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Spatial Statistics in the Presence of
Location Error with an Application to
Remote Sensing of the Environment
Noel Cressie and John Kornak

Abstract. Techniques for the analysis of spatial data have, to date, tended
to ignore any effect caused by error in specifying the spatial locations
at which measurements are recorded. This paper reviews the methods for
adjusting spatial inference in the presence of data-location error, particularly
for data that have a continuous spatial index (geostatistical data). New kriging
equations are developed and evaluated based on a simulation experiment.
They are also applied to remote-sensing data from the Total Ozone Mapping
Spectrometer instrument on the Nimbus-7 satellite, where the location error
is caused by assignment of the data to their nearest grid-cell centers. The
remote-sensing data measure total column ozone (TCO), which is important
for protecting the Earth’s surface from ultraviolet and other radiation.
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1. INTRODUCTION

The field of spatial (and spatiotemporal) statistics is
a fertile area for innovations in data analysis and sta-
tistical inference. Data are considered spatial if they
contain locational information, where interest can lie
in the locations themselves or in “attributes” associated
with those locations. Although much attention has been
given to explaining the sources of “signal” and “error”
for an observation (i.e., attribute) as a function of its
location, there has been relatively little effort given by
spatial statisticians to considering the effect of spatial
uncertainty associated with that location. From navi-
gation using the stars, to the use of global positioning
systems (GPS) to trace a 911 call on a cell phone, lo-
cation error has been a source of variability for any-
one wishing to “go from A to B” (and back again).
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Location error is ubiquitous in seismology, as scien-
tists attempt to predict both locations and magnitudes
of earthquakes (e.g., Veneziano and Van Dyck, 1987).
Also, ship captains have reason to be concerned with
location error that arises from two sources: Kielland
and Tubman (1994) attempt to reduce the risk of ships
running aground by accounting for uncertainty in both
a navigator’s current position and the ship’s naviga-
tional maps. A computed two-sigma error ellipse is
used to describe the sea vessel’s positional uncertainty
(e.g., associated with a GPS). Additionally, kriging is
performed on data determined from sparsely sampled
depth soundings, from which depth contours are gen-
erated. Ad hoc tolerance regions are put around each
contour to account for location error, and navigation is
then performed based on a worst-case analysis.

Understanding locational variability, making scien-
tific inferences in its presence and controlling for it
in design settings, is the realm of statistical science.
In this paper, we consider the effect of location er-
ror in spatial statistics, but mainly in the subfield
known as geostatistics (Matheron, 1963). Here the spa-
tial index varies continuously over a given spatial do-
main, and geostatistical models for attributes delin-
eate global trend effects, local medium-scale spatial ef-
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fects, a microscale effect and a measurement-error ef-
fect (e.g., Cressie, 1993, page 112; Diggle, Tawn and
Moyeed, 1998). Mapping in environmental science is
ubiquitous and this is something geostatistics does very
well. Furthermore, with the rise in high-level statistical
programming languages, geostatistical tools can now
be found in standard statistical software packages such
as S-PLUS, SAS and in contributed libraries for R.

The environmental problem considered in this pa-
per is mapping the ozone layer that serves as a protec-
tive shield against harmful radiation from outer space.
Depletion of the ozone layer results in increased ul-
traviolet radiation, which causes cell damage in liv-
ing organisms leading to increased skin-cancer rates
and reduced rates of growth and reproduction (e.g.,
Cocchi and Trivisano, 2002). The principal data source
is the Total Ozone Mapping Spectrometer on a remote-
sensing platform. The variable of interest is total col-
umn ozone (TCO), measured in Dobson units (London,
1985). In this context, location error is often purpo-
sively imposed by data analysts struggling with the
massiveness of the data, who for convenience move the
data to nearest nodes of a regular grid.

We acknowledge here some of the models found
in the field of morphometrics, where the data usu-
ally consist of the (relative) locations of landmarks
(e.g., Bookstein, 1986) and where one is concerned
with making inference on an object’s “size” and
“shape” defined by these landmark locations. We con-
trast this with the theme of our paper, which is
concerned with making inferences pertaining to at-
tributes at these locations. An obvious model of in-
terest for us is the following simple one described
by Bookstein (1986): landmarks L1,L2, . . . ,LK are
distributed about their centroids W1,W2, . . . ,WK , ac-
cording to a Gaussian normal distribution, with co-
variance matrix equal to the identity matrix multiplied
by a variance parameter; that is, the landmarks have
a coordinate-wise-independent (circular) Gaussian dis-
tribution about their centroids. This is a special case of
the location-error model given by (1) below.

Broadly speaking, the models of spatial statistics can
be categorized into geostatistical models, lattice mod-
els and spatial point processes (Cressie, 1993), where
the relative locations in space between data points are
used to determine an overall spatial-dependence struc-
ture crucial for statistical inferences. Therefore, errors
in location may transfer to errors in specifying and es-
timating the spatial-dependence structure. Specifically,
in geostatistics, location error affects the covariates at
a location, as well as the spatial lag between locations.

This in turn affects the theoretical and empirical spa-
tial covariance function (or variogram) and has a po-
tentially serious effect on trend-parameter estimation
and kriging. The rest of this section is essentially re-
view in nature: in Section 1.1 we present known re-
sults for location error in geostatistical models, and
Section 1.2 shows that there is an analogy between
errors-in-variables models and geostatistical location-
error models. Section 1.3 reviews location-error re-
search in lattice models and spatial point processes.

1.1 Location Error in Geostatistics

Geographical information systems (GIS) provide
a framework within which extremely large spatial
databases can be stored, retrieved, manipulated and
mapped with ever-increasing speed. The datasets can
contain vast quantities of information that create the
need for data-analysis and statistical-inference tech-
niques that are efficient (in terms of computational
speed, accuracy and precision). Geostatisticians have
used location information in these datasets to model
trend and correlation between attribute values (e.g.,
generalized-least-squares parameter estimation, vari-
ogram estimation, kriging and so forth); see Cressie
(1993, Part I). However, based on our review of the
geostatistics literature, we conclude that uncertainty in
the location information is generally ignored.

There have been sporadic treatments of location
error in geostatistics, most of it simply noting its con-
sequences without incorporating it into a full spatial-
statistical-inference engine. Matérn (1960, page 56)
derives the covariance between two observations who-
se locations are perturbed by location error. How-
ever, he does not derive the variance of any individual
observation, something that is essential for inference
(trend-parameter estimation, kriging). Chiles (1976)
considers the consequences of location error for krig-
ing when the data have a simple linear trend (but no
measurement error). However, he does not derive the
variances of the observations, and he does not seem
to be aware that the covariance between the prediction
location and a datum has only one source of location
error. Atkinson (1997) derives some second-moment
properties of a geostatistical model in the presence
of location error. Chiles and Delfiner (1999) assume
a process with constant mean and derive the vari-
ogram between any two observations whose locations
are perturbed by location error; they do not do kriging.
Finally, Gabrosek and Cressie (2002) consider a geo-
statistical model with measurement error, location er-
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ror and a trend given by a linear combination of spatial
covariates. They give kriging equations that are correct
for constant mean but lack a component of variation
for the more general trend term. In what follows in this
paper, we give general results for the spatial variances
and covariances, and we derive a kriging methodology
for geostatistics in the presence of location error.

Let s be a generic spatial index that ranges continu-
ously over the spatial domain D ⊂ R

d , where |D| > 0.
Then a spatial process of the attribute Z is denoted as
{Z(s) : s ∈ D}. In Gabrosek and Cressie (2002) two ma-
jor location-error models were defined in the geostatis-
tical setting (i.e., where the spatial index varies contin-
uously).

1.1.1 The coordinate-positioning model. This kind
of location error occurs when one attempts to take ob-
servations (i.e., attributes) on a spatial process at a pre-
determined set of locations, given by their coordinates.
The model was referred to as the “design model” in
Gabrosek and Cressie (2002), to emphasize that the lo-
cations of samples are chosen by design. We find the
current nomenclature more descriptive.

Consider a set of n intended sites S = {s1, s2, . . . , sn},
perturbed by location error to sites R = {r1, r2, . . . , rn}
at which the observations are actually taken. The ac-
tual sites R are typically unknown to us. The source
of location error may be imprecise positioning instru-
ments, positional coordinate rounding or human error
(e.g., in map reading). In the coordinate-positioning
(CP) model location error occurs because of an inabil-
ity to go exactly to (and hence sample from) the in-
tended sites S. Then one possible location-error model
for the distribution of actual (but unknown) site loca-
tions R, given the intended site locations S, is

R|S ∼ (S,�g),(1)

where �g is the covariance matrix of the (unknown)
sites R, distributed about the (known) mean S.
[The distribution in (1) is momentarily left unspeci-
fied, but two obvious choices are the d-dimensional
Gaussian distribution and the uniform distribution on
a d-dimensional ball.]

