in the chromosomal ordering when the
trait locus is in location λ and, for ease of notation,
ρϕ(j−1;λ) now is the recombination frequency between
loci ϕ(j − 1;λ) and ϕ(j;λ). For example, suppose
there are four marker loci with a hypothesized trait
locus between markers 3 and 4, so that the locus
ordering is 1 2 3 0 4. If Si· = (1,0,1,1,0), then
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this indicates that there are recombinations between
markers 1 and 2, between 2 and 3 and between the trait
locus and marker 4. Therefore, P (Si·|λ) = ρ1ρ2(1 −
ρ3)ρ4, where ρ1, ρ2, ρ3 and ρ4 are the recombination
frequencies between loci 1 and 2, 2 and 3, 3 and 0 and
0 and 4, respectively.

Note, for a given S calculation of the complete-
data likelihood, Pθ(Y,S|λ), is straightforward using
(3) and (4). This feature is fully exploited in MCMC
methods. Difficulties surrounding the calculation of (2)
stem from the sum over S because the set of valid S can
be huge and is highly constrained. For the calculation
of the lod score (1) it is assumed that only the
location λ of the trait locus in (2) is unknown. The
genetic model θ is fixed. A strategy for extending
our analysis approach to unknown genetic models is
discussed in Section 10.

3. A PSEUDO-BAYESIAN PARADIGM FOR
LIKELIHOOD ESTIMATION

Previous Monte Carlo estimates of the likelihood
curve for the location of a trait locus have been
based on sampling latent variables S from their condi-
tional distribution given Y under a fixed model (θ, λ).
Thompson (1994b) samples from the full conditional
distribution P(θ,λ)(S|Y) to obtain estimates of local
likelihood ratios in the neighborhood of λ. Irwin, Cox
and Kong (1994) use a sequential imputation distrib-
ution and reweight realizations to estimate the loca-
tion likelihood curve. Lange and Sobel (1991) sample
the values of meiosis indicators SM at marker loci
only, given marker data YM , and then compute for
each λ and each realization of SM the contributions
P(θ,λ)(YT |SM) of trait data YT to the multipoint likeli-
hood. Each of these methods has disadvantages in ob-
taining efficiently an accurate estimate of a multipoint
lod score curve from data on an extended pedigree in
which many individuals are unobserved.

An alternative approach has been to place a prior dis-
tribution on the parameters and genetic model, sam-
pling from the joint posterior distribution π(S, λ, θ |Y)

(Heath, 1997; Lee and Thomas, 2000), but these
Bayesian methods do not produce an estimate of
the lod score curve. Here, since the space of un-
known parameters is the discrete one-dimensional λ,
it is possible to recover the likelihood from the mar-
ginal posterior distribution of λ when sampling from
the joint posterior πθ(S, λ|Y) for the fixed genetic
model θ . That is, if a prior distribution π(λ) is as-
sumed,

L(λ) = Pθ(Y|λ) ∝ πθ(λ|Y)

π(λ)
.(5)

The prior distribution π(λ) can be chosen arbitrarily,
provided it assigns positive mass to each hypothesized
trait location, and thus may be chosen to improve
performance of the MCMC sampling from πθ(S, λ|Y)

rather than to reflect prior beliefs about trait location.
That is, π(λ) is a pseudo-prior in the sense of Geyer
and Thompson (1995). In practice, it is found to be
most efficient if π(λ) is chosen so that the marginal
posterior distribution for λ is approximately uniform.
The method of choosing such a π(λ) is deferred to
Section 7.

Given N realizations (S(1), λ(1)), . . . , (S(N), λ(N))

from the posterior distribution πθ(S, λ|Y), an estimator
of the lod score curve is now constructed. Note that

πθ(λ = x|Y) = Eπθ

(
I (λ = x)|Y)

,(6)

where I (λ = x) is an indicator function equal to 1
when λ = x and 0 otherwise. Thus, the marginal
posterior probability πθ(λ|Y) is most simply estimated
by the proportion of realizations (λ(n);n = 1, . . . ,N)

that are equal to x.
Combining (5) and (6), the estimate of the marginal

posterior for λ is normalized by the prior π(λ) to ob-
tain, up to a λ-independent constant of proportional-
ity, an unbiased estimator of the likelihood L(λ = x) =
Pθ(Y|λ = x):

T crude
N (x) = 1

N

N∑
n=1

I (λ(n) = x)

π(λ = x)
.(7)

From (1) an estimate of the multipoint lod score is then

log10

(
T crude

N (x)

T crude
N (0)

)
,(8)

where λ = 0 corresponds to the trait being unlinked to
the markers. This simplest estimator (8) disregards the
sampled values of S and uses only the realized values
of λ.

4. MCMC SAMPLING

MCMC methods are procedures for drawing depen-
dent samples from high-dimensional probability distri-
butions where the samples form a Markov chain with
the distribution of interest as its stationary distribution.
Expectations in high-dimensional distributions which
preclude exact computation can then be estimated via
ergodic averages of the realized samples. The proce-
dures are outlined here: details of the samplers are
given in the Appendix.

Dependent realizations (S(1), λ(1)), . . . , (S(n), λ(n)),

. . . , (S(N), λ(N)) are drawn from πθ(S, λ|Y), where a
move from (S(n), λ(n)) to (S(n+1), λ(n+1)) is accom-
plished via the following steps:
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STEP I. Given (S(n), λ(n)), sample S(n+1) via joint
Gibbs steps:

• with probability 1 − pL, a whole-meiosis sampler
(M-sampler) is used to realize Si· : i = 1, . . . ,m,
where meioses are updated in random order;

• with probability pL, a whole-locus sampler
(L-sampler) is used to realize S·j : j = 0,1, . . . ,L,
where loci are updated in random order.

