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Inference Functions and Quadratic
Score Tests
Bruce G. Lindsay and Annie Qu

Abstract. A general expository description is given of the use of quadratic
score test statistics as inference functions. This methodology allows one
to do efficient estimation and testing in a semiparametric model defined
by a set of mean-zero estimating functions. The inference function is
related to a quadratic minimum distance problem. The asymptotic chi-
squared properties are shown to be the consequences of asymptotic projection
properties. Shortcomings of the asymptotic theory are discussed and a
bootstrap method is shown to correct for anticonservative testing behavior.
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1. INTRODUCTION

In the years since C. R. Rao developed the score
test (1948), there has been a wide diversity of research
connected with this procedure. Although the original
work was in the area of parametric statistical inference,
we will instead focus here on the following line of
research within semiparametric inference based on
estimating equations.

A quadratic form test statistic, such as Rao’s, has
some surprising properties when it is treated as an
inference function instead of a test statistic. That is,
when it is treated as a function of the parameters
instead of the data, one can use it as if it were
a likelihood function, deriving chi-squared tests of
goodness of fit, profile tests of parameter components
and so forth.

This methodology has roots in the statistics liter-
ature dating back over 50 years, but its application
since that time has been minimal except for the world
of econometrics, where its use has blossomed under
the name of the “generalized method of moments,” or
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GMM (Hansen, 1982). However, it is a method whose
applicability in the world of “estimating functions”
(Godambe, 1960) surely exceeds the domain of eco-
nomic examples, and so we here attempt to introduce
the main ideas to a wider audience of statisticians.

We will review this work here, add some clarifying
points and point to the large range of possible applica-
tions. This methodology is particularly fruitful when
there are more equations than unknowns, as the in-
ference function then provides a simple but optimal
method for combining the equations. We can think of
each estimating equation that is added to the quadratic
form statistic as being an additional model assumption.
The quadratic inference function then, just as a like-
lihood function, provides an optimal estimation and
testing method for the corresponding semiparametric
model.

Indeed, the method is so flexible that it can be used
to suit many statistical purposes. In our review of this
area, we will show that it can be used to minimize as-
sumptions, increase information about parameters and
evaluate goodness of fit. Along the way, we will see
that the methodology can be analyzed from parametric,
semiparametric and nonparametric functional points of
view. Our goal will be to carefully distinguish among
these three points of view. To our knowledge, this last
perspective is new to the literature. Throughout the pa-
per, our goal is to present the development of ideas, and
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so we suppress technical derivations when they do not
provide additional insight.

Section 2 introduces the construction of basic scores
under parametric, semiparametric and nonparametric
settings. Section 3 presents an overview of the as-
ymptotic properties of the quadratic inference func-
tion (QIF) and evaluates its performance based on
efficiency and robustness. Section 4 provides a brief
history of the QIF and relates it to minimum chi-
squared, Rao’s score test, generalized least squares and
empirical likelihood. Section 5 examines the QIF more
closely and illustrates the projection representations of
the QIF. Section 6 presents bootstrap strategies to im-
prove higher-order accuracy for QIF test size.

2. CONSTRUCTION

We start with a vector of basic score functions
b(x, θ) that are assumed to have mean 0 when θ is
the true parameter. These basic scores are also called
estimating functions or moment conditions in the sta-
tistics and econometrics literature, respectively. It is a
key element of the QIF method that there are more dis-
tinct score components bj , j = 1, . . . , q , than there are
distinct parameters θk, k = 1, . . . , p. Thus, we cannot
simply set the scores to 0 to solve for the unknown pa-
rameter θ .

To motivate our method, we investigate a real data
example found in Rotnitzky and Wypij (1994), Chen
and Little (1999) and Qu and Song (2002). The data
concern studies of pediatric asthma in Steubenville,
Ohio. Dichotomous outcomes recording asthma status
were recorded for children at ages 9 and 13. The
marginal probability will be modeled as a logistic
regression (Rotnitzky and Wypij, 1994) with gender
and age as covariates:

logit
{
pr(yit = 1)

} = θ0 + θ1I (male) + θ2I (age = 13),

where yit = 1 if the ith child had asthma at time
t = 1,2 and I (E) is the indicator function for event E.
About 20% of the children had asthma status missing at
age 13. That is, every child had his or her asthma status
recorded at age 9, but for some the asthma status was
missing at age 13. Note that there are three parameters
θ0, θ1 and θ2 in the model with complete observations,
but only two identifiable parameters, θ0 and θ1, for the
incomplete case.

If we are interested in estimating θ0, θ1 and θ2
using all subjects, it is not obvious how to combine
θ̂0, θ̂1 and θ̂2 from complete and incomplete data
optimally, especially where dimensions of parameters

are different for different missing patterns. It is natural
to create the basic score functions

b1(θ0, θ1, θ2) = ∑
(Xc

i )
′(yc

i − µc
i ),

b2(θ0, θ1) = ∑
(Xm

i )′(ym
i − µm

i ),

where (Xc, yc) and (Xm,ym) are data from complete
and incomplete observations, respectively, and µc

i =
pr(yc

i = 1),µm
i = pr(ym

i = 1). Notice that the total
dimension of b1 and b2 is 5, which is more than 3,
the dimension of the parameter. We might not be able
to find solutions of θ0, θ1 and θ2 by setting both
b1 and b2 to 0, but we can estimate them by setting
a weighted combination of b1 and b2 to 0, and the
question becomes, what are the optimal weights for
b1 and b2?

As another motivating example, consider the two
basic scores

b1(x, θ) = (x − θ), b2(x, θ) = I {x − θ ≥ 0}.(1)

If we solve
∑

b1(Xi; θ) = 0 for θ, for a given set of
data X1, . . . ,Xn, then the solution is the sample mean.
If for the same data we solve

∑
b2(Xi; θ) = 0, then

the solution is the sample median. We cannot set them
both to 0 to solve for a single θ unless the median and
mean are equal. However, we might ask how we can
optimally combine these two score functions to obtain
a compromise estimator.

The method we consider combines the basic scores
in a quadratic form test statistic, which will then be
treated as an inference function. With this method, the
resulting estimator is asymptotically fully efficient un-
der both the normal model and the double exponen-
tial model, corresponding to the fact that the two basic
scores b1 and b2 in (1) are the respective likelihood
scores for these models.

2.1 The Semiparametric Model

In the settings we are considering, there can be
some ambiguity about the nature of the model under
investigation. We start by clarifying this issue.

Given an arbitrary distribution F and solving the
equations

EF [bi(X, θ)] = 0

for θ in the mean-and-median example above (1) yields
the mean of F for i = 1 and the median of F for i = 2.
If there is a value of θ that solves both equations, as in
a symmetric distribution with finite mean, then we will
say that the pair of scores are compatible under F and
that θ is the parameter value corresponding to F . (In
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our example, uniqueness of the mean implies that the
solution set has at most a single element.) If there is no
value of θ for which both scores are mean 0, then the
scores are incompatible under F .