An example of this kind of location error might oc-
cur when sampling contaminated soil in an environ-
mental characterization study. Suppose that a set of
test-site locations is specified to be on a regular grid.
However, due to imprecise positioning of the equip-
ment, sampling actually occurs at coordinates that are
displaced from the regular grid, and these displace-
ments are unknown.

It was mentioned earlier that location error is some-
times introduced purposively. This can happen when
datasets are extremely large. For example, in satellite
remote sensing, data locations are usually reassigned to
nearest nodes of a (regular) grid; the U.S. space agency
NASA uses regular latitude–longitude grids. To date,
these imposed errors are generally ignored and, when
analyzed, the data are assumed to have been recorded at
the grid-node location to which they were reassigned.
A little thought reveals that the CP model is sufficiently
flexible to handle this situation: in this instance, the
actual data locations make up R, and the grid nodes
make up S. [It is not relevant that R is known, since
this information is ignored.] Although in this case the
location error is clearly not a random process, it can
be handled quite easily this way. In essence, we de-
scribe the purposive uncertainty in the true locations
via a probabilistic framework, so that although infor-
mation is lost due to reassigning the data locations, at
least the resulting location error is accounted for. In
Section 5, we shall use the CP model to analyze total
column ozone data from the Nimbus-7 satellite.

1.1.2 The feature-positioning model. This form of
location error occurs when we have a set of eas-
ily recognizable “features” at which to take measure-
ments. However, we determine the location of these
features with some error. This form of data collec-
tion was referred to as resource sampling in Gabrosek
(1999), because the feature at which a measurement
is taken usually represents a resource of some sort.
For example, the feature might be a tree whose log-
ging potential is of interest. The tree is fixed in space,
but we are unable to obtain its exact location be-
cause we do not have infinitely accurate position-
ing instruments. Here we have the set of true feature
locations A = {a1,a2, . . . ,an}, which are unknown,
and a corresponding set of observed locations B =
{b1,b2, . . . ,bn}, that are observed with error (e.g., us-
ing a global positioning system). In this case, we could
model

B|A ∼ (A,�g).(2)

The feature-positioning (FP) model could also be
considered as a component of a hierarchical marked-
point-process model, where the feature positions, mod-
eled by a spatial point process, are then observed
with location error. The “marks” of the marked point
processes are what we have called attributes, and we
may be interested in the effect of location error on spa-
tial inference for the mark process.
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Although at first glance the coordinate-positioning
model (1) and the feature-positioning model (2) appear
similar, there is a very important distinction between
them. In the first model the locations of the intended
sites are known, and the location-error distribution
is (generally) centered around those known locations.
However, in the second model, the location-error
distribution is centered around the unknown locations
of the features. This is further illustrated in the next
subsection, where we note differences between the CP
and FP models by viewing them as analogous to errors-
in-variables models.

1.2 Errors-in-Variables Models

There is a strong correspondence between location-
error models in geostatistics and errors-in-variables
models (e.g., Fuller, 1987; Fazekas, Baran, Kukush
and Lauridsen, 1999). Consider a set of covariates
{x1, . . . ,xn} and a corresponding set of response vari-
ables {z1, . . . , zn}, linked through the model

zi = f (xi ,β) + δi,(3)

where f (xi,β) is the (possibly nonlinear) mean func-
tion, and δi is a zero-mean error term independent
of xi . A special case of (3) is a model described by
Berkson (1950):

zi = α + βxi + δi,

where

wi = xi + pi.

Now, one possibility is to specify {xi} as target
values (controls) at which to observe {zi}, but because
of errors {pi} one observes zi at wi = xi + pi ,
where wi is not observed. The other possibility is to
consider a collection of observed {wi}, where again
wi = xi + pi , but instead one observes zi at xi . The
former model is often called Berkson’s model (see,
e.g., Burr, 1988), and it is analogous to our CP model
for location error. The latter model is analogous to our
FP model. Clearly, if an inappropriate model is used,
the resulting inference is biased.

1.3 Location Error in Other Spatial Models

Geographers and users of raster-based GIS have
often assumed that the spatial domain is a fixed regular
grid of pixels. Then, for investigating the quality of
output maps, the statistical-image-analysis approach
of Geman and Geman (1984) has been adapted to
quantify how location error propagates through to

the output maps (e.g., Goodchild, 1989; Haining and
Arbia, 1993; Arbia, Griffith and Haining, 1998).

Output maps often result from overlay operations
that combine two or more source maps at potentially
different scales of resolution. The unobservable true
source map (T ) is perturbed to give a location-error-
corrupted output map (Z). Denote Tij as the true
attribute value at pixel (i, j) and Zij as the correspond-
ing location-error-corrupted output value. Let (g,h) be
the location shift of pixel (i, j), so that its location-
error-corrupted position is (i +g, j +h), where g,h =
0,±1,±2, . . . . Arbia, Griffith and Haining (1998) use
the corruption model

Zij = ∑
g

∑
h

wij (g,h)Ti+g,j+h + uij .

In the equation above, {wij (g,h) :g,h = 0,±1,

±2, . . .} satisfies∑
g

∑
h

wij (g,h) = 1 and wij (g,h) ≥ 0

for all (i, j),

and can be thought of as a location-error mixing
distribution; the last term uij is the attribute error.
We do not pursue this model further, since it is not
appropriate for location error expressed as a random
displacement.

For Markov-random-field (MRF) lattice models, the
structure of the spatial dependence remains unchanged
provided the neighborhoods (those sites that are con-
ditionally spatially dependent) of the MRF are unaf-
fected by location error. [However, the strength of the
spatial dependence may change if the dependence is
defined in terms of actual distances; see, e.g., Cressie
(1993), equation (7.6.20).] The location-error problem
is an important one in the social sciences, where error
is introduced (e.g., data are aggregated to zip codes) to
maintain confidentiality of subjects.

There is a literature on location error in point
processes that dates back to at least the 1960s; see, for
example, the review given in Cox and Isham (1980,
pages 104–106). An important theorem of Dobrushin
(1963), whose proof was corrected and extended to
d dimensions by Stone (1968), states that under suit-
able regularity conditions a translated point process
will converge to the homogeneous Poisson process,
as the translation (i.e., location-error) variance tends
to infinity. Veneziano and Van Dyck (1987) consider
the effect of location error on the relationship between
observed attributes (“marks” in the point process liter-
ature) at points, applied to earthquake epicenter loca-
tions and their corresponding magnitudes.
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Diggle (1993, pages 97–99) provides some results
with respect to estimation of parameters of the true
point process before perturbation, from only the point
patterns observed after perturbation. Assumptions of
(i) a point process that is stationary, isotropic and ex-
hibits clustering and (ii) a radially symmetric location
error (to preserve overall isotropy) are used. The first-
order intensity,

λ ≡ lim|ds|→0

{
E[N(ds)]

|ds|
}
,

where N(·) denotes the number of points in the
region A, is unaffected by the perturbations, since
on average no events are added or deleted. Second-
moment properties of stationary and isotropic point
processes are often characterized by the K-function
K(h), defined by

λK(h) ≡ E[no. extra events within

distance h of an arbitrary event].
Diggle’s general conclusion is that if one uses a
standard K-function estimator based on the perturbed
point pattern, then it will be an underestimate of the
K-function of the nonperturbed point process.

For the remainder of this paper, we concentrate on
the CP model in geostatistics. In Section 2, we con-
sider the effect of location error on the spatial trend and
covariance function, and we discuss their estimation.
This is illustrated via an artificial-data example, which
is used again in Section 3. Section 3 is devoted to opti-
mal spatial prediction using linear predictors (kriging)
and the extensions necessary to adjust for the location
error. In Section 4, we give the results of a simulation
experiment that compares kriging adjusting for loca-
tion error (KALE) with kriging ignoring location error
(KILE). Section 5 provides an illustration of KALE on
remotely sensed total column ozone data. Finally, Sec-
tion 6 contains discussion and conclusions.

2. CP LOCATION-ERROR MODEL
IN GEOSTATISTICS

We focus here on introducing the CP location-error
model into geostatistical methodology, extending and
correcting the earlier work of Gabrosek and Cressie
(2002). Consider a spatial dataset Z ≡ {Z(si) : si ∈
D ⊂ R

d; i = 1, . . . , n}, which are observations from
a random process Z(·) with continuous spatial index
over D ⊂ R

d . In all the examples we consider in this
paper, d = 2, although when deriving the geostatistical

methodology we retain the generality of working
in R

d .
The data Z correspond to a single partial realization

of Z(·) and, to make inference on the noiseless version
of Z(·) and its parameters, further assumptions need to
be made. Specifically, we assume that Z(·) has linear
trend in spatial covariates and second-order stationary
errors:

(i) var(Z(s)) < ∞ for all s ∈ D;
(ii) E(Z(s)) = x(s)′β for all s ∈ D;

(4)
(iii) cov

(
Z(s1),Z(s2)

)
= C(s2 − s1) for all s1, s2 ∈ D,

where C(·) is a positive-definite function on R
d . These

assumptions imply the following: (i) the first two
moments of the process are defined; (ii) the mean
function is linear in a (q × 1) vector of unknown
parameters β ; and (iii) the covariance between any two
points depends only on their relative spatial locations.