STEP II. Sample λ via the M–H algorithm using an
integrated acceptance probability:

• a new hypothesized trait location λ′ is randomly
chosen from possible hypothesized trait locations
{0,1, . . . ,K}, which includes the unlinked hypoth-
esized trait location;

• λ′ is accepted with probability α(λ(n), λ′) given by

α
(
λ(n), λ′) = min

[
1,

Pθ(YT |S(n+1)
M ,λ′)π(λ′)

Pθ(YT |S(n+1)
M ,λ(n))π(λ(n))

]
,

where each Pθ(YT |SM,λ) is obtained by single-
locus peeling over the trait meiosis indicators ST ;

• if λ′ is accepted, then λ(n+1) = λ′ and a new
S

(n+1)
T is drawn from the full conditional distribution

Pθ(ST |S(n+1)
M ,YT ,λ′); otherwise, λ(n+1) = λ(n) and

S
(n+1)
T is unchanged.

These two steps are repeated N times. The
M-sampler, L-sampler and integrated acceptance prob-
abilities are described in the Appendix.

5. SEQUENTIAL IMPUTATION FOR STARTS
AND RESTARTS

Initially intended as a Monte Carlo technique for
estimating multipoint likelihoods, sequential imputa-
tion is a useful mechanism for obtaining a start-
ing configuration S(0) for the Markov chain. Kong,
Cox, Frigge and Irwin (1993) and Kong, Liu and
Wong (1994) describe sequential imputation as an
importance sampling approach where K independent
samples S∗k for k = 1, . . . ,K are obtained with associ-
ated weights W(S∗k) conditioned on the observed data.
That is, each S∗ = (S∗·0, S

∗·1, . . . , S∗·L) is to be drawn
from the joint probability distribution P ∗(S|λ(0)) =
Pθ(Y,S|λ)(W(S))−1, where for notational conven-
ience the k superscript is suppressed. Here λ denotes
the initial position of the trait locus normally taken as
λ = 0 (unlinked).

First, the locus in some position h (h = 1, . . . ,L + 1)
is selected, S∗

·ϕ(h;λ) is drawn from Pθ(S·ϕ(h;λ)|

Y·ϕ(h;λ), λ) and wh = Pθ(Y·ϕ(h;λ)) is computed.
Second, moving in a forward direction along the
chromosome [i.e., for the loci ϕ(h + 1;λ), . . . ,

ϕ(L + 1;λ) in positions h + 1, . . . ,L + 1], S∗·ϕ(j ;λ)

is drawn from Pθ(S·ϕ(j ;λ)|S∗·ϕ(j−1;λ), Y·ϕ(j ;λ), λ) and
wj = Pθ(Y·ϕ(j ;λ)|S∗·ϕ(j−1;λ), λ) computed. Last, mov-
ing in a backward direction from the initial locus in
position h [i.e., for the loci ϕ(h − 1;λ), . . . ,

ϕ(1;λ) in positions h − 1, . . . ,1], S∗·ϕ(j ;λ) is drawn
from Pθ(S·ϕ(j ;λ)|S∗·ϕ(j+1;λ), Y·ϕ(j ;λ), λ) and wj =
Pθ(Y·ϕ(j ;λ)|S∗

·ϕ(j+1;λ), λ) computed. Therefore, by
moving along the chromosome in a sequential manner,
a joint sample S∗ is obtained with associated impor-
tance weight W(S∗) = ∏L+1

j=1 wj .
Sampling S·ϕ(j ;λ) from Pθ(S·ϕ(j ;λ)|S∗

·ϕ(j−1;λ),

Y·ϕ(j ;λ), λ) is computationally analogous to an
L-sampler step, and computing wj is computationally
equivalent to single-locus pedigree peeling. The S∗k

with the largest associated weight among the K inde-
pendent samples is used as a starting configuration S
for the Markov chain.

Sequential imputation can also be incorporated into
the M–H update, allowing the Markov chain to restart
in a different part of the parameter space. With (S(n),

λ(n)) representing the present state of the Markov
chain, a single S′ is drawn from P ∗(S|λ(n)) via
sequential imputation. The restart state S′ is then
accepted with probability α(S(n),S′) = min(1,A) with

A = πθ(S′, λ(n)|Y)

πθ(S(n), λ(n)|Y)

P ∗(S(n)|λ(n))

P ∗(S′|λ(n))

= Pθ(Y|S′, λ(n))Pθ (S′|λ(n))π(λ(n))

Pθ(Y|S(n), λ(n))Pθ (S(n)|λ(n))π(λ(n))

· Pθ(Y,S(n)|λ(n))W(S′)
Pθ(Y,S′|λ(n))W(S(n))

= W(S′)
W(S(n))

,

where P ∗(S(n)|λ(n)) is the probability of proposing
S(n) if S(n) were sampled using sequential imputation,
and similarly P ∗(S′|λ(n)) is the probability of propos-
ing S′ when S′ is sampled using sequential imputation.
Thus, the acceptance probability is the ratio of impor-
tance weights for S′ and S(n).

6. RAO–BLACKWELLIZED ESTIMATORS

Rao–Blackwellization is a technique which uses
exact computation to construct estimators with reduced
Monte Carlo variance (Gelfand and Smith, 1990).
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Suppose realizations (S(n), λ(n)), n = 1, . . . ,N , have
been sampled from the joint posterior distribution
πθ(S, λ|Y). An unbiased Monte Carlo estimate of

τ = Eπθ

(
g(S, λ)|Y)

is

TN = 1

N

N∑
n=1

g
(
S(n), λ(n)

)
.(9)

Now, for any function Z(S, λ),

Eπθ

(
E

(
g(S, λ)|Z(S, λ),Y

)|Y) = Eπθ

(
g(SM,λ)|Y) = τ.

Thus, if

h(Z) = E
(
g(S, λ)|Z(S, λ),Y

)
can be computed, an alternative unbiased Monte Carlo
estimator of τ is

T RB
N = 1

N

N∑
n=1

h
(
Z

(
S(n), λ(n)

))
.(10)

For independent realizations, the reduced variance of
the Rao–Blackwellized estimator is assured:

var(T RB
N ) ≤ var(TN).

For MCMC realizations, the reduction in variance
is not universal, but usually holds (Liu, Wong and
Kong, 1994). At the cost of increased computation per
realization, a more precise estimator is obtained.

A Rao–Blackwellized estimator can be readily ob-
tained from the crude estimator (7):

T crude
N (x) = 1

N

N∑
n=1

I (λ(n) = x)

π(λ = x)
.