The above definitions of compatible and incompat-
ible can be extended to any set of q estimating equa-
tions with p unknown parameters, where q > p. We
say a distribution is compatible with a vector of ba-
sic scores if there is a p-dimensional solution θ to the
q-equations EF [b(X, θ)] = 0. We will say that F ∈ Mθ

if there is a solution.
This in turn defines a semiparametric model

M = ⋃
Mθ .

It consists of all distributions F that are compatible
with the vector of basic scores for some θ . It is
semiparametric, not nonparametric, because there are
implicit restrictions on M arising from the fact that
there are more equations q than unknowns p. For
example, in the exponential distribution, the mean and
median do not coincide, so this distribution is not in the
semiparametric model M determined by compatibility
with the mean and median equations.

Since it is possible that the semiparametric model
assumptions are false, we might well ask how any
procedure we develop will behave when compatibility
fails. We will call this the nonparametric setting. For
the methods we describe, the parameters, estimators
and tests will have a minimum quadratic distance
interpretation which gives them valid nonparametric
interpretation as well.

In the end, we could potentially have three levels of
models. The basic scores b(θ) could have arisen from
a parametric model of interest, such as the normal,
where the mean and median scores both generate valid
inference. This model would then be nested within the
semiparametric model M compatible with the scores.
Valid inference on θ in the semiparametric model is
then an automatically valid inference in the parametric
model, and we can think of the semiparametric model
as being a weakening of the parametric model assump-
tions. Finally, because we can extend the definition of
the parameter θ to the nonparametric setting using min-
imum distance ideas, we can consistently estimate it
there and perform valid tests of hypotheses concerning
its value.

2.2 The Quadratic Distance

To illustrate the idea of the minimum distance inter-
pretation, we use a second type of example. In fact,
the following minimum chi-squared methods based on

partitioning continuous data into “cells” have great
historical significance for the development of this
methodology. We start with a parametric model. Given
an underlying parametric distribution Mθ, we could
use for basic scores the indicator functions for a par-
tition A1, . . . ,AK of the x axis, with Ak = (ak−1, ak],
minus their expectation under the parametric modelMθ

at parameter value θ :

bk(x, θ) = I {x ∈ Ak} − Pθ(Ak).(2)

These scores in turn define a semiparametric model
which consists of all distributions τ that satisfy, for
some value of θ , the mean-zero score equations:

Eτ [bk(x, θ)] = Pτ (Ak) − Pθ(Ak) = 0 for all k.

That is, τ is in the semiparametric model if and only
if it has the same cell probabilities as one of the
parametric distributions Mθ, in which case we say that
τ has parameter value θ, or that τ ∈ Mθ .

Now suppose the semiparametric model is not true.
Given this set of functions and for each θ , we can
define the vector of discrepancies δ(θ) between the
model Mθ and true distribution τ by

Eτ [b(X, θ)] = δ(θ).(3)

If the semiparametric model is correct, then δ(θ) = 0
for some θ which we call θ(τ ). If not, then model
failure implies that the vector δ is never zero for any θ .
However, given a particular measure of distance, we
can define θ(τ ) as a nonparametric function on the
space of all distributions by letting it be that θ which
makes the distance between δ(θ) and 0 the smallest.

We will use a Mahalanobis-type distance. We start
by defining the covariance matrix

Cθ = VarG(b(x, θ)).(4)

The subscript G on Var represents the distribution G

that is used to evaluate the variance. The most widely
desirable choice is G = τ , the true distribution, but
there may be practical reasons to prefer a model-
based covariance estimator; this will be discussed in
Section 3.2.

The quadratic distance function between the true
distribution and the model distribution as determined
through the basic scores is then

ρ2(τ,Mθ) = δ(θ)t [Cθ ]−1δ(θ).(5)

(If the variance is not invertible, then we would replace
it with the Moore–Penrose generalized inverse.) From
the quadratic distance function, one can now define the
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parameter θ outside the semiparametric model as the
nonparametric function

θ(τ ) = arg min
θ

ρ2(τ,Mθ ).(6)

This function gives the value of θ for which the basic
scores are closest to mean 0.

2.3 From Distance to Quadratic Inference Function

The next step is to create an empirical quadratic dis-
tance function that can be used for inference. If our data
X1, . . . ,Xn are independent and identically distributed
under F , then a natural step is to replace E[b] in (3)
with its empirical estimator b̄(θ) = n−1 ∑

b(Xi, θ)

and to choose a suitable estimator of VarG(b̄), say Ĉθ ,

ending up with a quadratic inference function of the
form

Q2(θ) = b̄′
θ Ĉ

−1
θ b̄θ .(7)

The choice of Ĉθ is an important issue to be discussed
later. The quadratic inference function then becomes
an estimator of the quadratic distance found in (5).
Generally, we would construct the quadratic inference
function so as to converge to the quadratic distance,
and so that the QIF estimator, found as

θ̂ = arg inf
θ

{Q2(θ)},
is consistent for the nonparametric θ functional in (6).
In particular, if the semiparametric model is correct,
then the QIF estimator is consistent for the true value
of θ .

Suppose one applies this to the partitioning scores
in (2), and one uses the covariance matrix Cθ generated
by the model Mθ . In this case, (7) can be shown to be
a version of the Pearson chi-squared distance:

Q2(θ) = ∑ [ni − nPθ(Ai)]2

nPθ(Ai)
.(8)

Here ni is the observed count in the ith cell Ai (we
provide the proof in the Appendix). The quadratic
inference estimator in this case is better known as the
minimum chi-squared estimator (Neyman, 1949). For
this reason, there is some justification in describing the
methodology we are describing as a generalization of
the minimum chi-squared methods, a point elaborated
in Section 4.

For other scores, we have generalized the chi-
squared distance function to allow for other types of
statistical questions. For example, we could also use
the moment functions, bk(x, θ) = xk − Eθ [Xk]. When
we use the same number of moments as parameters, we

have the method of moments. If we use more moments
than parameters, we are led to a generalized method of
moments.

One of the great strengths of the quadratic inference
method is that the asymptotic theory requires very mild
assumptions. Suppose that the semiparametric model
is correct and that in (7) we have used a vector of
basic scores b̄ and a covariance estimator Ĉθ . Much
of the theory that follows holds if there is an asymptotic
embedding of the problem that provides a central limit
theorem of the form

Ĉ
−1/2
θ b̄(θ) → N(0, I ),

where I is the identity matrix. Here we have sup-
pressed the dependence of the statistics on some
sample-size-like parameter n that goes to ∞. An ob-
vious consequence of this is that Q2(θ ) in (7) is
itself asymptotically chi-squared, with degrees of free-
dom equal to q, the number of basic scores. In par-
ticular, we can construct methods for independent
but not identically distributed data, or for stochastic
process data, based on the appropriate central limit
theory. We will not dwell on these points here, but
point to the extensive econometrics literature (White,
1980, 1982; Hansen, 1982; Lee, 1996; Newey and
McFadden, 1994; Mátyás, 1999).