The noiseless version of Z(·) = Y (·) + ε(·) is the
random process Y (·), where ε(·) is an independent
white-noise process of measurement errors with vari-
ance cME. Now Z(·) has stationary covariance function
if and only if Y (·) does; we denote the latter as CY (·).

In the CP model an intended site s is perturbed
by location error to an actual (but unobserved) site
r = s + p(s). In this paper the location errors {p(s)}
are assumed to be independent continuous random
vectors each with probability density function g that
is invariant over s, s ∈ D. Then the process Z(·) is
sampled at r but mistakenly located at s, yielding the
process Zg(·).

We attempt to follow the notation for geostatistical
models in Cressie (1993) as closely as possible, and
consequently the CP location-error model becomes

Zg(s) ≡ Y (r) + ε(r) = x(r)′β + ν(r) + ε(r),
(5)

r = s + p(s), s ∈ D,

where Y (·) is the noiseless version of Z(·); the
location-error vector p(s) has probability density func-
tion g(·) in R

d ; x(·)′β is the deterministic trend;
and ε(·) is the (attribute) measurement error with
measurement-error variance, var(ε(s)) ≡ cME. The
spatial error ν(·) can be broken down into two addi-
tive, zero-mean components. That is, ν(·) = W(·) +
η(·), where W(·) is the smooth small-scale varia-
tion, and η(·) is sometimes known as the nugget ef-
fect (Matheron, 1963), but we shall call it the micro-
scale variation (Cressie, 1993, page 128). The mi-
croscale variation has a highly localized covariance
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structure (generally at higher resolution than the spa-
tial sampling frequency, and hence indistinguishable
from white noise) with var(η(s)) = cMS. Consequently,
CY (h) has a discontinuity of cMS at h = 0.

We make the point here that η(·) is inherently differ-
ent from ε(·) in its genesis, even though they are both
modeled as white noise (Cressie, 1993, Section 3.1).
Specifically, η(·) is a component of ν(·), which is in
turn a component of the “true” process of interest Y (·),
whereas ε(·) is a noise process that we want to filter
out. However, without multiple observations per loca-
tion on Z(·), η(·) and ε(·) are indistinguishable, since
C(0) − limh→0 C(h) = cMS + cME. Henceforth, we
shall assume that the measurement-error variance cME

is known, as it usually is from independent instrument-
calibration experiments.

The process Zg(·) defined by (5) should be com-
pared to the location-error-free process

Z(s) ≡ Y (s) + ε(s)
(6)

= x(s)′β + ν(s) + ε(s), s ∈ D,

whose properties are summarized by (4). Notice that
Zg(s) = Z(s + p(s)), s ∈ D, and hence in the presence
of location error we shall denote the spatial dataset as

Zg ≡ (
Zg(s1), . . . ,Zg(sn)

)′
,(7)

associated with intended sites {s1, . . . , sn}.
In addition to our earlier independence and invari-

ance assumptions about the components of p(·), we
make the further assumption that p(·) is independent
of ε(·) and of Y (·). That is, location error, measure-
ment error and spatial-process error are mutually inde-
pendent. In most cases, this is a reasonable assumption.

Suppose that we formally define the location-error
component of variation in the attribute as ξg(s) ≡
Zg(s) − Z(s). That is, Zg(s) = Y (s) + ε(s) + ξg(s),
s ∈ D. Then, for p(s) 	≡ 0,

var
(
ξg(s)

) = var
(
Zg(s) − Z(s)

)
= E

[
var

(
Z

(
s + p(s)

) − Z(s)|p(s)
)]

+ var
[
E

(
Z

(
s + p(s)

) − Z(s)|p(s)
)]

= E
[
var

(
Y

(
s + p(s)

) − Y (s)
)] + 2cME(8)

+ var
(
β ′x

(
s + p(s)

))
= 2

∫ (
CY (0) − CY (u)

)
g(u) du

+ 2cME + β ′Mg(s)β,

where

Mg(s) ≡
∫

x(s + u)x(s + u)′g(u) du

− xg(s)xg(s)′,

xg(s) ≡
∫

x(s + u)g(u) du

and

CY (h) ≡ C(h) − cMEI (h = 0), h ∈ R
d,

is the covariance function of Y (·) with I (·) denot-
ing the indicator function. The three components of
variation in (8) are, respectively, due to spatial depen-
dence, measurement error and trend. Notice that, when
p(s) ≡ 0, var(ξg(s)) = 0.

However, it would not be correct to interpret
ξg(·) as an independent component of attribute vari-
ability. First, it is easy to see that E(ξg(s)) =
(
∫

x(s + u)g(u) du − x(s))′β, which is not zero in
general. Second, a derivation similar to (8) yields
cov(Y (s), ξg(s)) = − ∫

(CY (0) − CY (u))g(u) du,
which is always nonpositive (Atkinson, 1997).

2.1 Adjusting the Moments to Account for
Location Error

As can be seen from (4), the mean and covariance
functions play a major role in understanding the spatial
process Z(·). In the presence of location error, it is the
first two moments of Zg(·) that are of interest. From
them we gain insight into the hidden process Y (·). To
estimate β and to predict Y (s0), s0 ∈ D, in the presence
of location error, we use first and second moments
adjusted for location error (see Sections 2.3 and 3).

To find the mean of the process Zg(·), one integrates
the mean of the process Z(·) over all possible locations,
weighted by the density g of the location error; see
Gabrosek and Cressie (2002). Since ε(·) has zero
mean, we obtain the CP-model-adjusted mean,

µg(s) ≡ E(Zg(s))

=
(∫

x(s + u)g(u) du
)′

β(9)

≡ xg(s)′β.

More generally, µg(s) = ∫
µ(s + u)g(u) du, where

µ(·) ≡ E(Z(·)). Notice that, when µ(·) is linear in β ,
so too is µg(·); from (9), we see that it is simply the
covariates that are adjusted.

The covariance for Zg(·) can also be adjusted,
but it is somewhat more complicated than adjusting
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the mean. Note that the spatial lag in the stationary
covariance function becomes a random vector in the
presence of location error. For h 	= 0 the adjusted
covariance is

Cg(h) ≡ cov
(
Zg(s),Zg(s + h)

)
=

∫ ∫
CY (h + v − u)g(u)g(v) dudv,

(10)

which is stationary. Now, if CY (h) depends on h
through h ≡ ‖h‖ (isotropic) and g(u) depends on u
only through ‖u‖, it is straightforward to show that
Cg(h) depends on h only through h, h 	= 0.

In contrast to the adjusted covariances, the adjusted
variance function is no longer necessarily stationary. It
is

vg(s) ≡ var(Zg(s))

= E
[
var

(
Y

(
s + p(s)

)|p(s)
)]

+ cME + var
(
β ′x

(
s + p(s)

))
.

That is,

vg(s) = CY (0) + cME + β ′Mg(s)β.(11)

Only in the constant-mean case, where x(·) ≡ 1, do we
have Mg(·) ≡ 0, and hence vg(s) = CY (0) + cME =
C(0). Consequently, Kg(s, t) ≡ cov(Zg(s),Zg(t)) is
given by

Kg(s, t) =
{

vg(s), s = t,

Cg(t − s), s 	= t.

In general, Kg(s, t) is not a function of t − s (co-
variance stationarity), except when the mean µ(·) is
constant. Notice that Kg(·, ·) satisfies the requirement
of positive-definiteness on R

d × R
d because CY (·)

is positive-definite on R
d and each Mg(·) is a non-

negative-definite matrix.
As pointed out in Gabrosek and Cressie (2002), the

integrals in (9)–(11) are analytically intractable for
most mean and covariance models, even when com-
bined with simple location-error models [e.g., g(·) is
Gaussian or uniform]. In this paper, we concentrate
on a Monte-Carlo-integration approach for evaluation
of (9)–(11), which opens up a wide range of location-
error–distribution/mean-and-covariance-function com-
binations. The only requirements for our approach are
that we can generate realizations from g(·), and that
we can invert the matrix var(Zg) for parameter estima-
tion and for kriging. The first requirement is generally
easy to meet, and the second requirement should be no
more difficult in general than for the cases where we
have analytical solutions.