Taking Z(S, λ) = SM ,

h(SM) = Eπθ

(
I (λ(n) = x)

π(λ = x)

∣∣∣SM,Y
)

= πθ(λ = x|SM,Y)

π(λ = x)

= Pθ(YT |SM,λ = x)

π(λ = x)

· Pθ(YM |SM)Pθ(SM)π(λ = x)

Pθ (YM |SM)Pθ(SM)

= Pθ(YT |SM,λ = x)

Pθ(YT |SM)

= Pθ(YT |SM,λ = x)∑
λ′ Pθ(YT |SM,λ = λ′)π(λ = λ′)

,

which is exactly calculable through single-locus
pedigree-peeling computations.

Thus, a Rao–Blackwellized estimator of the multi-
point likelihood Pθ(Y|λ = x) is given by

T RB
N (x) = 1

N

N∑
n=1

h
(
S(n)

M

)
(11)

=
N∑

n=1

Pθ(YT |S(n)
M ,λ = x)∑

λ′ Pθ(YT |S(n)
M ,λ = λ′)π(λ = λ′)

and an estimate of the multipoint lod score is

log10

(
T RB

N (x)

T RB
N (0)

)
.(12)

Note that whereas the crude estimator (7) is a func-
tion only of the realized λ(n) the Rao–Blackwellized
estimator (11) is a function only of S(n)

M . For the real-

ized S(n)
M the contribution to the estimate of the likeli-

hood is computed for each value x of λ.

7. CONSTRUCTION OF A PSEUDO-PRIOR FOR λ

The performance characteristics of the MCMC
method will generally be poor if there exist hypoth-
esized trait locations λ with low marginal posterior
probability. To improve performance of the MCMC
sampling of πθ(S, λ|Y), a pseudo-prior is placed on λ,
such that π(λ) ≈ (πθ (λ|Y))−1, to produce a mar-
ginal MCMC sampling distribution for λ which is ap-
proximately uniform. Each hypothesized trait location
is then sampled with approximately equal frequency,
even those locations with very low marginal posterior
probabilities.

To construct π(λ), a preliminary analysis of the
genetic data is conducted, obtaining a run of N ′ real-
izations using the MCMC method temporarily assign-
ing equal prior probability to each λ ∈ {0,1, . . . ,K}.
A new π(λ) is then obtained as the inverse of the es-
timate of the posterior from the preliminary MCMC
run. The estimator used is analogous to the Rao–
Blackwellized likelihood estimator (11) of the previous
section and uses only the realized SM from the prelim-
inary run:

π(λ) =
(

1

N ′
N ′∑

n=1

Pθ(YT |S(n)
M ,λ = x)∑

λ′ Pθ(YT |S(n)
M ,λ = λ′)

)−1

.(13)

Some fine-tuning of π(λ) may be necessary to achieve
uniform sampling of λ if some λ have near-zero
marginal posterior probability.
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8. THE EXAMPLE DATA

Performance characteristics of the proposed MCMC
method are explored through the multipoint linkage
analysis of data originating from a study of early-onset
Alzheimer’s disease in families of Volga–German eth-
nic origin (Levy-Lahad et al., 1995a, b). Several fam-
ilies in this group carry the presenillin PS2 mutation
located close to the D1S479 microsatellite marker on
Chromosome 1. However, some of these families do
not carry this mutation and show no linkage of the
disease with markers on Chromosome 1 or on Chro-
mosome 14 (the presenillin PS1 location). Moreover,
even in families that do segregate the PS2 mutation,
not all affected individuals carry the mutation and not
all carriers of the mutation are affected, even at older
ages (Wijsman, personal communication). This study
thus provides an ideal example of a situation where the
answer is known and where we have both families in
which the disease is linked to Chromosome 1 and ones
in which it is not. For the purposes of our current analy-
sis the disease is treated as dominant. Affected individ-
uals with age of onset larger than a pedigree-specific
cutoff are treated as of unknown trait genotype, as also
are unaffected individuals.

We have selected two of the larger pedigrees on
which to show the performance of our method: one of
these (R) segregates the PS2 mutation and the other
(KS) does not. The R and KS pedigrees are depicted
in Figures 3 and 4, respectively. Note that observed
data are available only on the last two generations:
due to the late onset of the disease, many individu-
als of interest are deceased. For the current analysis
a subset of the available marker information is used.
Ten linked informative microsatellite marker loci on
Chromosome 1 were selected. These markers are ap-
proximately evenly spaced along a 60cM chromoso-
mal segment surrounding the D1S479 marker. Each
marker has between 8 and 12 possible alleles, although
only a subset of these is observed in these two pedi-
grees. These pedigrees and markers are a subset of the
data considered by Daw, Heath and Wijsman (1999)
in their Bayesian MCMC analysis of genetic hetero-
geneity in Alzheimer’s disease. The map and allele fre-
quency information is taken from that study. For each
marker locus, the index, associated name, map position
and number of possible segregating alleles are given in
Table 1. For simplicity, the sex-averaged genetic map
is used in this analysis. The Haldane map function is
used to convert genetic distance to recombination fre-
quencies.

FIG. 3. The R pedigree, containing 53 individuals, originates
from a genetic study into Alzheimer’s disease. The symbol A
denotes an individual who, for the purposes of this illustrative
analysis, was designated as affected. Males are denoted by squares;
females are denoted by circles. Shaded squares and circles denote
individuals with recorded marker information.

TABLE 1
Marker indexes, associated names, map positions
on Chromosome 1 and number of alleles at each

marker locus used in the multipoint linkage
analysis of Alzheimer’s disease

Map position Number of
Index Name (cM) alleles

1 D1S306 215.17 12
2 D1S249 220.65 15
3 D1S245 227.81 10
4 D1S237 232.81 13
5 D1S229 237.73 8
6∗ D1S479 242.34 11
7 D1S446 252.12 13
8 D1S235 254.64 9
9 D1S180 267.51 11

10 D1S102 275.68 6

∗The marker known to be almost completely
linked with the trait locus.
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FIG. 4. The KS pedigree, containing 49 individuals, originates
from a genetic study into Alzheimer’s disease. The symbol A
denotes an individual who, for the purposes of this illustrative
analysis, was designated as affected. Males are denoted by squares;
females are denoted by circles. Shaded squares and circles denote
individuals with recorded marker information.