3. SOME FUNDAMENTAL ISSUES

Two important questions arise at this point.

• First, how does one choose the covariance estima-
tor Ĉθ ?

• Second, how does one select the basic score vec-
tor b?

The answers to these questions are tied to the asymp-
totic properties of the quadratic inference function. We
therefore start by summarizing some of the properties
of the quadratic inference function found in Qu, Lind-
say and Li (2000).

3.1 Overview of Asymptotic Results

The following results all require that the semipara-
metric model is true and that Ĉθ is consistent in this
model.

1. The quadratic inference function combines the score
functions in an optimal way, and so can yield highly
efficient procedures. In fact, it can be shown that
the point estimators are equivalent to the estimators
based on the best linear combinations of the basic
scores b, where “best” means “best possible asymp-
totic variance in the semiparametric model.”
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2. Suppose we have a particular parametric model
in mind, such as the normal, and we include the
likelihood scores of that model in our set b. In
this case, the QIF estimators will also be fully
efficient in the parametric model when it is true.
That is, they will be asymptotically equivalent to the
maximum likelihood estimator. Thus, for example,
if the original scores are the partitioning scores (2),
one could add the parametric likelihood scores
to the indicators and obtain full efficiency in the
minimum chi-squared parameter estimators. If we
use the partitioning scores alone, there is a loss of
efficiency due to discretization.

3. As an inference function, Q2(θ) mimics the prop-
erties of the log-likelihood function. In particular,
if the semiparametric model is true, with parameter
value θ0, then:

(a) Q2(θ0) − Q2(θ̂) is asymptotically chi-squa-
red with degrees of freedom equal to the dimension
of θ ;

(b) the profile test statistic Q2(ψ0, λ̂0) −
Q2(ψ̂, λ̂), where (ψ,λ) is a partitioning of the pa-
rameter θ into an interest parameter and a nuisance
parameter, is asymptotically chi-squared as a test of
H :ψ = ψ0, with degrees of freedom equal to the
dimension of ψ ;

(c) Q2(θ̂ ) is asymptotically chi-squared as a
test statistic for testing whether the semiparametric
model is true.

These general properties have been known since
Hansen (1982), although given in a more specialized
case in Ferguson (1958). Noncentrality parameters
for local alternatives are given in Newey and West
(1987) and Qu, Lindsay and Li (2000). These latter are
important for power and sample size calculations.

We note that the goodness-of-fit test given in
item 3(c) above has a direct equivalent when we are
doing a likelihood analysis in a multinomial model,
as there we can conduct a goodness-of-fit test of the
parametric model against the unspecified multinomial.
However, in a continuous model, the likelihood does
not generate such a direct goodness-of-fit procedure,
whereas the quadratic inference function does.

The choice of covariance estimation can alter these
asymptotic results as follows:

4. If the semiparametric model is correct, but Ĉθ →
C∗ �= Var(b(θ)) = Cθ , then all semiparametric effi-
ciency properties are lost, and the limiting
distributions in item 3 are replaced by linear combi-
nations of chi-squares. This can occur if one uses a

parametric model-based estimation of Cθ when the
parametric model is false.

5. If the semiparametric model is false, but Ĉθ is
consistent for Var(b(θ)), then:

(a) θ̂ is consistent for θ(τ ), the minimum dis-
tance parameter;

(b) the test results in items 3(a) and 3(b) still hold
for inference on the parameter θ(τ );

(c) the statistic Q2(θ̂ ) in item 3(c) converges to
ρ2(τ,Mθ) defined in (5).

3.2 Remarks on Estimating Covariance

The foregoing results indicate that the selection
of Ĉθ can play an important role in the asymptotic
properties of the inference function. We next offer
some further insights into this problem.

If one has a fully parametric model, then one might
wish to use for Ĉθ the model-based covariance matrix

Cθ = Varθ (b).(9)

Similar in spirit to creating a z-type test for the
problem, this has the advantage of adding no additional
source of variability. One might conjecture that this
would result in improved efficiency of estimation
in the model, but this is false as we show below.
Moreover, it has the disadvantage of being the incorrect
covariance if the parametric model is incorrect, with
the consequences we saw in item 4 of Section 3.1.

A second natural approach is to estimate the co-
variance structure empirically, with some nonparamet-
ric estimator Ĉθ which is globally consistent for the
variance of b. If we have the case where b̄(θ) =
n−1 ∑

b(Xi, θ) and the b(Xi, θ) are independent or
uncorrelated in (7), it is natural to use

Ĉθ = n−2
∑

b(Xi, θ)b′(Xi, θ).(10)

We note that nĈθ in (10) estimates the covariance
of b consistently only if the mean of b is 0, so that
one might consider replacing b(Xi, θ) in (10) with
b(Xi, θ) − b̄(θ):

C̃θ = n−2
∑[

b(Xi, θ) − b̄(θ)
]

· [
b(Xi, θ) − b̄(θ)

]′
.

(11)

The use of (11) turns Q2(θ) given in (7) into a
Hotelling T 2-type statistic. However, the two quadratic
inference functions Q2

u and Q2
c that are generated by

(10) and (11), respectively, have a simple numerical
relationship:

Q2
u = Q2

c/(1 + n−1Q2
c).(12)
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The proof is provided in the Appendix.
As a consequence, there is no difference between

the parameter estimators, and for large sample sizes
only small differences in the test functions. (We will
examine the difference for small sample sizes in a
later section.) Hereafter, we will generally restrict our
attention to the uncentered covariance function (10), as
the resulting quadratic distance has a nice geometric
interpretation to be described later, as well as more
conservative testing properties.

To further illustrate the role of the choice of Cθ es-
timators, we return to the partitioned chi-square scores
given in (2). If we use the model-based covariance ma-
trix in (9), we have already noted that the quadratic in-
ference function Q2 equals the partitioned chi-squared
distance, with the Pearson (1900) denominators:

Q2
P(θ) = ∑ [ni − nPθ(Ai)]2

nPθ(Ai)
.

If we use the centered quadratic inference function
generated by (11), then the corresponding quadratic
inference function is the Neyman chi-squared function
(Neyman, 1949)

Q2
N(θ) = ∑ [ni − nPθ(Ai)]2

ni

.

If one wished to compromise between Neyman and
Pearson distances for reasons of balancing efficiency
and robustness, a simple method is to use

Ĉθ = (1 − α)C1θ + αĈ2θ ,

where C1θ is the model-based covariance and Ĉ2θ is
the empirical variance estimator. This results in the
blended chi-squared inference function

Q2
α(θ) = ∑ (ni − nPθ(Ai))

2

(1 − α)nPθ(Ai) + αni

,

and for α = 0 and α = 1 we recover Q2
P and Q2

N,
respectively.

Lindsay (1994) carefully studied the chi-squared dis-
tances given above for their efficiency and robustness
properties. We can summarize those findings as fol-
lows, where here by parametric model we mean the
multinomial model for discretized data.