We now present the Monte-Carlo-integration algo-
rithm for evaluation of (9)–(11). Because it is assumed
that location error is a continuous random vector with
density g(·), the discontinuity in CY (h) at h = 0 dis-
appears after integration. Hence (10) can be written
as Cg(h) = ∫∫

C+(h + v − u)g(u)g(v) dudv, h 	= 0,
where C+(h) ≡ CY (h) − cMSI (h = 0), which is con-
tinuous at h = 0.

The Monte-Carlo-integration algorithm to evaluate
the first and second moments adjusted for location
error is as follows:

1. Simulate the set of points {ui : i = 1, . . . ,N} in R
d ,

each independently and identically distributed
from g(·).

2. Approximate xg(s) by 1
N

∑N
i=1 x(s + ui).

3. Approximate Cg(h) by 1
N2

∑
i

∑
j C+(h+uj −ui),

h 	= 0.
4. Approximate

∫
x(s + u)x(s + u)′g(u) du by

1
N

∑N
i=1 x(s + ui)x(s + ui)

′, and hence obtain
Mg(s); then vg(s) is obtained from (11).

Clearly, the approximation of the covariance function
for Zg(·) is positive-definite, since C+(·) is positive-
definite and each Mg(·) is a nonnegative-definite ma-
trix. Choice of N depends on which approximation, 2,
3 or 4 has the biggest coefficient of variation; N should
be chosen large enough so that the maximum coeffi-
cient of variation is at most 2.5%, ensuring a (rounded)
relative accuracy to the first decimal place.

Figure 1 illustrates how, in the constant-mean case,
the covariance function for Zg(·) changes as the
dispersion in the location-error density increases. In the
figure we have chosen (12) for CY (·), (13) for g(·) and
location-error-dispersion parameter ψ = 0.05,0.15,

0.25. [Recall that, in the constant-mean case, vg(s) =
C(0), independent of s.]

2.2 An Artificial Dataset

We illustrate the Monte-Carlo-integration approach
on an artificial dataset, obtained through simulation.
Data generation and analysis of this and other datasets
were performed in the statistical programming lan-
guage R.

We simulated 100 locations {s1, . . . , s100} uniformly
on the unit square. Then the 100 intended locations
are perturbed with location error to the locations
{r1, . . . , r100}, which results in a total of 200 spatial
locations. The Gaussian process Y (·) is simulated at
these 200 locations, as well as at 50 × 50 locations
comprising a fine-scale grid on the unit square. The
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(a) (b)

(c) (d)

FIG. 1. Panel (a) shows the spherical covariance function (12) in the absence of location error [i.e., p(s) ≡ 0]. The other three panels
show the covariance function when the process Z(·) has been perturbed by location error whose distribution is given by (13), namely
uniform on the circle centered at 0 ∈ R

2 with radius ψ : (b) ψ = 0.05; (c) ψ = 0.15; (d) ψ = 0.25. In all panels, θ in (12) is given by
(τ2, cMS, φ) = (0.65,0.05,0.4), and cME = 0.3.

2,500 Y -values on the fine-scale grid are used later
for assessing the quality of prediction of Y (·) from the
artificial data Zg , defined below.

For the purpose of illustration we choose the sim-
plest case, where we simulate from a Y (·) that has
constant mean µ = 0, although when we analyze the
dataset, µ is estimated. Further, CY (·) is chosen to be
an isotropic spherical covariance function given by

CY (h; θ)

=


τ 2 + cMS, h = 0,

τ 2[1 − 1.5(‖h‖/φ)

+ 0.5(‖h‖/φ)3], 0 < ‖h‖ < φ,

0, ‖h‖ ≥ φ,

(12)

where θ ≡ (τ 2, cMS, φ)′; CY (·) is valid in R
1, R

2

and R
3. For the artificial dataset θ = (0.65,0.05,0.4)′,

although when we analyze the dataset, θ is estimated.
To obtain Z(·), we add to Y (·) the measurement-

error process ε(·), a zero-mean Gaussian white-noise
process with variance cME = 0.3. In general,
var(Z(s)) = τ 2 + cMS + cME; for the artificial dataset,
var(Z(s)) = 1. Hence, the choice of cME = 0.3 rep-
resents a moderate measurement error component of
30% of the attribute variance. Note that while it is
the intended locations {si} that we use in our analy-
sis (based on the CP location-error model), the data
Zg ≡ (Y (r1) + ε(r1), . . . , Y (r100) + ε(r100))

′ are ob-
tained from actual locations {ri}, as defined by (5).
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FIG. 2. Gray-scale image of the artificially generated process Z(·) evaluated at the nodes of a 50 × 50 grid on [0,1]2. Dots correspond to
the intended sites S and pluses correspond to the actual sites R. The lines show the correspondence between intended and actual sites.

The location-error simulation that yields the pertur-
bations is obtained by sampling independently from a
density g defined by the uniform distribution on a disk
with center 0 and radius ψ = 0.15. For general ψ > 0
the density is

g(u) =
{

(πψ2)−1, ‖u‖ ≤ ψ,

0, ‖u‖ > ψ.
(13)

Specifically, let {p1, . . . ,p100} be a random sample
from (13) with dispersion parameter ψ = 0.15. Then
the intended locations {si} are perturbed to the actual
locations {ri}, where ri = si + pi , i = 1, . . . ,100.
Figure 2 shows {si} and {ri} superimposed on a
discretized gray-scale image of Z(·) = Y (·) + ε(·).

In the next section, we discuss the effect location
error can have on estimation of the parameters con-
tained in the first two moments of the (hidden) spatial
process Y (·).
2.3 Parameter Estimation

We have assumed that the spatial process Y (·) is
Gaussian, and hence its mean and covariance functions

fully specify the distribution. Parameters in the mean
function are denoted as β and are assumed to appear
linearly:

E(Y (s)) = x(s)′β, β ∈ R
q,(14)

where x(s) is a (q × 1) vector of covariates at loca-
tion s. Parameters in the (stationary) covariance func-
tion are potentially more problematic, since the only
requirement is that they yield a positive-definite covari-
ance function. We write

cov
(
Y (s), Y (s + h)

) = CY (h; θ), θ ∈ �.(15)

In most geostatistical problems, neither β nor θ is
known a priori. Provided one can write down the
likelihood of (β ′, θ ′) and maximize it, the resulting
maximum-likelihood estimates of β and θ can be used
to obtain “plug-in” estimates of the mean and covari-
ance functions, which are in turn “plugged into” the
kriging equations given in Section 3. Alternatively, one
could estimate β and θ based on minimizing general-
ized and weighted least squares criteria, respectively,
and “plugging in” as above (Cressie, 1993, Chapter 2).
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In either case, this leads to kriging predictors that
are approximately unbiased but kriging standard errors
that tend to be smaller than they should be (e.g., Cressie
and Zimmerman, 1992). We shall adopt this classical
geostatistical strategy here.

Assuming that the original (location-error-free) data
are Gaussian, we could use maximum pseudolike-
lihood estimation (e.g., Carroll and Ruppert, 1988,
page 71) to estimate β and θ . To see that the process
Zg(·) is no longer Gaussian in general, and hence that
there is a need for a pseudolikelihood, we note that
the marginal cumulative distribution function for the
process Zg(·) takes the form

Pr
(
Zg(s) ≤ z

)
=

∫
Pr

(
Y (s + u) + ε(s + u) ≤ z

)
g(u) du

=
∫ ∫ z

−∞
(2πC(0))−1/2 exp

{−(t − x(s + u)′β)2

2C(0)

}
· g(u) dt du,

which is not Gaussian unless x(·) ≡ 1 and g(·) is
of a conjugate form. This can easily be seen by
choosing, for example, the location error to take only
two possible distinct values; when x(·) 	≡ 1, the result
is a bimodal distribution. In our case, the location
error has a density, so that the joint distribution of Zg

is a continuous mixture of Gaussian densities. Also,
although it should be possible to obtain the maximum
likelihood estimator using a Monte Carlo algorithm
such as simulated annealing (e.g., Geman and Geman,
1984), this will be computationally expensive and
negate some of the advantages of the geostatistical
approach.

The pseudolikelihood approach we shall use does
not depend on Gaussian assumptions, but it does
make use of the functional form of a Gaussian den-
sity and the mean–variance–covariance formulas given
by (9)–(11). According to Carroll and Ruppert (1988,
page 71), “Pseudo-likelihood estimates of θ are based
on pretending that the regression parameter β is known
and equal to the current estimate . . . and then estimat-
ing θ by maximum likelihood assuming normality.”
There are versions of this that one could iterate, us-
ing the current estimate of θ to improve (generalized-
least-squares) estimation of β, which is then used to
obtain a new estimate of θ , and so forth. In the spirit of
maximum pseudolikelihood, we could simply substi-
tute E(Zg) = Xgβ , where Xg ≡ (xg(s1), . . . ,xg(sn))

′,
and var(Zg) ≡ �g , which depends on both β and θ

(Section 2.1), into the Gaussian density obtained from
a Gau(E(Zg),var(Zg)) distribution. Define

�g(β, θ)

≡ (2π)−n/2|�g|−1/2(16)

· exp
{−1

2 (Zg − Xgβ)′�−1
g (Zg − Xgβ)

}
.