9. RESULTS

The accuracy of the crude estimator (8) and the
Rao–Blackwellized estimator (12) for multipoint lod
score estimation is assessed through the multipoint
linkage analysis of data collected on the R and KS
pedigrees. For comparison, exact lod scores are ob-
tained via pedigree peeling, but a joint analysis in-
volving all 10 markers is infeasible. Instead, analyses
are based on four-locus data, using the three mark-
ers D1S306, D1S479 and D1S102. Hypothesized trait
locations are placed within each marker interval at
proportional genetic distances 0.1,0.2, . . . ,0.9. A trait
allele frequency of 0.05 is assumed.

Computations are performed on a Dell Worksta-
tion using a single Pentium III processor running at
933 MHz. Exact lod scores at the hypothesized trait
locations are computed using the software package
VITESSE (O’Connell and Weeks, 1995). The MCMC
methods described in previous sections have been im-

plemented using the framework of the MORGAN Ver-
sion 2.6 package for Monte Carlo genetic analysis
(http: // www.stat.washington.edu / thompson / Genepi /
MORGAN / Morgan.shtml).

Specifications of the MCMC runs for the analysis
of the four-locus data are as follows. A preliminary
analysis of the genetic data collected on R and KS
pedigrees is conducted for the construction of π(λ).
In this phase the MCMC method is run with a uni-
form prior placed on λ, for 5000 and 6000 iterations,
respectively. Using the pseudo-prior π(λ) estimated
from these preliminary runs (see Section 7), the mul-
tipoint lod scores are then estimated from an MCMC
run of length 10,000 for the R pedigree and 40,000 for
the KS pedigree. All runs are based on an L-sampler
proportion of 20% (pL = 0.2).

Figures 5 and 6 show close agreement between the
exact lod score curve and the estimated lod score
curves for the four-locus analyses. For the R pedigree,
exact lod scores are computed in 34.05 minutes,
while lod scores estimated via (8) and (12) take
only 1.99 and 2.82 minutes, respectively. Similarly,
for the KS pedigree, exact lod scores are computed
in 168.31 minutes, while lod scores estimated via
(8) and (12) take 4.81 and 7.95 minutes, respectively.
These MCMC run times include time spent performing
a preliminary analysis for the construction of the
pseudo-prior πλ.

FIG. 5. Exact and estimated multipoint lod scores at hypothe-
sized trait locations for the analysis of the four-point data collected
on the R pedigree. Marker positions are denoted by the diamonds.
The solid line represents the exact lod score curve computed us-
ing pedigree peeling. The long-dashed line represents the lod score
curve estimated from an MCMC run using (8). The short-dashed
line represents the lod score curve estimated from an MCMC run
using (12).
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FIG. 6. Exact and estimated multipoint lod scores at hypothe-
sized trait locations for the analysis of the four-point data collected
on the KS pedigree. Marker positions are denoted by the diamonds.
The solid line represents the exact lod score curve computed us-
ing pedigree peeling. The long-dashed line represents the lod score
curve estimated from an MCMC run using (8). The short-dashed
line represents the lod score curve estimated from an MCMC run
using (12).

Convergence is diagnosed through the inspection of
trace plots of S·j , Si· and λ (i.e., plots of realized
values of these variables over iteration number). These
trace plots also show the good mixing properties of
these MCMC runs. For example, Figures 7 and 8
plot sampled values of λ against MCMC iteration
number for the analysis of data collected on R and
KS pedigrees, respectively. For clarity, each trace plot
shows only the first 5000 values of λ not including
values sampled in the preliminary analysis. The plots
display no trend, and each hypothesized trait location
is well sampled with no obvious bias for particular
values.

Pointwise Monte Carlo standard errors of the lod
scores are estimated using the batch-means method of
Hastings (1970) as described in the Appendix. Each
run is divided into 20 batches; in no run did the
batch means display significant autocorrelation. Monte
Carlo standard errors associated with lod scores es-
timated via (8) are approximately twice as large as
standard errors associated with lod scores estimated
via (12). In fact, using a run length of 50,000 taking
6.05 minutes for the R pedigree and a run length of
100,000 taking 10.61 minutes for the KS pedigree is
required before the standard errors associated with (8)
are approximately equal (≈ 0.03) to those for estima-
tor (12) in the runs described above. Using the Rao–
Blackwellized estimator (12) requires extra computing

FIG. 7. Plot of λ(n) over MCMC iteration number. For clarity
only the first 5000 iterations, after the preliminary analysis, are
shown. Sampled values are obtained from an MCMC run for the
analysis of four-point data collected on the R pedigree.

time per MCMC iteration, but the reduced standard er-
rors more than compensate for the additional computa-
tional cost.

When using the multipoint data for all 10 marker
loci, implementation of the MCMC method is es-
sentially the same as described above. A preliminary
analysis of the R and KS pedigrees is conducted where
20,000 and 30,000 iterations are performed, respec-
tively. Multipoint lod scores for the R and KS pedi-
grees are then obtained from an MCMC run of length
200,000 iterations taking 71.41 minutes and 300,000
iterations taking 103.24 minutes, respectively. The re-
sulting lod score curves are shown in Figures 9 and 10.

FIG. 8. Plot of λ(n) over MCMC iteration number. For clarity
only the first 5000 iterations, after the preliminary analysis, are
shown. Sampled values are obtained from an MCMC run for the
analysis of four-point data collected on the KS pedigree.
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FIG. 9. Estimated multipoint lod scores at hypothesized trait
locations for the analysis of multipoint data collected on the R
pedigree. Marker positions are denoted by the diamonds. The solid
line represents the lod score curve estimated from an MCMC run
using (8). The dashed line represents the lod score curve estimated
from an MCMC run using (12). The two curves are practically
indistinguishable.

Hypothesized trait locations are placed within each
marker interval at proportional genetic distances 0.1,
0.5, 0.9.