1. All three methods generate fully efficient estimators
in the parametric model.

2. One can compare the estimators based on their
second-order efficiency in the model. The highest
efficiency comes for α = 2/3, and Q2

N is more
second-order efficient than Q2

P. This is quite sur-
prising given the increased variability of the covari-
ance estimator Ĉ2θ compared with C1θ .

3. The robustness of the estimators to outliers in-
creases in the parameter α, with greatest robustness
for Q2

N. This is not surprising given the relationship
between z and t statistics.

Although these results apply strictly to the partition-
ing scores, they do point to some important advantages
to using empirical covariance matrices. A secondary
issue regarding the choice of Ĉθ is its role in determin-
ing the accuracy of the chi-squared approximations in
item 3 of Section 3.1. This will be discussed later.

3.3 Selection of Basic Scores Based on Goals

The above asymptotic properties of the quadratic
inference function suggest a number of ways to select
a set of basic scores for use in the quadratic inference
approach. We may point to three important inferential
goals, each of which yields a method for selecting a set
of scores.

1. To combine a set of model-defining scores in the
most efficient way. For example, Qu, Lindsay and
Li (2000) have shown that the method can be used
to improve efficiency in the area of generalized esti-
mating equations (GEE’s; Liang and Zeger, 1986).
Instead of using “working correlation matrices,”
they suggest using an extended set of regression
scores and combining them optimally using QIF. If
the scores are chosen correctly, the estimators are
more widely efficient than those found using the
same working correlation matrices.

2. To incorporate goodness-of-fit questions into para-
meter estimation via the construction of additional
goodness-of-fit scores. For example, the goodness-
of-fit test is applicable for testing whether the
missingness of data is ignorable by constructing ba-
sic scores based on different missing patterns, as
Qu and Song (2002) point out. They distinguish
between ignorable and nonignorable missingness
in estimating equation approaches by whether the
mean-zero assumption of the estimating equations
holds, since unbiased estimating equations lead to a
consistent estimator.

Chen and Little (1999) proposed a Wald-type test
for detecting whether missing data is ignorable, al-
though their Wald test requires the maximum iden-
tifiable parameter transformation when dimensions
of parameters are different under different missing
patterns, as illustrated in Section 2. However, the
transformation is not unique, and it has not been
investigated as to whether the estimator and the
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test statistics are invariant under different transfor-
mations. The overall performance of the goodness-
of-fit test applying the QIF is better than the
Chen–Little Wald-type test.

3. To balance robustness and efficiency in point es-
timation by combining robust and nonrobust-but-
efficient scores. For example, Park (2000) showed
that if one combines robust and efficient scores,
such as the mean and median scores, then one can
be simultaneously efficient in both heavy- and light-
tailed distributions, and can be consequently robust
and efficient simultaneously. The breakdown point
in the mean and median case is 25%, for example.
In addition, the QIF method provides a goodness-
of-fit statistic that assesses the symmetry of the data
by testing whether the mean and median are equal.

Given a set of candidate scores, one might ask
whether it is wiser to select a subset of them for use in
QIF rather than the full set. This is a difficult question
to answer, as it depends on the following tradeoff:

• If the true distribution is compatible with the full
set of scores, then there can only be a gain in first-
order efficiency (asymptotic variance) from using it
instead of a subset.

• However, if the reduced subset of scores already
generates a fully first-order efficient score, then,
even though both reduced and full are ostensibly
equivalent, there is a hidden “second-order” extra
cost to using the full set that will show up in smaller
samples.

To illustrate, consider the mean and median scores
b1 and b2 and the use of reduced set {b1} versus the
use of b1 and b2. If the double exponential model is
true, then the full set has greater first-order efficiency.
However, if the normal model is true, then using the
full set has an extra adaptation cost over using b1.

This additional variability is the price for adaptively
estimating from the scores as opposed to simply com-
bining them using prespecified weights. The GMM lit-
erature provides some guidance on this point. Imbens
(1997) gives an example where including a second
moment may lose precision of the estimator in small
samples. Harris and Mátyás (1999) also provide exam-
ples where there is no improvement of the estimator
in asymptotic efficiency when additional moment con-
ditions are highly or perfectly collinear to the existing
moment functions, and further, they make the compu-
tation more complicated.

To obtain highly informative moment conditions
with a reasonable dimension, Gallant and Tauchen

(1996) proposed an auxiliary model and generated aux-
iliary scores to substitute for true scores from the para-
metric model, and showed that the estimator is nearly
efficient if the auxiliary model approximates the true
distribution well. Small (2002) developed a criterion
similar to the Bayesian information criterion for se-
lection of moment conditions for panel data. Qu and
Lindsay (2003) applied the conjugate gradient method
to choose optimal linear combinations of moment con-
ditions in quasi-likelihood equation settings.

4. A BRIEF HISTORY

We have seen that the quadratic inference function
approach to inference could be fairly called a gener-
alization of the minimum chi-squared method. How-
ever, many applications of the method now go under
the heading of the generalized method of moments, the
name given by Hansen (1982) and now employed ex-
tensively in the econometrics literature. In this section,
we give a brief review of important literature that is
closely related to this methodology. There are two im-
portant streams to identify. The first follows the line
of Rao and considers the construction of quadratic test
statistics. The second stream, largely separated from
the first, considers the use of quadratic distances as in-
ference functions.

4.1 Rao’s Score Test

Rao (1948) introduced quadratic score test statistics
with the form

R2 = s(θ̃)′I (θ̃)−1s(θ̃).(13)

Here s(θ̃) is the score function, that is, the partial deriv-
ative of the log-likelihood function with respect to θ ;
θ̃ is the restricted MLE of θ under the null hypothe-
sis; and I (θ̃) is the Fisher information. It can be shown
that Rao’s score test is asymptotically equivalent to the
likelihood ratio test (Neyman and Pearson, 1933) and
the Wald (1943) test under both the null and the Pitman
alternative hypotheses (Serfling, 1980, page 156), and
all follow the chi-squared distribution asymptotically.
Indeed, if the null hypothesis is fully specified, the
equivalence to the likelihood ratio statistic

R2 = 2
{
logL(θ̂) − log L(θ̃)

} + op(1)

is suggestive of the fact that Rao’s test statistic can
also be used as an inference function, where θ̂ is the
unrestricted MLE of θ . Rao’s score test has some ad-
vantages over the Wald and likelihood ratio tests since
the Wald test is not invariant to reparameterization and
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the likelihood ratio test requires an additional unre-
stricted MLE of θ . In general, all have limiting dis-
tributions that are weighted chi-squared if the model
is misspecified (Foutz and Srivastava, 1977; Rotnitzky
and Jewell, 1990). However, in Rao’s test statistic, as
we have noted in Section 3.2, using an empirical infor-
mation/covariance estimator does repair this problem
(Boos, 1992).