The resulting estimates are given by

(β̂
′
g, θ̂

′
g) = arg sup

(β ′,θ ′)
�g(β, θ).(17)

Notice that θ̂g = arg supθ �g(β̂g(θ), θ), which gives the
connection with the more usual (iterated) maximum
pseudolikelihood estimates defined directly below.

In the case of the artificial dataset, recall that the
mean function of Y (·) is constant, equal to µ. Then
this maximum pseudolikelihood estimator for µ and
θ is based on the n-variate Gaussian density with
(n×1) mean vector (µ, . . . ,µ)′, and (n×n) variance–
covariance matrix �g obtained from variance function

vg(s) = CY (0; θ) + cME, s ∈ D,

and covariance function

Cg(h) =
∫ ∫

CY (h + v − u; θ)g(u)g(v) dudv;
here CY (·; θ) is given by (12) and g(·) is given by (13)
with ψ = 0.15.

We compare this to the more usual iterated pseudo-
likelihood procedure, where first the mean-function
parameter β is estimated by ordinary least squares,
yielding β0

g ≡ (X′
gXg)−1X′

gZg . Then

θ0
g ≡ arg sup

θ
�g(β

0
g, θ)

is an estimator of θ based on the pseudolikelihood.
Substituting β0

g and θ0
g into �g to obtain �̃g , we

compute a generalized-least-squares estimator, β̃g ≡
(X′

g�̃
−1
g Xg)−1X′

g�̃
−1
g Zg . Finally, θ̃g is obtained anal-

ogously to θ0
g but with β0

g replaced by β̃g in the for-
mula displayed immediately above.

For the artificial dataset described in Section 2.2
the mean function is constant, equal to µ; Table 1
compares the maximum pseudolikelihood estimates
µ̂g and θ̂g [given by (17)] with iterated versions µ̃g

and θ̃g , for this dataset. Although we have no standard
errors with which to gauge the differences, a small-
scale sensitivity study indicated that there is little to
choose between the two estimation procedures, and
they did not appear to be biased over simulations of
like datasets using the same θ = (0.65,0.05,0.4)′ and
ψ = 0.15. In all that is to follow we use the maximum
pseudolikelihood estimates given by (17), which we
refer to as PALE (parameter estimation adjusting for



446 N. CRESSIE AND J. KORNAK

TABLE 1
Parameter estimates for the artificial dataset: maximum

pseudolikelihood estimates µ̂g and θ̂g , and iterated maximum
pseudolikelihood estimates µ̃g and θ̃g

Parameter µ, θ µ̂g, θ̂g µ̃g, θ̃g

µ 0 −0.3041 −0.3040
τ2 0.65 0.7011 0.7007
cMS 0.05 0.1007 0.1012
φ 0.4 0.2813 0.2813

location error) estimates. This is to be contrasted with
PILE (parameter estimation ignoring location error)
estimates, which are given by

(β̂
′
, θ̂

′
) = arg sup

(β ′,θ ′)

[
(2π)−n/2|�|−1/2

· exp
{(−1

2

)
(Zg − Xβ)′

· �−1(Zg − Xβ)
}]

.

(18)

Importantly, in (18), X = (x(s1), . . . ,x(sn))
′ and � =

(C(si − sj )), where recall that C(h) = CY (h; θ) +
cMEI (h = 0), which are both obtained by ignoring the
presence of location error.

Note that maximum pseudolikelihood estimation
(and any other type of parameter estimation for that
matter) is only able to estimate (cMS + cME), but
it cannot disentangle cMS and cME unless either the
measurement-error variance (cME) or the microscale
variance (cMS) is known. Estimation of measurement
error can be obtained via repeated measurements
at exactly the same location, and estimation of the
microscale variance requires measurements between
sites within very small distances of each other. It is
more likely that we have external information on cME,
such as instrument-precision specifications from the
instrument manufacturer, and hence, by subtraction,
cMS [a parameter of the hidden process Y (·)] can be
estimated. In analyzing the artificial dataset, we have
used the knowledge that cME = 0.3, the true value, and
then estimated θ = (τ 2, cMS, φ)′; see Table 1.

We performed another sensitivity study, this time to
assess the variability of the PALE estimators µ̂g and θ̂g ,
and the PILE estimators µ̂ and θ̂ , of µ and θ . The
study consisted of generating 50 datasets in the same
manner as the zero-trend simulations given in Sec-
tion 4, and obtaining PALE and PILE estimates of
µ and θ for each dataset. Figure 3 shows histograms

(a) (b)

(c) (d)

FIG. 3. Histograms of estimates of τ2 and cMS, for PALE and PILE, with the true value indicated by a vertical dashed line: (a) PALE
for τ2; (b) PALE for cMS; (c) PILE for τ2; (d) PILE for cMS.
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of the PALE and PILE estimates for τ 2 and cMS. The
PALE estimates do not appear to be biased, whereas the
PILE estimates appear to underestimate τ 2 and overes-
timate cMS. Since PILE (inappropriately) ignores the
presence of location error, the data Zg will indicate a
spatial covariance function with τ 2 smaller than 0.65
[see Figure 1(c)] and consequently a cMS that is larger
than 0.05. The estimates for the other two parameters,
µ and φ, were similar for both PALE and PILE, in
that their histograms (not shown) did not indicate any
bias and showed similar levels of variability. As the
location-error dispersion parameter ψ increases, we
expect to see more variability in the estimates, since the
data Zg have a spatial covariance that is obtained from
more integration; see how Figure 1(a) is integrated to
become Figures 1(b)–(d), for ψ = 0.05, 0.15, 0.25, re-
spectively.

3. KRIGING ADJUSTING FOR LOCATION ERROR

Kriging in geostatistics is nothing more than best
linear prediction in statistical linear-model theory,
where the variances and covariances are derived from
the observed and hidden spatial processes (Cressie,
1993, Chapter 3). We now give a brief description
of kriging, without location error, in order to provide
comparison for the subsequent derivation of kriging
adjusting for location error.

3.1 Optimal Spatial Prediction—No Location Error

The geostatistical model upon which the usual krig-
ing equations are based is

Z(s) = Y (s) + ε(s),(19)

Y (s) = x(s)′β + ν(s),(20)

where Y (·) is the (hidden) process of scientific interest
that we wish to predict from a finite number of
observations Z = (Z(s1), . . . ,Z(sn))

′ on the (noisy)
process Z(·). Let s0 ∈ R

d be a generic location. Then
the simple-kriging equations given below provide the
best linear predictor

p(Z; s0) ≡ �′Z + k(21)

of Y (s0). Cressie (1993, page 173) has shown that the
coefficients in (21) are given by

�′ = c(s0)
′�−1 and k = (

x(s0) − X′�
)′
β,(22)

where � ≡ var(Z) is an (n × n) variance matrix,
c(s0) ≡ cov(Y (s0),Z) is an (n × 1) vector, x(s0) is
the (q × 1) vector of covariates at s0 and X ≡
(x(s1), . . . ,x(sn))

′ is the (n × q) matrix of covariates

at locations {s1, . . . , sn}. That is, the best linear predic-
tor (21), (22) depends on β and θ , where θ constitutes
the variance–covariance parameters.

To obtain a predictor that is a function only of the
data, it is natural to estimate β and θ , substitute them
into c(s0) and � [yielding ĉ(s0) and �̂] and then
substitute the estimates into (21) and (22). Choice of
the generalized-least-squares estimate for β ,

β̂ = (X′�̂−1X)−1X′�̂−1Z,(23)

yields the universal-kriging predictor (Cressie, 1993,
page 173). An estimator θ̂ of θ can be obtained in any
of a number of ways, including Gaussian maximum
likelihood (Cressie, 1993, Section 2.6). The mean
squared prediction error (MSPE) of (21) for known
β and θ is

MSPE(s0) ≡ E
(
Y (s0) − �′Z − k

)2

(24)
= CY (0) − c(s0)

′�−1c(s0).

The MSPE (24) depends on β and θ and again it is nat-
ural to substitute the estimates β̂ and θ̂ for β and θ

in (24). Note that the resulting estimated MSPE(s0)

will be an underestimate due to unaccounted-for uncer-
tainty inherited from parameter estimation (Harville,
1985; Cressie and Zimmerman, 1992).

The kriging equations depend on � and c(s0), whose
entries are functions of spatial lags; in the presence of
location error these spatial lags are random. The next
section gives the appropriate adjustments for kriging
when location error is present.