Once again, standard errors associated with lod
scores estimated via the crude estimator are approx-
imately twice the standard errors associated with lod
scores estimated via the Rao–Blackwellized estima-
tor (which were between 0.03 and 0.09 across λ). Al-
though exact answers are not available for the joint
analysis of all 10 markers, a disease gene is correctly

FIG. 10. Estimated multipoint lod scores at hypothesized trait
locations for the analysis of multipoint data collected on the KS
pedigree. Marker positions are denoted by the diamonds. The solid
line represents the lod score curve estimated from an MCMC run
using (8). The dashed line represents the lod score curve estimated
from an MCMC run using (12). The two curves are practically
indistinguishable.

detected in the R pedigree and localized to marker
D1S479 (see Figure 9). This marker is very close to the
presenillin PS2 mutation (Levy-Lahad et al., 1995a).
Similarly, the lod score curves depicted in Figure 10
verify the absence of a disease gene in this region of
Chromosome 1 segregating in the KS family, in agree-
ment with previous analyses of data on this family.

A reasonable number of restarts are accepted for the
four-locus analysis of the R and KS data with accep-
tance rates of 10% and 5%, respectively. However, se-
quential imputation failed to propose acceptable restart
states for the multipoint analysis of all 10 tightly linked
markers.

10. DISCUSSION

Methods to compute exact multipoint lod scores con-
tinue to increase in speed and efficiency, allowing exact
multipoint linkage analyses of large data sets. How-
ever, analyses of data collected on extended pedigrees
(more than 40 individuals) with several (more than 3)
linked and highly polymorphic markers remain beyond
the computational boundaries of exact methods, partic-
ularly where a substantial proportion of pedigree mem-
bers are unobserved. MCMC methods often provide
the only viable means of analysis.

Using several recent advances in MCMC method-
ology, new MCMC procedures for the estimation
of multipoint lod scores are presented in this pa-
per. These new MCMC procedures have been im-
plemented within the framework of the MORGAN
Version 2.6 package for Monte Carlo genetic analysis
(http: // www.stat.washington.edu / thompson / Genepi /
MORGAN / Morgan.shtml).

The methodology is demonstrated through its appli-
cation to multipoint data collected on two large ex-
tended pedigrees where data are collected on a disease
trait and 10 tightly linked and highly polymorphic
markers. Through batch updates of the latent variables,
Metropolis–Hastings restarts and integrated proposal
distributions, we obtain MCMC runs which mix well
over the sample space of trait locations and meiosis in-
dicators. The realized values of these variables result in
accurate estimates of the multipoint lod scores.

Rao–Blackwellization is a useful technique for con-
structing estimators with reduced Monte Carlo vari-
ance. At the expense of increased computation per
iteration, a more precise estimator is obtained. The
Rao–Blackwellized estimator (12) uses trait locus ex-
act likelihood computation conditional on the real-
ized SM to estimate multipoint lod scores. The crude
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estimator (8) provides zero likelihood estimates, and
hence infinite (−∞) log-likelihoods, at hypothesized
trait locations λ not sampled within an MCMC run.
The Rao–Blackwellized estimator will always provide
finite estimates of the lod score, unless the true like-
lihood of a location is 0, but still has high variance at
locations of small likelihood. More precise estimates of
lod scores are obtained if the prior distribution of λ is
chosen such that the MCMC run samples the locations
approximately uniformly. Since the likelihood for an
unlinked trait L(λ = 0) enters into every lod score esti-
mate, even better performance might be obtained with
a prior which puts increased weight on λ = 0.

Proposing restarts for multipoint data collected on
several tightly linked markers is difficult, as evidenced
in this paper. Since the process of realization is
sequential over loci, only the data for loci to one side
of a given locus contribute to imputation at that locus.
The dependence that exists between a locus and its
adjacent loci is only partially captured. Improvements
suggested by Irwin, Cox and Kong (1994) are to
process the loci in an order starting from the locus with
the least amount of missing information and splitting
highly polymorphic loci into two completely linked
(artificial) loci. Implementation of these suggestions
may make sequential imputation restarts feasible for
our 10-marker example, and improve acceptance rates
for the examples with smaller numbers of markers.

Several extensions of the methods of this paper are
almost immediate. First, the MCMC method presented
here can be extended to detecting and localizing a
quantitative trait locus (QTL). Routines to compute
the necessary trait likelihoods conditional upon SM

already exist within the MORGAN package (Heath,
1997). In fact, improved mixing is expected for a QTL
because the trait locus places no absolute constraints
upon the latent space of meiosis indicators: all con-
figurations of trait genotypes are, in principle, feasi-
ble. Second, improvements to the L- and M-samplers
can be made through jointly sampling S·j for several
loci j and Si· for several meioses i, respectively. How-
ever, improved MCMC mixing needs to be weighed
against the increased computational burden per itera-
tion. Moreover, the choice of meioses for joint updat-
ing is nontrivial (Thompson and Heath, 1999): some
proposals in this regard have recently been made by
Thompson (2000b) and Thomas, Gutin, Abkevich and
Bansal (2000). Third, further investigation is required
into other estimators of multipoint lod scores based on
realized values of sampled variables. The specific form
of Rao–Blackwellized estimator used in this paper is

only the simplest of many alternatives. For example,
in the context of single-marker lod scores, Jensen and
Kong (1999) have proposed an interesting class of es-
timators that extend the simple MCMC likelihood ra-
tio estimator of a recombination frequency given by
Thompson and Guo (1991).

In practice, the parameters associated with a ge-
netic model for a trait are unknown or at best ap-
proximately known. Bayesian approaches to linkage
analysis treat these parameters as nuisance variables:
they are marginalized out of the joint posterior distrib-
ution. A similar strategy could be adopted here with re-
gard to the parameters designated θ , but interpretability
of the multipoint lod score is then compromised, an is-
sue which limits widespread acceptance of Bayesian
linkage analysis. An alternative approach to model
uncertainty is through mod scores (Clerget-Darpoux,
Bonaïti-Pellié and Hochez, 1986): mod scores are lod
scores maximized over the genetic model parame-
ters θ :

mod(λ) = max
θ

(
logPθ(Y|λ) − logPθ(Y|λ = 0)

)
.