There are a multitude of names for Rao’s score test
with some variations. In fact, the Pearson chi-squared
test (1900) can be derived using Rao’s score test for
multinomial distributions (Rao, 1973, page 442; Cox
and Hinkley, 1974, page 316). In the econometrics
literature, a parallel version of Rao’s score test is called
the Lagrangian multiplier test (Aitchison and Silvey,
1958; Silvey, 1959) since the restricted likelihood
equations can be solved using Lagrangian multipliers.

4.2 Generalized Score Tests

In recent years, there has been considerable interest
in the reduction of assumptions by using a general es-
timating function approach to statistical inference. Al-
though much of the interest in the areas of generalized
linear models and generalized estimating functions has
been focused on Wald-type tests and quasi-likelihood
procedures, there have been some developments of the
equivalent score tests. Boos (1992) provided a gen-
eral discussion of the extension of Rao’s score test for
general estimating equations, calling them generalized
score tests. The main ideas are as follows:

• The likelihood scores s(θ) in Rao’s score test (13)
can be replaced by any estimating function arising
from likelihood, quasi-likelihood, least squares and
robust M-estimation.

• The parameter θ is estimated by solving s(θ) = 0,
and the Fisher information I (θ) in (13) is replaced
by the asymptotic covariance matrix of s(θ).

Notice that Boos’ approach is quite similar to the
use of the quadratic inference function. The main
difference between these two approaches is that in the
quadratic inference function approach the dimension
of s could be greater than that of the parameter and
θ̂ is obtained by minimizing the quadratic inference
function.

Another distinction arises in the treatment of tests for
interest parameters, as in Section 3.1, item 3(b). Boos’
work implicitly treats a subset of the scores as being
identified with the nuisance parameters, as in the scores
generated by differentiating a likelihood. In the present
work, we need not make such special identification.

4.3 Generalized Least Squares

Turning to methods that use quadratic forms to
create inference functions, one of the most important
ancestors is generalized least squares (Sprent, 1966). In
generalized least squares, we minimize a least squares
criterion such as

K∑
i=1

(
yi − µi(θ)

)′
�−1

i

(
yi − µi(θ)

)

over θ , where yi is the response for the ith outcome,
µi = E(yi) and �i is the covariance matrix of yi . This
has the form of a quadratic inference function for the
basic scores bi = (yi − µi(θ)), where the scores are
assumed to be independent across i. If �i does not
depend on θ, then differentiation of the least squares
criterion leads one to the quasi-score function and
consistent estimation.

However, if the covariances �i depend on the para-
meters, minimization can lead to inconsistent estima-
tors as the number of responses increases (Singh and
Mantel, 1998). This problem has been avoided in the
quadratic inference function approach by making sure
that the number of scores stays fixed. In particular, in
the QIF approach we take the sums over the indepen-
dent scores before we create the quadratic form, which
reduces the asymptotic bias generated by θ in the co-
variance function.

Multiple-root problems often arise in practice for
estimating equation approaches. Heyde and Morton
(1998) apply generalized least squares as an objective
function to choose the correct root of a general estimat-
ing equation in cases of multiple roots. However, Singh
and Mantel (1998) argue that using the form similar to
the generalized score test is better than the generalized
least squares approach for selecting a consistent root.

The generalized least squares method has also been
applied in GEE settings (Liang and Zeger, 1986).
Chaganty (1997) and Shults and Chaganty (1998)
combine the generalized least squares method with the
GEE for serially correlated data. Their method allows
for a wide range of working correlation structures.
They refer to it as the quasi-least squares method.

4.4 Ferguson and Minimum Chi-squared

As noted earlier, another foundation for quadratic in-
ference functions is found in the minimum chi-squared
work of Neyman (1949). Ferguson (1958) expanded
upon the minimum chi-squared method. The motiva-
tion for his development of a generalized minimum
chi-squared method was to find a computationally
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simpler method to estimate interest parameters in para-
metric models without losing the usual asymptotic
properties of best asymptotically normal estimates
(Barankin and Gurland, 1951). Ferguson’s approach is
to estimate the parameter by minimizing the quadratic
form

n
(
Zn − P (θ)

)′
�−1(θ)

(
Zn − P (θ)

)
,

where Zn = n−1 ∑n
i=1 Xi , the Xi ’s are independent

identically distributed q-dimensional random vectors,
P (θ) = Eθ [X] and �(θ) is the variance of X. As
in our development, the number of “scores” q is
possibly greater than or equal to the dimension of θ .
However, the focus was entirely on parametric models
and simplified estimation.

Ferguson obtained the general asymptotic results de-
scribed earlier. Other than the fact that the scores were
formed strictly as contrasts between random variables
and their expectations, rather than being arbitrary, the
asymptotic description was nearly completely devel-
oped at this point. However, these ideas entered a quiet
phase until they were recreated in the econometrics lit-
erature under a different name.

4.5 Hansen and Generalized Method of Moments

Hansen (1982) introduced the generalized method
of moments (GMM). This has become popular in the
econometrics field, where conditional heteroscedastic-
ity (White, 1980) and serially correlated data arise of-
ten, and therefore it is difficult to formulate the full
likelihood function. Thus, there was greater interest
in semiparametric models with reduced assumptions.
For that reason, the GMM does not require the com-
plete specification of the model, but requires the spec-
ification of zero-mean moment conditions which the
model satisfies, that is, E(g(X, θ)) = 0. In regres-
sion settings, a commonly used moment condition is
E[X′(y − Xθ)] = 0, which is the one associated with
ordinary least squares.

The dimension of the moment conditions (q) is usu-
ally greater than the dimension of the parameters (p)
in econometrics. We might contrast this with the statis-
tical mainstream, where g are often called estimating
functions or scores and the dimension of g is set equal
to p. The corresponding estimation procedures are also
known as M-estimation in the robustness literature.

Since there are more equations than unknowns, the
parameter vector is said to be overidentified. A GMM
estimator of the parameter of interest is obtained by
setting linear combinations of r moment conditions as
close to 0 as possible, that is,

θ̂GMM = arg min
θ

g′
N�−1gN,

where the optimal weighting matrix �, based on min-
imizing the asymptotic variance of the estimator, is
found to equal the covariance of the moment condi-
tions.

Since � is often unknown for finite samples, the
traditional two-step approach for the GMM estima-
tor is to apply an initial consistent, but inefficient
estimator θ̂ to obtain Ĉ, the estimator of �, then up-
date θ̂ by minimizing g′

NĈ−1gN in the second step.
However, the two-step GMM estimator is not invari-
ant to linear transformation of the moment condi-
tions and may be severely biased in small samples. To
improve GMM estimators in small samples, Hansen,
Heaton and Yaron (1996) proposed the continuous up-
dating estimator, Imbens (1997) proposed the one-step
method and Smith (1997) proposed semiparametric
quasi-likelihood approximations to the likelihood func-
tion. These alternative approaches are all invariant to
linear transformation of the moments, and their esti-
mators are asymptotically efficient without relying on
the initial choice of the weighting matrix.