3.2 Optimal Spatial Prediction—Location
Error Present

Assume the CP model for location error, and recall
the notation established in Section 2. We have obser-
vations Zg on the process Zg(s) ≡ Z(s + p(s)), s ∈ D,
from which we wish to predict Y (s0). Using the class
of linear predictors,

pg(Zg; s0) ≡ �′
gZg + kg,(25)

the same algebra as above yields the optimal coeffi-
cients as

�′
g = cg(s0)

′�−1
g and

(26)
kg = (

x(s0) − X′
g�g

)′
β,

where �g ≡ var(Zg), cg(s0) ≡ cov(Y (s0),Zg),
E(Y (s0)) = x(s0)

′β, E(Zg) = Xgβ, and recall that
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Xg = (xg(s1), . . . ,xg(sn))
′. From Section 2.1 and sim-

ilar calculations we have

var(Zg(si )) = CY (0; θ) + cME + β ′Mg(s)β,

cov
(
Zg(si),Zg(sj )

) =
∫ ∫

CY (sj − si + v − u; θ)

· g(u)g(v) dudv,

cov
(
Y (s0),Zg(si )

) =
∫

CY (si − s0 + u; θ)g(u) du,

xg(si ) =
∫

x(si + u)g(u) du;
i = 1, . . . , n, j = 1, . . . , n.

We refer to the optimal predictor (25) and (26) as
kriging adjusting for location error (KALE). Notice
that KALE is unbiased; that is, E(pg(Zg; s0)) =
E(Y (s0)).

As in Section 3.1, (25) and (26) depend on β and θ .
Estimation of β and θ is not as straightforward as in the
case where there is no location error, because β appears
in both the mean function, µg(s) ≡ E(Zg(s)), and in
the variance function, vg(s) ≡ var(Zg(s)). In particu-
lar, there is no universal-kriging predictor for Y (s0),
and Gabrosek and Cressie’s (2002) universal-kriging
equations are not correct. However, their ordinary krig-
ing equations are correct, as we now demonstrate: if
E(Z(s)) = µ, then from (9), µg(s) ≡ µ, and from (11),
vg(s) ≡ CY (0; θ) + cME, which is independent of µ.

The KALE predictor (25) and (26), and the KALE
MSPE,

MSPEg(s0) ≡ E
(
Y (s0) − �′

gZg − kg

)2

(27) = CY (0) − cg(s0)
′�−1

g cg(s0),

both depend on β and θ . Section 2.3 discusses how to
obtain pseudolikelihood-based estimates β̂g and θ̂g of

β and θ , which we substitute into (25)–(27) to obtain
quantities that are functions only of the data.

3.3 Kriging the Artificial Dataset

We wish to compute the optimal spatial predictor for
the artificial dataset described in Section 2.2. Because
in this example we actually know the true (hidden)
process Y (·), there is an opportunity to get some idea
of how well KALE performs.

Recall that Figure 2 shows the intended locations
{s1, . . . , s100} as dots superimposed on {Z(s) : s ∈ D},
where D is discretized onto S, a 50 × 50 grid.
The dataset Zg is actually observed at {r1, . . . , r100},
shown in Figure 2 as pluses, but for KALE these
locations are assumed unknown. From the data Zg

and the formulas for KALE given in Section 3.2, we
obtain {pg(Zg; s) : s ∈ D}, which is compared to the
true process {Y (s) : s ∈ D} in Figure 4. In practice,
the PALE estimates µ̂g and θ̂g given by (17) are
substituted into (25) and (26) to yield the KALE map.

From Figure 4, we see the smoothing effect that is
typical of kriging. The true process Y (·), shown in
Figure 4(a), is much more variable than the KALE
map pg(Zg; ·), shown in Figure 4(b). Furthermore,
by inspecting similar plots for ψ other than 0.15, we
conclude that the larger the location-error dispersion,
the smoother is KALE.

To ascertain the impact of variation in parameter es-
timates on KALE, we looked at the squared prediction
error of KALE as a function of prediction location,
for various choices of parameters. Five vectors (one
consisting of the true parameter values) were chosen
to mimic sample variability of the parameter estimates
for the artificial dataset. The average (here, an average

FIG. 4. (a) Hidden process Y(·), from which artificial data Zg were generated; (b) KALE map given by pg(Zg; ·); (c) {MSPEg(·)}1/2 given
by (24). In (b) and (c) β̂g and θ̂g are substituted for unknown β and θ .
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over s0 ∈ S) squared prediction error based on the vec-
tor of true parameter values was 0.3478, which is to
be compared with 0.3387 based on the vector of es-
timates obtained from PALE; the ratio is 1.020. The
remaining four vectors of parameters yielded ratios of
1.013, 0.960, 1.028 and 0.995. The choice of these four
parameter vectors, based on histograms of parameter
estimates like those seen in Figure 3, ensured wide cov-
erage of the parameter space. That the ratios hardly
deviate from 1.000 indicates rather weak dependence
of KALE on the parameters substituted into (25)–(27).
This lack of sensitivity will be exploited in the simula-
tion experiment described in Section 4.

4. SPATIAL-PREDICTION PROPERTIES OF
KALE—A SIMULATION EXPERIMENT

The methodology of kriging adjusting for location
error, as presented in Section 3, is split into two steps.
Like most geostatistical methods for mapping, the
data Zg are used twice. First, the optimal predictor,
from the class of all predictors linear in Zg , is derived;
see Section 3.2. The coefficients of the optimal linear
unbiased predictor, given by (26), and the MSPE, given
by (27), depend on unknown parameters β and θ .
The second step reuses the data for estimation of
any unknown parameters, which are then substituted
into (25)–(27). The result is the spatial-prediction
methodology that we call KALE.

We also consider a methodology that we call KILE
(kriging ignoring location error). That is, we treat Zg

as if it were observed with no location error: in the
first step of KILE, the predictor is p(Zg; s0) given by
(21) and (22). Notice that E(p(Zg; (s0))) = x(s0)

′β +
c(s0)

′�−1(Xg −X)β , and E(Y (s0)) = x(s0)
′β. Hence,

KILE yields a predictor that is generally biased; define
BIAS(s0) ≡ c(s0)

′�−1(Xg − X)β . If one were to
ignore location error to compute the MSPE using (24),
it would be an underestimate; the true MSPE, which
we denote as MSPE(s0), is given by

CY (0) − 2cg(s0)
′�−1c(s0)

+ c(s0)
′�−1�g�

−1c(s0)(28)

+ (
c(s0)

′�−1(Xg − X)β
)2;

the last term is a squared bias component that depends
on β. The KILE predictor p(Zg; s0), BIAS(s0) and
MSPE(s0) all depend on unknown parameters, so that
in the second step of KILE these parameters are esti-
mated, again ignoring location error [e.g., PILE esti-
mates given by (18)]; then the estimates are substituted
into (21), (22) and (28).

We have conducted a simulation experiment that
enables us to assess the effect of no, small, medium
and large location-error dispersion on the bias and
mean squared prediction error of KALE and KILE;
see Section 4.1. The results of the experiment show the
improvement of KALE over KILE as a function of the
location-error dispersion; see Section 4.2.

4.1 Design of the Simulation Experiment

Recall the description of the artificial dataset given in
Section 2.2. The simulation experiment is very similar,
in that the process Zg(·) was simulated on [0,1]2 in the
same way except, as part of our design, we considered
a mean function with linear trend as well as a mean
function with no trend (i.e., constant mean). That is, we
first simulated Z(·) with two choices for µ(sx, sy) ≡
E(Z(sx, sy)):

µ(sx, sy) = 0 or
(29)

µ(sx, sy) = −0.125 + 0.25sx,

where s ≡ (sx, sy) ∈ [−0.25,1.25]2, a slightly larger
region than the unit square to account for location er-
rors. The covariance function of the hidden process
Y (·) is given by (12), with θ = (τ 2, cMS, φ)′ =
(0.65,0.05,0.4)′, and the measurement-error variance
is cME = 0.3.

Recall that the process Zg(·) is defined by

Zg(s) ≡ Z
(
s + p(s)

)
, s ∈ D,

where {p(s)} are i.i.d. with density g that is uniform
on a disk centered at 0 and of radius ψ ; see (13).
We consider four levels of location error: the first
is where p(s) ≡ 0, which we write as ψ = 0; the
other three are ψ = 0.05, 0.15 and 0.25, correspond-
ing to small, medium and large location-error dis-
persion, respectively. Some control was imposed on
the way the different levels were simulated. The in-
tended sites {s1, . . . , s100} were chosen by sampling
uniformly from the unit square [0,1]2; they were then
fixed throughout the experiment. In the case of no loca-
tion error, Zg = Z = (Z(s1), . . . ,Z(s100))

′. In the case
of small location-error dispersion, {p(s1), . . . ,p(s100)}
were randomly sampled from g(·) with ψ = 0.05.
That is, for small location error, we obtained the sim-
ulated data, Zg ≡ (Z(r1), . . . ,Z(r100))

′, where ri =
si + p(si), i = 1, . . . ,100. Then, for medium loca-
tion error, we obtained Zg from actual sites ri =
si + 3p(si), i = 1, . . . ,100; and for large location er-
ror, we obtained Zg from actual sites ri = si + 5p(si),
i = 1, . . . ,100.