Used with care and caution, mod scores possess the
ability both to detect linkage and to identify an ap-
propriate genetic model. Hodge and Elston (1994) and
Liang, Rathouz and Beaty (1996) provide discussion
on the calculation, use and limitations of mod scores.
For a low-dimensional genetic model θ , for exam-
ple, four or five parameters of the trait model, MCEM
(Guo and Thompson, 1994) provides a method for
the maximization of the likelihood for any fixed λ

(including λ = 0) and for the joint maximization of the
likelihood with respect to both θ and λ. Thus, deter-
mination of the mod score is feasible, although more
computationally intensive than determination of the
lod score for a fixed value of θ .

APPENDIX

A.1 M-sampler

The M-sampler (Thompson and Heath, 1999;
Thompson, 2000a) is a whole-meiosis Gibbs sampler
which jointly updates an entire meiosis Si· from the
full conditional distribution Pθ(Si·|S−i·,Y, λ), where
S−i· = {Sk·, k �= i}. Calculation of Pθ(Si·|S−i·,Y, λ)

proceeds from the forward–backward algorithm of
Baum, Petrie, Soules and Weiss (1970) which calcu-
lates exact probability distributions, under a hidden
Markov model (HMM), of latent variables conditional
on observed data. For a detailed discussion of the
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FIG. 11. Directed acyclic graph of a hidden Markov model for
the genetic data, where Y = (Y·ϕ(1;λ), . . . , Y·ϕ(L+1;λ)) denotes
the observed data and S = (S·ϕ(1;λ), . . . , S·ϕ(L+1;λ)) denotes the
latent variables. The absence of genetic interference is assumed.
Loci are in the order ϕ(1;λ),ϕ(2;λ), . . . , ϕ(L + 1;λ), where
ϕ(j;λ) denotes the j th element in the list of loci ordered with a
trait locus in position λ.

forward–backward algorithm and its application in ge-
netic analysis, see Thompson (2000b).

Assuming the absence of genetic interference, latent
variables (S·ϕ(j ;λ); j = 1, . . . ,L + 1) follow a first-
order Markov chain, where ϕ(j;λ) denotes the j th
element in the ordered list of loci with the trait locus
in hypothesized trait location λ. The observed data Y,
partitioned as (Y·ϕ(j ;λ); j = 1, . . . ,L + 1), can then
be modeled as an HMM. Figure 11 shows the direct
acyclic graph of an HMM for genetic data where the
nodes denote the random variables and the presence
of an edge between two nodes indicates a direct
dependency between the two (sets of) variables.

Note that, conditional on both Y and {Si·; i ∈ M}
for any subset M of the meioses, indicators for the
remaining meioses have the same HMM structure. In
particular, (Siϕ(j ;λ); j = 1, . . . ,L + 1) is a two-state
Markov chain (Siϕ(j ;λ) = 0 or 1) and has the HMM
structure conditional upon S−i· and Y. We give here the
M-sampler update for a single meiosis i and denote the
current value of S before this sampling step by S(n) as if
i were the first meiosis to be updated. A full M-sampler
scan consists of updating all the meioses successively
in random order. Each Si· is updated conditional on the
current values S

(n)
k· or S

(n+1)
k· , depending on whether

meiosis k has yet been updated.
The exact calculation of Pθ(Si·|S(n)

−i·,Y, λ) begins
with the computation of the forward probabilities

Qj(s) = Pθ

(
Siϕ(j ;λ) = s|S(n)

−i·,Y·(1 : j), λ
)

for s = 0,1,

where Y·(1 : j) = (Y·ϕ(1;λ), . . . , Y·ϕ(j ;λ)), the data for
the first j loci along the chromosome. Now Q1(s) ∝
Pθ(Y·ϕ(1;λ)|S·ϕ(1;λ), λ) and, moving along the chromo-
some in a forward direction, Qj(s) can be calculated
iteratively as

Qj(s) ∝ Pθ(Y·ϕ(j ;λ)|S·ϕ(j ;λ), λ)

· (
Qj−1(s)(1 − ρϕ(j−1;λ))

+ Qj−1(1 − s)ρϕ(j−1;λ)

)
,

where ρϕ(j−1;λ) is the recombination fraction between
loci ϕ(j − 1;λ) and ϕ(j;λ). The probabilities Qj(s)

are easily normalized with respect to s, since s takes
only the two values 0 or 1.

Once Qj(s) is available for j = 1,2, . . . ,L + 1, the
meiosis indicator Siϕ(j−1;λ) is successively sampled
back along the chromosome via the backward proba-
bility

Pθ

(
Siϕ(j−1;λ) = s|S(n)

−i·,S(n+1)
i (j :L + 1),Y

)
∝ Qj−1(s)

(|Siϕ(j ;λ) − s|ρϕ(j−1;λ)

+ (1 − |Siϕ(j ;λ) − s|)(1 − ρϕ(j−1;λ))
)
,

where S(n+1)
i (j : L + 1) = {S(n+1)

iϕ(l;λ), l = j, . . . ,L + 1}
is the set of previously (back) sampled latent vari-
ables. Thus, when the indicators {Siϕ(j ;λ); j = L + 1,

. . . ,2,1} at all loci have been successively sampled, a
joint realization S(n+1)

i· = (S
(n+1)
i0 , S

(n+1)
i1 , . . . , S

(n+1)
iL )

has been realized from the conditional distribution
Pθ(Si·|S(n)

−i·,Y, λ). Because the components of Si· are
updated jointly, the M-sampler does not suffer from
problems with mixing when the loci are tightly linked,
but does suffer from poor mixing on extended pedi-
grees.

A.2 L-sampler

The L-sampler (Heath, 1997) is a whole-locus Gibbs
sampler, combining Monte Carlo simulation with
single-locus peeling, to update jointly the complete set
of meiosis indicators at locus in position j conditional
on observed phenotypic data Y·ϕ(j ;λ) and the meiosis
indicators at adjacent loci S·ϕ(j−1;λ) and S·ϕ(j+1;λ).
Although implementation of the L-sampler requires
pedigrees that are single-locus peelable, the latent vari-
able space associated with a single locus is sufficiently
small that large extended pedigrees with multiple mar-
riage loops are computationally feasible.