Hansen’s GMM and its development have largely
been in the econometrics literature. We point next
to one area of cross-fertilization between mainstream
statistics and econometrics.

4.6 Empirical Chi-Squared

The quadratic inference methodology is also closely
linked to another method for combining estimating
functions by the construction of an inference function,
and through that linkage it might rightfully be called
the “empirical chi-squared method.”

The empirical likelihood method of Owen (1988),
as applied to the problem of combining estimating
functions, can be described as follows. First, suppose
we have a sample X1, . . . ,Xn, assumed to be i.i.d.
for simplicity. We will treat the observed data points
x1, . . . , xn as being fixed, much as one does in the boot-
strap. However, instead of sampling from the observed
data, we will build a model by allowing arbitrary dis-
crete distributions F on this support set. Thus, we write
pi = prF [Xi = xi], so that the distributions can be rep-
resented by a vector p.

In this class of discrete distributions, we can gene-
rate a mirror of the semiparametric model by
letting Mθ = {p :

∑
pib(xi, θ) = 0;∑

pi = 1} and set-
ting M =⋃

Mθ . We also create a multinomial-type
likelihood by letting L(p) = ∏

pi. This corresponds to
having one observation from each of the observed xi .
The empirical likelihood of the parameter θ is then

L(θ) = sup{L(p) : p ∈ Mθ }.
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To find the empirical likelihood, we need to optimize
L(p) over p ∈ Mθ for each fixed θ . Note that the
set Mθ is defined by q + 1 linear constraints, so that
the optimization can be carried out for each θ using the
method of Lagrange multipliers. Also, corresponding
to each θ , there is a p̂θ , corresponding to a discrete
distribution F̂θ , that is the maximizing argument, and
so F̂θ is an estimator of the true distribution in the
semiparametric model.

The next step is to maximize the empirical likelihood
L(θ) over θ , yielding the maximum empirical likeli-
hood estimator θ̂ . If the dimensions of the score vector
and the parameter vector are the same, then this estima-
tor is just the solution to the equations

∑
b(xi, θ) = 0

because p̂i = 1/n maximizes L(p) over all p in this
case. If there are more scores than parameters, then
we can think of the empirical likelihood as finding the
discrete semiparametric distribution best fitting the ob-
served empirical distribution.

Owen (1988) showed that the empirical likelihood
behaves much like a true likelihood, for example, that
2[logL(θ̂) − logL(θ0)] is an asymptotic chi-squared
test for θ = θ0. Qin and Lawless (1994) extended this
to the semiparametric model. They linked estimating
equations and the empirical likelihood and proposed to
optimally combine information when there are more
estimating equations than unknown parameters. They
applied Owen’s (1988) empirical likelihood as an
objective function, rather than the quadratic inference
function we propose here.

The QIF approach is more direct than Qin and
Lawless’ approach since they have to estimate the
optimal weights pi through Lagrange multipliers,
whereas in the QIF approach minimizing the QIF au-
tomatically provides the optimal weights, as we show
next.

The parallel between the empirical likelihood and
the quadratic inference function can be developed
as follows. Rather than use a likelihood measure of
discrepancy between the empirical weights 1/n and
the semiparametric weights pi, we form a chi-squared-
type distance:

χ2(p) = ∑(
pi − 1

n

)2

.

This would correspond to using the Neyman chi-
squared distance where we treat the observed data
as 1/n at each fixed xi. For each fixed θ , we can then
generate a measure of distance from the observed data
to the best fitting semiparametric model via

R2(θ) = inf
{
χ2(p) : p ∈Mθ

}
.

It is a standard exercise in Lagrange multipliers to show
that R2(θ) = Q2

u(θ), that is, the quadratic inference
function with the uncentered estimator of covariance.

5. PROJECTION REPRESENTATIONS OF QIF

In this section, we display two projection represen-
tations for Q2 that are an aid to a deeper understanding
of its basic properties. The results in this section were
derived in Park (2000), where proofs may be found. In
this section, we suppose that the basic scores are of the
form b̄(θ) = n−1 ∑

b(Xi, θ).

We start by creating an n × q matrix B with (i, j)

element bj (xi; θ). That is, the j th column of B is an
n vector giving the values of the j th score function at
the n values of xi. We can form a projection matrix that
will project an arbitrary vector in R

n onto the column
space of B by PB = B(B ′B)−1B ′.

The geometric interpretation of Q2(θ), with the un-
centered covariance estimator, is that it is the squared
length of the projection of the 1 vector onto the column
space of B. That is, it is easily verified that

Q2
u(θ) = 1′PB1 = ‖PB1‖2.

We can interpret this as follows. Each column of B

is orthogonal to 1 if and only if the corresponding
sample score n−1 ∑

bj (Xi, θ) equals 0. Since we
cannot make all the scores simultaneously equal to 0,
we instead make their departure from orthogonality
to 1 as small as possible by finding the overall length
of the projection onto this space and minimizing it.

The projection representation above can be used to
show a number of nonobvious properties of Q2

u(θ).

For example, Q2
u must always have a value less than

‖1‖2 = n. In addition, if we add a new score function
to our basic set, we increase the column space and so
necessarily increase Q2

u, the length of the projection
of 1 onto the column space.

The second projection representation of Q2
u is useful

in asymptotics. We start with the basic assumption that
by construction

Z def= Ĉ
−1/2
θ b̄(θ) → N(0, I ).

From this, we clearly have the relationship

Q2
u(θ) → χ2

q ,

where q is the number of scores being used.
We gain an ANOVA-style decomposition of variance

from the following asymptotic approximation (under
the null hypothesis):

Q2
u(θ̂) = ‖(I − PW)Z‖2 + op(1),(14)
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where the projection matrix PW in (14) is

PW = C−1/2D(DC−1D′)−1D′C−1/2,

with C = Cθ and D = Dθ = E[∇b(X, θ)]. Note
that PW is the projection matrix yielding projection
onto the columns of W = C−1/2D, where W has
p columns. Hence, if W is full rank, then tr(PW) = p,

and from (14) the goodness-of-fit test statistic satisfies

Q2
u(θ̂ ) → χ2

q−p.

From the projection representation, it is also clear that

Q2
u(θ) − Q2

u(θ̂) ≈ ‖Z‖2 − ‖(I − PW)Z‖2

= ‖PW Z‖2 → χ2
p.

Finally, one can show that the test statistic for a
parameter of interest ψ in the composite hypothesis
H0 :ψ = ψ0, namely Q2

u(ψ0, λ̃) − Q2
u(ψ̂, λ̂), is chi-

squared with degrees of freedom equal to the dimen-
sion of ψ, by showing that the relevant projection
subspaces for the full model, say W , and the null hy-
pothesis model, say V, are nested. Then the test sta-
tistic corresponds asymptotically to the length of a
projection onto the part of W that is orthogonal to V.