450 N. CRESSIE AND J. KORNAK

The sources of randomness in the experiment were
from the generation of new processes Y (·), ε(·) and
p(·) for each of L simulations. While the KALE
and KILE procedures were quite time-consuming, we
found that parameter estimation of θ was prohibitive
for L large. Consequently, for the simulation experi-
ment we chose to estimate β (using generalized least
squares) and fix θ at its true value. [In the study de-
scribed in Section 3.3, we verified a lack of sensitivity
to the choice of parameters.] All the responses from
the simulation experiment relate to the performance of
KALE and KILE for spatial prediction of the hidden
process Y (·).

KALE and KILE were evaluated on S, which recall
is a 50 × 50 grid in D. At each location s0 ∈ S we
know the true value Y (s0), which we compare to the
KALE predictor pg(Zg; s0) given by (25) and (26), and
the KILE predictor p(Zg; s0) given by (21) and (22),
as follows. Let Ŷ (�)(s0) denote a generic predictor
of Y (�)(s0), for simulation � = 1, . . . ,L. Then we
compute the empirical prediction bias,

EBIAS(s0) ≡ 1

L

L∑
�=1

(
Ŷ (�)(s0) − Y (�)(s0)

)
, s0 ∈ S,

and the empirical mean squared prediction error,

EMSPE(s0) ≡ 1

L

L∑
�=1

(
Ŷ (�)(s0) − Y (�)(s0)

)2
, s0 ∈ S,

and use them to compare KALE to KILE. In our
simulation study, L was chosen to be 5,000.

4.2 Results from the Simulation Experiment

We discuss principally the no-trend case and com-
pare it to the linear-trend case later. After looking
carefully at the simulation results for EBIAS(·), we
concluded that KALE and KILE exhibited no bias,
which agrees with the theory given in Section 3.2 and
at the beginning of this section.

A comparison of KALE’s theoretical MSPE given
by (27) and its EMSPE defined in Section 4.1 showed
good agreement. Similarly good agreement was shown
between KILE’s theoretical MSPE given by (28) and
its EMSPE. In all that is to follow, we compare
KALE to KILE via their EMSPE’s obtained from the
simulation experiment.

In Figure 5 we give for ψ = 0.15 a gray-scale image
of

log
{

EMSPE(s0) for KILE

EMSPE(s0) for KALE

}
,

which can be interpreted as a log relative efficiency.

FIG. 5. Gray-scale image of log relative efficiency of KALE with
respect to KILE for the simulation experiment. White/light-grey
represents high efficiency above 100%; black/dark-gray repre-
sents efficiencies around 100%; values on the gray scale are
log{(empirical MSPE for KILE)/(empirical MSPE for KALE)}. Su-
perimposed on the image are the intended sites and two other sites
(1 and 2) used in the text for efficiency comparisons.

Superimposed on the image are the intended sites
s1, . . . , s100 (fixed throughout the experiment). It is ap-
parent from the figure that proximity of the prediction
point s0 to an intended site, as well as that site’s de-
gree of isolation, are important factors that help explain
high (log) relative efficiencies. Consequently, Figure 6
shows plots of log relative efficiency as a function of
distance to nearest intended site, for (a) ψ = 0.05,
(b) ψ = 0.15 and (c) ψ = 0.25.

For a given location-error dispersion ψ , it is clear
from Figure 6 that the efficiency of KALE relative
to KILE increases as distance to the nearest intended
site decreases; also notice that KALE is typically as
efficient or more efficient than KILE. The effect of
increasing ψ is quite remarkable; for ψ = 0.15 and
0.25, all relative efficiencies are greater than 100%,
with some efficiencies more than 120%. To illustrate
the potential of KALE, we chose two prediction
locations that give quite different results. Point 1 in
Figure 5 is far from an intended site and had relative
efficiencies of 100.0% (ψ = 0.05), 100.4% (ψ = 0.15)
and 103.5% (ψ = 0.25), indicating that for this point
there was little benefit in adjusting for location error. In
contrast, point 2 in Figure 5 is very close to an isolated
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(a) (b) (c)

FIG. 6. Panels (a)–(c) show plots of log relative efficiency (see Figure 5) versus distance to nearest intended site: (a) ψ = 0.05; (b) ψ = 0.15;
(c) ψ = 0.25.

intended site and had relative efficiencies of 102.6%
(ψ = 0.05), 115.9% (ψ = 0.15) and 121.6% (ψ =
0.25). These types of efficiency gains are substantial
and worth the trouble of adjusting for location error
[i.e., using KALE to predict Y (s0)].

A global comparison of KALE and KILE is given
in Table 2. There we see an average over S of the
empirical and theoretical MSPEs for KALE and KILE.
The theoretical values are very close to the empirical
values, but always a little smaller since they do not
account for parameter estimation. The ratio of the
average of EMSPE(·) for KILE to the same for KALE
is 100.2% (ψ = 0.05), 104.0% (ψ = 0.15) and 109.8%
(ψ = 0.25).

Maps of EBIAS(·) and EMSPE(·), along with global
comparisons analogous to those given in Table 2, were
studied for the linear-trend case. We do not present
them here, but rather summarize the effect on KALE
and KILE of adding a linear trend term. In the linear-
trend case, we observe from the maps of EBIAS(·)
that both KALE’s and KILE’s bias are very small
[compared to EMSPE(·)] but increasing in the opposite

TABLE 2
Entries are ave{EMSPE(s0) : s0 ∈ S} for KALE and KILE in the

no-trend case; average theoretical MSPEs are shown
in parentheses

ψ KALE KILE

0 0.2905 (0.2888) 0.2905 (0.2888)
0.05 0.3029 (0.3011) 0.3037 (0.3021)
0.15 0.3750 (0.3719) 0.3900 (0.3879)
0.25 0.4740 (0.4692) 0.5204 (0.5164)

direction to the trend in Y (·). That there is bias is
not unexpected since β is not assumed known in the
simulation experiment; rather, it is estimated.

From looking at the maps of EMSPE(·), there were
imperceptable differences between the no-trend and
linear-trend cases. However, global comparisons like
those given in Table 2 showed an increase of 1–2% in
ave{EMSPE(s0) : s0 ∈ S} for the linear-trend case over
the no-trend case (for both KALE and KILE). For more
general trend surfaces, we expect that a comparison of
trend versus no-trend will lead to bigger differences
for KILE and KALE, that is, higher efficiencies for
KALE relative to KILE. This is because the last term
in KILE’s theoretical MSPE given by (28) depends on
β and could be substantial.

5. REMOTELY SENSED TOTAL COLUMN OZONE

Ozone is important for protecting the Earth’s surface
from ultraviolet and other radiation in the 290–400
nm wavelength. An excess of this type of radiation
can damage DNA and cellular proteins involved in
biochemical processes for growth and reproduction.
Total column ozone is the amount of ozone in a
column starting from a point on the Earth’s surface and
integrating through all levels of the atmosphere; it is
measured in Dobson units. To illustrate a geostatistical
analysis in the presence of location error, we use
data from the Total Ozone Mapping Spectrometer
(TOMS) on the Nimbus-7 satellite, obtained from the
NASA Goddard Distributed Active Archive Center
(http://daac.gsfc.nasa.gov/).

The Nimbus-7 satellite is polar-orbiting and covers
the entire globe in a 24-hour period. We chose a
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region of interest D over ocean off the coast of Chile
[Figure 7(a)] because of obvious trend in the data.
The actual locations {ri} of the TOMS measurements
come from satellite swaths recorded on October 1,
1988. They are shown as pluses in Figure 7(b), and
they are in the range −87.5◦ to −81.25◦ longitude
(lon) and −33◦ to −26◦ latitude (lat). Data analysts
often superimpose a regular lon–lat grid on the Earth’s
surface and purposively move the spatially irregular
data to the nearest center of the lon-lat rectangles. This
introduces a location error that we shall adjust for in
the geostatistical analysis to follow. The centers, which
play the role of intended sites {si}, are shown as dots in
Figure 7(b).

After standard exploratory spatial data analysis, we
posed the following geostatistical model:

Z(sx, sy) = β1 + β2s
x + β3s

y

(30) + ν(sx, sy) + ε(sx, sy),

where sx denotes degrees longitude and sy denotes
degrees latitude; ν(·) is the stochastic component
of the hidden process, Y (·) = x(·)′β + ν(·), where
x(s) = (1, sx, sy)′; and ε(·) is the measurement er-
ror. We posed the spherical model (12) for cov(Y (s),
Y (s + h)) = cov(ν(s), ν(s + h)). Because of the cur-
vature of the Earth’s surface, great-arc distances were
used for computing ‖h‖.