Each step of the L-sampler draws S·ϕ(j ;λ) from the
full conditional distribution

Pθ

(
S·ϕ(j ;λ)|{S·j ′ : j ′ = 1, . . . ,L + 1,

j ′ �= ϕ(j;λ)
}
,Y, λ

)
,
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which the conditional independence structure reduces
to

Pθ(S·ϕ(j ;λ)|S·ϕ(j−1;λ), S·ϕ(j+1;λ), Y·ϕ(j ;λ), λ).

For notational convenience, in the following we as-
sume the current step updates locus j (j ∈ {0,1,2,

. . . ,L}), replacing ϕ(j;λ) by j , and denote by j± the
two neighboring loci in the ordering defined by λ. Fur-
thermore, as for the M-sampler, we assume that this
locus is the first to be updated, and thus denote the cur-
rent values by S

(n)
·j±. In reality, of course, each S·j is

updated successively, conditional on the current values
S

(n+1)
·j ′ or S

(n)
·j ′ depending on whether or not the locus j ′

has or has not yet been updated.
Pedigree peeling also uses an HMM structure, but

there is added complexity due to the pedigree, which
is not a linear structure but at best a tree, and due
to the fact that there is directionality in the definition
of Mendelian transmission probabilities from parents
to offspring. Consider a set of meioses C (a cutset)
which together divide the pedigree into two or more
disjoint parts. Conditional on the values of the meiosis
indicators in C and allelic types assigned to ibd
genes, data observed on the disjoint pedigree segments
are independent. As for the M-sampler, we work
successively through the data: denote by YP j the data
at locus j already accumulated from one of the disjoint
pedigree partitions P defined by C. Furthermore,
suppose that C = C1 ∪ C2 is such that P is ancestral
to C1 and descendant to C2 (see Figure 12). Thus, we
can define an R-function (Cannings, Thompson and
Skolnick, 1978), analogous to the functions Qj(s) of
the M-sampler:

RCj (s1, s2) = Pθ

(
YP j , SC1j = s1|SC2j = s2, S

(n)
·j±, λ

)
,

where s1 and s2 are binary vectors of length the number
of meioses in C1 and C2, respectively.

Consider, for example, a pedigree without loops
and an individual who is the only child of his or her
parents. In this case, the paternal (maternal) meiosis
ip (im) of the individual is a cutset of size 1, which
divides the pedigree into the part connected to the
individual through his or her father (mother) from the
remainder. More generally, in any pedigree without
loops, the two meioses (ip, im) of each nonfounder
individual divide the pedigree into the ancestral part P1
and the descendant part P2. The ancestral part P1
is connected to the individual via his or her parents
and includes these parents, their ancestral relatives, the
individual’s siblings and all their descendant relatives.

FIG. 12. A complex pedigree illustrating the use of cutsets for
dividing a pedigree into disjoint partitions, ready for computation
via the R-function. For this complex pedigree, cuts C1 and C2
divide the pedigree into disjoint parts. Information from the
pedigree part denoted by dashed lines has been processed. The
pedigree part denoted by solid lines remains to be processed. Each
connecting line denotes both the paternal meiosis (ip) and the
maternal meiosis (im) of the offspring individual. The processed
part P is descendant to meioses C1 = (ip, im) and ancestral to
meioses C2 = (i′p, i′m).

The descendant part P2 is connected to the individual
via his or her offspring and includes the individual, his
or her offspring, their descendant relatives, his or her
spouses, their ancestral relatives, and their descendant
relatives via their offspring from other marriages. The
two relevant R-functions for the cutset C = (ip, im) are
then

R
(1)
Cj (sp, sm)

= Pθ

(
YP1j , SCj = (sp, sm)|S(n)

·j±, λ
)
,

(A.1)
R

(2)
Cj (sp, sm)

= Pθ

(
YP2j |SCj = (sp, sm), S

(n)
·j±, λ

)
.

Using these R-functions, and the conditional inde-
pendence provided by the a priori independence of
meioses, computation proceeds through the pedigree
from cutset to cutset until P consists of the entire
pedigree and the R-function is the probability of Y·j
jointly on or conditionally with the meiosis indicators
of the final cutset and conditional on S

(n)
·j±. The se-

quence of cutsets C is known as the peeling sequence.
This is analogous to the forward computation of the
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M-sampler. Now the meiosis indicators of the final cut-
set may be realized. Then, using the R-functions com-
puted in the first computation, meiosis indicators of
each successive cutset in the reverse of the peeling se-
quence may be realized conditional on values just re-
alized and on all the data Y·j and S

(n)
·j±. This process

is analogous to the reverse sampling procedure of the
M-sampler.

In general, a single pass through the pedigree suffices
to compute the probability P (Y·j |S(n)

·j±, λ) and provide
the R-functions used for the realization of S·j from

the full conditional distribution Pθ(S·j |S(n)
·j±, Y·j , λ).

Further details of the peeling computation on arbitrary
pedigrees are described by Cannings, Thompson and
Skolnick (1978), the only conceptual difference to the
current case being that Mendelian transmission at the
locus in position j is now conditioned on the current
inheritance pattern at the two neighboring loci.

In addition to providing a joint realization of S·j
from Pθ(S·j |S(n)

·j±, Y·j , λ), the peeling procedure also
provides the marginal probabilities Pθ(SCj |S(n)

·j±,

Y·j , λ) for the set C of meioses that are in the final
cutset, and can be used to provide this distribution
for other cutsets. Consider again a pedigree without
loops and let C = (ip, im) be the paternal and ma-
ternal meioses of a single individual. A single pass
through the pedigree provides either R

(1)
Cj (sp, sm) or

R
(2)
Cj (sp, sm) of (A.1), and a peeling sequence which

passes through the individual in the opposite direction
provides the other. Combining these,

Pθ

(
SCj = (sp, sm)|S·j±, Y·j , λ

)
(A.2)

= R
(1)
Cj (sp, sm)R

(2)
Cj (sp, sm)∑

(sp,sm) R
(1)
Cj (sp, sm)R

(2)
Cj (sp, sm)

.

Since each of sp and sm is 0 or 1, the sum in the denom-
inator of (A.2) has only four terms. Even on a pedigree
without loops, several different peeling sequences may
be required to obtain Pθ(SCj |S(n)

·j±, Y·j , λ) for all the
sets C of interest, but this operation is relatively inex-
pensive even on complex pedigrees (Thompson, 1981).