6. SECOND-ORDER IMPROVEMENTS

We have noted that Owen (1988, 1990) introduced
the concept of empirical likelihood when the paramet-
ric likelihood is unknown, and provided results of the
asymptotic theory analogous to the parametric likeli-
hood. In particular, the empirical likelihood ratio test
can be approximated by a chi-squared distribution, a
nonparametric version of Wilks’ theorem, with error of
order n−1, and can be improved by Bartlett adjustment
to an error of order n−2.

Corcoran (1998) extended these results to show that
quadratic statistics such as QIF are not Bartlett cor-
rectable. Despite the seeming potential distributional
superiority of the empirical likelihood method, simula-
tion studies (Corcoran and Davison, 1995) in small and
moderate samples show that the empirical likelihood
ratio test (adjusted or unadjusted) performs poorly in
the right tail of the distribution. In particular, it is anti-
conservative (i.e., the actual test size is greater than the
nominal size α) and often not very Bartlett correctable.
In fact, the behavior of the empirical likelihood test sta-
tistic is similar to that found in simulations for the QIF
method in Qu and Lindsay (1999) and Davidson and
MacKinnon (1983, 1984) where Rao’s score tests were
calculated using sample variance instead of informa-
tion.

We next present an Edgeworth expansion that shows
the primary source of asymptotic difficulty for the
QIF method, then indicate how bootstrapping can help.
That is, a bootstrap resampling strategy (Efron, 1987;
Hall and Horowitz, 1996; Hu and Kalbfleisch, 2000)
can be a simple and effective way to achieve higher-
order accuracy for test size, and it works effectively for
relatively small sample sizes in our case.

6.1 Edgeworth Expansion for QIF

The following Edgeworth expansion (see Hall, 1992,
page 39) of the quadratic inference function indicates
the asymptotic source of inaccuracy for the method.

Suppose that n1/2(tn−µ) is asymptotically normally
distributed with mean 0 and variance σ 2. If tn is a
smooth function of sample means, then the distribution
of n1/2(tn − µ) can be approximated as an Edgeworth
expansion using a series of the form

P
{
n1/2(tn − µ)/σ ≤ x

}
= �(x) + n−1/2p1(x)φ(x) + · · ·

+ n−j/2pj (x)φ(x) + · · · ,
(15)

where �(x) and φ(x) are the standard normal cumula-
tive distribution and probability density functions. The
functions pj are polynomials with coefficients depend-
ing on cumulants of the sample means, and are even or
odd functions according to whether j is odd or even,
respectively.

When the empirical covariance estimators are used
to estimate Cθ, the quadratic function has the same
structure as a Hotelling T 2 statistic. The quadratic
inference function Q2 can therefore be represented as a
smooth function of the first and second moments of the
basic scores. To simplify the analysis, we will illustrate
the Edgeworth expansion of Q2 for the simplest case
when the dimension of the score statistic is q = 1.

In this case, Q2
u is the square of an “uncentered”

t-statistic, that is,

tu =
∑

bi√∑
b2
i

=
√

nb̄√∑
b2
i /n

.

If we were to center the covariance estimator, we would
have the usual centered t as

tc =
√

nb̄√∑
(bi − b̄)2/n

.

Now we are squaring these statistics, so we are
interested only in the error in the sum of the two tail
probabilities. For these probabilities, if we apply the
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formal Edgeworth expansion of t of the form (15), we
get a simplification due to the even/odd nature of the
polynomials involved:

G(x) = P [T 2 ≤ x2] = P [−x ≤ T ≤ x]
= �(x) − �(−x)

+ 2n−1p2(x)φ(x) + O(n−2),

(16)

since p1(−x) = p1(x), p2(−x) = −p2(x) and φ(x) =
φ(−x). Note that the use of symmetric intervals for T ,
as implied by using T 2, means that the errors of orders
n−1/2 and n−3/2 are 0, so we can focus on the order
n−1 term to make second-order comparisons.

Hall (1992, page 73) proved that, for the centered t,

the second Edgeworth polynomial is

pc
2(x) = x

{ 1
12κ(x2 − 3)

− 1
18γ 2(x2 − 1)(x2 + 3) − 1

4 (x2 + 3)
}
,

where γ and κ are standardized skewness and kurtosis,
respectively. The formula for the uncentered t is given
by Qu and Lindsay (1999) as

pu
2(x) = x

{ 1
12κ(x2 − 3)

− 1
18γ 2(x2 − 1)(x2 + 3) + 1

4(x2 − 3)
}
.

The relationship between the centered and uncentered
versions of p2 is very simple:

pu
2(x) = pc

2(x) + 1
2x3.(17)

We can interpret this formula as follows. First, notice
that a negative value of p2 from (16) at any x is unde-
sirable because it makes the normal approximation an-
ticonservative at that x. Moreover, it is clear from (17)

that, for positive x, the uncentered p2 is larger than
the centered p2, so that using the uncentered tu is al-
ways more conservative than tc. If the skewness γ is 0,
then both polynomials simplify greatly, and we find
that the tail approximation based on the uncentered tu
is quite good. In particular, at x = √

3, corresponding
to roughly the 90th percentile, the order n−1 error is 0,
and there is only order n−2 error. Our simulation re-
sults bear out that, for symmetric data, the chi-squared
approximations work very well for Q2 with the uncen-
tered estimator of covariance.

Unfortunately, when skewness is not 0, γ plays an
important role for large values of |x|. In both cen-
tered and uncentered cases, the polynomial p2 be-
comes dominated by its largest order term, namely
−γ 2x5, which, being negative, always points to non-
conservative behavior. For this reason, one must be
very cautious about using asymptotic approximations
in skewed data. We can, however, offer the following
suggestion.

6.2 Bootstrap Sampling for QIF Tests

Bootstrap simulation is a simple and effective way
to estimate the distribution of a pivotal quantity whose
limiting distribution does not depend on unknown
quantities, and it provides more accurate critical val-
ues for test statistics than asymptotic results provide
(Singh, 1981; Beran, 1988; Hall, 1986, 1992; Hall
and Horowitz, 1996). In particular, Hall and Horowitz
(1996) proposed bootstrap critical values for tests
based on the GMM. Notice that in our case t2 is an
asymptotic pivotal quantity.

We can motivate the improvement in accuracy for
the bootstrap as follows. The Edgeworth expansion of
the bootstrap distribution, as in (16), is

Ĝ(x) = P (|T ∗| ≤ x|χ)

= 2�(x) − 1 + 2n−1p̂2(x)φ(x) + O(n−2),

where T ∗, the bootstrap version of T , is obtained from
a resample χ∗ instead of the true sample χ , and p̂2 is
the bootstrap distribution version of p2. The difference
between p̂2 and p2 is of order n−1/2 in probability,
which leads to Ĝ(x) − G(x) = Op(n−3/2). It is clear
that using the bootstrap approximation of G is sharper
than using a normal approximation, since it is in error
by n−3/2 instead of n−1.