To quantify the different sources of variation, we
first obtained an estimate of cME. We made the rea-
sonable assumption that when no location error has
been imposed on the data the spatial process is suffi-
ciently smooth to assume that cMS = 0. Therefore, we
can use the actual locations to obtain a maximum like-
lihood estimate of cMS + cME = cME, and we subse-
quently assumed this estimate, ĉME = 2.65, to be the
true value of cME when performing PALE estimation
and KALE prediction. It would obviously be prefer-
able to use an independent estimate of cME obtained
from the instrument manufacturer’s quality-assurance
experiments; however, such an estimate was not avail-
able to us.

Estimates on β and θ proved to be somewhat sensi-
tive to their starting values in the optimization routine
(the Nelder-Mead algorithm using the optim routine
within R). This is due to the lack of identifiability
between the trend surface x(·)′β and the second-
order stationary process ν(·). The problem is poten-
tially present in all geostatistical analyses, as has been
pointed out by Cressie (1993, page 25). We make
the recommendation that, when inferences are to be
made on β and θ , a range of starting values should
be tried for the optimization procedure that maximizes
the pseudolikelihood. However, when prediction is the
main objective, a careful choice of starting values may

(a) (b)

FIG. 7. (a) Gray rectangle indicates region of interest for studying KALE of total column ozone (TCO); (b) actual and intended sites of
TCO data in lon–lat space. Dots correspond to the intended sites (centers of lon–lat rectangles); pluses correspond to the actual sites of TCO
data on October 1, 1988; a datum is recorded at a plus but is purposively moved to its nearest dot.
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be less important; see Section 2.3, where it is seen
that KALE is not particularly sensitive to the choice
of parameters. Here, we used ordinary-least-squares
estimation to obtain a starting value for β. We then
obtained the residual mean square and used it as an es-
timate of the total variance. The starting value for τ 2

was 75% of the total variance, since ĉME was found
to be 25% of the estimated total variance. The start-
ing value for φ was obtained by taking the median
of all distances between all pairs of intended sites in
the region of interest. Maximization of (16) yielded
PALE estimates β̂g = (134.96,−0.50,−4.42)′ and
θ̂g ≡ (τ̂g, ĉMS,g, φ̂g)

′ = (10.97,4.56,361.55)′, where
the range-parameter estimate φ̂g is measured in kilo-
meters.

The data vector we use for prediction is given by
Zg ≡ (Z(r1), . . . ,Z(rn))

′, but we assume that the data
are observed at the centers {s1, . . . , sn} of the lon–lat
rectangles that contain them. Recall that the actual lo-
cations of the data are not available to the data analyst;

only the assigned grid centers (intended locations) are
used.

Notice that the satellite tracks are evident from the
pluses in Figure 7(b). Although the process of data
assignment is clearly not random, the uncertainty in-
duced by not knowing the actual locations where
the data were recorded can be modeled by the CP
location-error model (Section 2). Figure 8 displays
the purposively imposed location errors, pi ≡ ri − si ,
i = 1, . . . , n, that were incurred within D. The random
scatter of errors in the rectangle and the approximately
uniform marginal histograms in the lon and lat direc-
tions, imply that the realizations {pi : i = 1, . . . , n} can
be approximated as coming from the uniform distribu-
tion on the 1.25◦ × 1◦ rectangle centered at (0,0).

From (25) and (26), the KALE predictor is given by

pg(Zg; s) = x(s)′β + cg(s)′�−1
g (Zg − Xgβ),

(31)
s ∈ D,

where the PALE estimates of β and θ are substituted

FIG. 8. Two-dimensional dot plot showing the 105 location errors imposed by moving the actual sites ( from the satellite swaths) on
October 1, 1988, to the intended sites (nearest centers of the 1.25◦ × 1◦ lon–lat rectangles). The density of dots appears uniform; this is
reinforced by the marginal histograms shown in the figure.
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into the right-hand side of (31). Figure 9 illustrates the
results of KALE; to obtain a comparable gray-scale
for the maps, we subtracted an overall average of the
trend (307.3 Dobson units) from both sides of (31). It
is clear from Figure 9 that, while the trend x(s)′β is
important, the residual nonlinear features of the map
are effectively captured by

ν̂(s) ≡ cg(s)′�−1
g (Zg − Xgβ̂g).

The map of {(MSPEg(s))1/2 : s ∈ D} shown in Figure 9
is an essential part of KALE.

6. DISCUSSION AND CONCLUSIONS

Location error can have a considerable effect on at-
tribute prediction (kriging). Generally speaking, ad-
justing inferences for location error is more efficient
than ignoring it. Examples include purposive reloca-
tion of massive, irregularly spaced data Z to become
data Zg on regularly spaced grid nodes in remote
sensing, and reporting people’s locations only at the
zip-code level in confidential surveys. We believe that
(spatial) inference in the presence of location error is
an important problem, although it tends to be ignored
by most spatial analysts.

FIG. 9. The recentered trend map plus the predicted small-scale variation, ν̂(·) = cg(·)′�−1
g (Zg − Xgβ̂), is equal to the recentered KALE

map. Also shown is {MSPEg(·)}1/2 given by (24). Lighter shading corresponds to larger values.
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In this paper, we have used artificial data, a simu-
lation experiment and an analysis of remotely sensed
TCO data to show that adjusting for location error takes
a little extra effort, but that it is definitely worth it. Lo-
cation error plays a different role to measurement er-
ror, however some characteristics are similar. In each
case we assume that experiments extraneous to the spa-
tial statistical analysis have been conducted that de-
termine, respectively, the measurement-error variance
cME and the location-error density g(·). That is, in our
spatial analyses estimation is confined to trend and
covariance parameters β and θ , all pertaining to the
process Y (·). It is possible that the disk radius ψ in g(·)
could be estimated via maximum pseudolikelihood, but
in many cases it would be known in advance. More-
over, in remote-sensing applications, such as given in
Section 5, we can sometimes rehabilitate subset of the
actual data locations and use the differences between
actual and intended locations to examine the form of
g(·). We did this for the TCO data in Section 5; see
Figure 8, where the realizations from g(·) appear to
be uniform on the rectangles of the latitude–longitude
grid.

It is clear that the building blocks for location-
error adjustment involve integrals with respect to the
location-error density g(·). In the more general case
of a mixture of discrete and continuous location-error
distributions, the integral would be of the Riemann–
Stieltjes type. In particular, if p(s) = 0 with positive
probability p0, then Cg(h) has a jump equal to p0cMS
at h = 0, and care must be taken to account for this in
the Monte Carlo integration given in Section 2.1.

There are a number of open problems still to be
solved. The presence of the trend parameters β on the
diagonal of the variance–covariance matrix var(Zg) in-
dicates that more efficient estimators of β and θ may be
available through quasilikelihoods or generalized es-
timating equations (e.g., Diggle, Heagerty, Liang and
Zeger, 2002); this is a topic of future research. Alterna-
tively, one could use the ad hoc approach that is often
seen in practical geostatistics: based on an ordinary-
least-squares estimate of β [= (X′

gXg)−1X′
gZg], de-

trend the data Zg , compute an empirical covariance
function and fit θ via, for example, nonlinear weighted
least squares [using only nonzero lags, since β is not
present in cov(Zg(s),Zg(s + h)) when h 	= 0]. This
latter approach requires assumptions of second-order
stationarity of Y (·) and of independent and identically
distributed location errors, both of which are made in
this paper. However, KALE is quite general in that it

simply requires first- and second-order moments asso-
ciated with the data Zg and the hidden process Y (·).
Clearly, (9)–(11) and all other components of KALE
can be generalized to accommodate a nonstationary
cov(Y (s), Y (u)) and a noninvariant, nonindependent
location-error process p(·). In this case, estimation of β
and θ via PALE would be (pseudo- or quasi-)likelihood
based.

Substituting an estimate of unknown parameters into
the kriging equations generally has a minimal effect
on the predictor, but it can lead to an underestimate of
the predictor’s mean squared prediction error. Ideally,
we should carry out a fully Bayesian analysis of
spatial prediction in the presence of location error. This
would necessitate, inter alia, putting a prior on g(·),
or equivalently on its parameters. Inference based on
Markov chain Monte Carlo is quite complicated in this
case, and will be the subject of a future paper.

In conclusion, we have shown that substantial gains
in efficiency can often be made by adjusting kriging
in the presence of location error. It can be seen from
the kriging equations that the trend parameter β plays
an important role; we expect the efficiency gains to
be even greater for trends more complicated than the
simple linear ones considered in this paper.
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