The L-sampler is irreducible when the recombina-
tion probabilities between adjacent loci are nonzero.
Further, since all the components of S·j are updated
jointly, extended pedigrees do not cause mixing prob-
lems. However, tightly linked markers do result in
poor mixing. Only by combining the L-sampler and
M-sampler are good Monte Carlo estimates of likeli-
hoods or posterior probabilities obtained (Heath and
Thompson, 1997; Thompson, 2000b).

A.3 Updating λ via the M–H Algorithm with an
Integrated Acceptance Probability

Sampling λ from πθ(S, λ|Y) is generally accom-
plished by updating λ via the M–H algorithm where a
proposal state λ′ is drawn from some conveniently cho-
sen proposal distribution q(λ|λ(n)) and accepted with
probability α(λ(n), λ′) such that

α
(
λ(n), λ′)

(A.3)
= min

[
1,

πθ (S(n), λ′|Y)q(λ(n)|λ′)
πθ(S(n), λ(n)|Y)q(λ′|λ(n))

]
.

However, the realized Markov chain λ(n), n = 1, . . . ,N ,
generally mixes poorly over marker intervals. Adjacent
marker loci constrain ST , sometimes strongly if the
markers are tightly linked. Therefore, the joint poste-
rior probability of (S(n), λ′) is generally relatively low
when compared to the joint posterior probability of
(S(n), λ(n)), resulting in a high proportion of λ′ being
rejected. [Notationally, λ is assumed to have been up-
dated before S, and hence S(n) is used in (A.3), but the
order in which sets of variables are updated within a
full MCMC iteration is, in fact, arbitrary.]

An alternate approach, which promotes good mix-
ing, is to draw λ′ from some convenient proposal distri-
bution q(λ|λ(n)) and accept with probability α(λ(n), λ′),
where ST is integrated out of πθ(S, λ|Y) to give
πθ(SM,λ|Y). The integrated acceptance probability
becomes

α
(
λ(n), λ′)

(A.4)
= min

[
1,

πθ(S
(n)
M ,λ′|Y)q(λ(n)|λ′)

πθ (S
(n)
M ,λ(n)|Y)q(λ′|λ(n))

]
.

Since λ′ is drawn from a uniform distribution U [0,K],
q(λ(n)|λ′) = q(λ′|λ(n)). Furthermore,

πθ(SM,λ)

∝ Pθ(YT |SM,λ)Pθ(YM |SM)π(SM)π(λ),

and thus the integrated acceptance probability (A.4)
simplifies to

α
(
λ(n), λ′)

(A.5)
= min

[
1,

Pθ(YT |S(n)
M ,λ′)π(λ′)

Pθ(YT |S(n)
M ,λ(n))π(λ(n))

]
.

The probabilities Pθ(ST |SM,λ) are obtained by peel-
ing over the trait locus at positions λ = λ(n) and λ = λ′.
These conditional probability computations are analo-
gous to single-locus computations.
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If λ′ is accepted, then λ(n+1) = λ′ and ST is then
sampled from its full conditional distribution Pθ(ST |
S(n)

M ,λ(n+1), YT ) which is a single-locus L-sampler
step. It is easily seen that this updating of λ condi-
tioning only on SM and then resampling ST from the
full conditional is equivalent to a joint Metropolis–
Hastings update of (λ, ST ) and hence maintains the
sampler’s correct equilibrium distribution πθ(λ,S|Y).
Besag, Green, Higdon and Mengersen (1995) discuss
in more detail the requirements for validity of se-
quences of partial conditioning updates. Essentially,
any variables being conditioned upon at any stage must
currently have the correct joint distribution.

A.4 Calculating Monte Carlo Standard Errors
of lod Score Estimators

The method of batch means (Hastings, 1970) is an
easily implemented procedure for estimating variances
and standard deviations of estimators formed from po-
tentially highly autocorrelated Monte Carlo realiza-
tions. Suppose

tf =
∑N

i=1 f (X(i))

N

is an estimator of ef = E(f (X)), based on a se-
quence of dependent realizations {X(i), i = 1, . . . ,N}.
The standard deviation

√
var(tf ) of the estimator is re-

quired.
The method of batch means first groups the N

realizations into B consecutive and nonoverlapping
batches of size M . Denoting the mean of block b by

tf,b =
M∑

m=1

f (X((b−1)M+m))

M
,

the batch means {tf,b, b = 1, . . . ,B} can be treated
as independent realizations, provided the batch size
is large. Typically, the total run is divided into a
small number of batches (≈ 20). Provided there is
no significant autocorrelation in the batch means,
this small number of large batches leads to accurate
estimates of var (tf ). An estimate of var(tf ) is then
given by

σ 2
f =

B∑
b=1

(tf,b − tf )2

B(B − 1)
,(A.6)

where the mean of the batch means is

tf =
B∑

b=1

tf,b

B
=

B∑
b=1

M∑
m=1

X((b−1)M+m)

MB
= tf .

In the case of the lod score estimators of this paper,

the estimator is of the form

log10

(
tf

tg

)
= log10 tf − log10 tg

= (loge tf − loge tg)

loge 10
,

where

tf

tg
=




T crude
N (x)/T crude

N (0),

for the crude estimator,

T RB
N (x)/T RB

N (0),

for the Rao–Blackwellized estimator.

Note ef = E(tf ) = E(f (X) is the log-likelihood at
λ = x and eg = E(tg) = E(g(X)) is the log-likelihood
for independent segregation at the trait locus (λ = 0).

Hence, the variance of the lod score estimator is
var(loge tf ) − 2 cov(loge tf , loge tg) + var(loge tg)

(loge 10)2
.

Using the standard delta method, an approximate
estimator of the variance of the lod score is

1

(loge 10)2

(σ 2
f

t2
f

− 2
σfg

tf tg
+ σ 2

g

t2
g

)
,

where σfg is the estimator of the covariance term
cov(tf , tg). The method of batch means provides
estimates of σ 2

f and σ 2
g using (A.6), and σfg is defined

analogously by

σfg =
B∑

b=1

(tf,b − tf )(tg,b − tg)

B(B − 1)
.
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