In the models we have considered here, one could
perform three kinds of bootstrapping: parametric, semi-
parametric or nonparametric. Parametric and nonpara-
metric bootstrapping would follow the well-established
recipes given in Efron and Tibshirani (1993) as well as
in other texts.

However, devising a bootstrapping recipe that uses
the semiparametric model is more challenging because
the distribution one samples from should be an esti-
mated element of the semiparametric model. The prob-
lem arises because the original data do not satisfy the
equation n−1 ∑

bj (xi, θ̂) = 0. It follows that when one
simulates from the nonparametric bootstrap distribu-
tion, with mass 1/n at each xi , the scores do not have
mean 0, and so this sampling distribution is not in the
semiparametric model.

Hall and Horowitz (1996) solved this problem by
recentering. That is, for each resampled x∗

i , we create
the recentered moment condition b∗ as follows:

b∗(x∗
i , θ) = b(x∗

i , θ) − n−1
∑
j

b(xj , θ̂),(18)

where the xj ’s are from the original sample and θ̂ is
the QIF estimator of the original sample. The covari-
ance C∗

θ of b∗ can be calculated as n−2 ∑
(b∗

i )(b∗
i )

′.
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Hall and Horowitz (1996) showed that this recentering
procedure gives asymptotically valid bootstrap critical
values.

We note that the bootstrapping distribution should
be centered in some way if we wish to use the corre-
sponding simulated critical value for testing goodness
of fit with Q2(θ̂ ). If one uses an uncentered bootstrap
distribution, then the null hypothesis, which specifies
the mean-zero property of all the scores, does not hold
perfectly in the sample score distribution, and so one is
sampling from an alternative hypothesis in which the
means are not identically 0. This will inflate the criti-
cal value a small amount if the null is actually true (be-
cause the estimated means will be near 0), but a lot if
the null is false. Thus, the size might be nearly correct,
but the power will be quite poor.

On the other hand, the test Q2(θ) − Q2(θ̂) is a
valid test of a nonparametric hypothesis regarding the
minimum distance parameter as well as a semipara-
metric hypothesis. Using semiparametric bootstrap-
ping should provide greater accuracy when this model
is true, but nonparametric bootstrap testing should be
valid as well.

We will illustrate how bootstrap resampling tech-
niques correct for the effect of skewness in a QIF
test involving correlated Poisson–Gamma data which
is inherently highly skewed. The setting is a GEE-type
model, where vector responses yi correspond to mea-
surements taken on the ith cluster. In our simulation,
the response variable within the ith cluster yi , with
cluster size 10, was generated from Poisson(λie

Xiθ ),
where the cluster-specific latent variable λi is gener-
ated from Gamma(1,1). The covariate vector Xi was
equal to (0.1,0.2, . . . ,1.0) in each cluster, with the
number of clusters being N = 20,50 or 100. For the
simulation, the parameter θ was set to 1. Note that
although this model is “subject specific” due to the
presence of the latent variable λ, it still satisfies the
marginal model

E[yi|Xi] =eXiθ 
= µi,(19)

and we can apply the generalized estimating equation
method to the marginal means (19).

Qu, Lindsay and Li (2000) showed that one could
create an efficient quadratic inference function method
for models such as this by creating basic scores from
the “working independence” model scores and adding
additional scores designed to increase efficiency under
other correlation structures. In the case of our simula-
tion, we assumed the Poisson link with exchangeable

correlation structure and used the basic scores

b(θ)

= 1

N




N∑
i=1

(µ̇i)
′A−1

i (yi − µi)

N∑
i=1

(µ̇i)
′A−1/2

i M1A
−1/2
i (yi − µi)




,
(20)

where Ai = diag(µij ) is the diagonal marginal vari-
ance of the Poisson model and M1 is a 10 × 10 matrix
with 0 on the diagonal and 1 elsewhere. Here choos-
ing I and M1 preserves full efficiency under the ex-
changeable correlation structure (see Example 1 of Qu,
Lindsay and Li, 2000). The QIF is calculated using (7)
with the uncentered covariance estimator.

For this example, we first simulated a single data set
from the Poisson–Gamma distribution described above
and then took B = 5000 bootstrap random samples
of the N clusters (using N = 20, 50 and 100). We
applied the block bootstrap strategy here (Künsch,
1989; Lahiri, 1996). That is, we sample N clusters
randomly with replacement to form a bootstrap sample.
For comparison, we bootstrapped the sample moment
conditions with recentering as in (18) and without
recentering. The QIF test statistics were calculated
from each bootstrap resample data set.

We also simulated 5000 data sets from the true
distribution. In Figure 1, for small sample size with
N = 20, we plot quantiles of the QIF from the true
distribution and the bootstrap samples after recentering
the moment conditions against the quantiles of the
asymptotic chi-squared distributions. The Q–Q plots of
Q2(θ), Q2(θ̂) and Q2(θ) − Q2(θ̂) shown in Figure 1
indicate that the true distribution is closer to the single
bootstrap estimate of the distribution than to the chi-
squared approximations in the tails, though tests based
on bootstrap and asymptotic critical values were still
liberal.

We also compared the level of tests using the as-
ymptotic and bootstrap (with and without recenter-
ing of moment conditions) critical values for different
cluster sizes. Table 1 lists nominal test size α = 0.05
and cluster size N = 20,50 and 100. Notice that, for
N = 20,50 and 100, the test levels based on the
asymptotic chi-squared distribution are liberal and
perform worst for the small sample size N = 20. Test
levels based on bootstrap (with recentering moment
conditions) critical values are less liberal than the as-
ymptotic tests. Test levels based on bootstrap (without
recentering moment conditions) critical values seem to



INFERENCE FUNCTIONS AND QUADRATIC SCORE TESTS 407

(a) (b) (c)

FIG. 1. Quantile–quantile plot of QIF test for correlated Poisson–Gamma data with N = 20, where the solid line indicates the reference
line, the dotted line is the distribution of the QIF test based on 5000 simulated data and the dashed line is the recentering bootstrap
distribution of the QIF test. (a) Quantile–quantile plot of Q2(θ̂ ) vs. χ2

1 . (b) Quantile–quantile plot of Q2(θ) vs. χ2
2 . (c) Quantile–quantile

plot of Q2(θ) − Q2(θ̂) vs. χ2
1 .

be very conservative for N = 20. As the sample size
increases, these three test sizes are fairly similar and
close to the nominal test level.

However, the difference between the bootstrap with
recentering and without recentering becomes obvious
when the mean-zero model assumption does not hold.
We create the second score in (20) by using yi −
µi − 0.1 instead of yi − µi , and keep the first one as
before. Table 2 indicates that the power of rejecting
the mean-zero model assumption is much lower for the
bootstrap without recentering moment conditions than
for the bootstrap with recentering. The power based

TABLE 1
Simulated size of nominal 0.05 level tests based on the

quadratic inference function with asymptotic and
bootstrap critical values (with recentering and
without recentering moment conditions); the
simulation standard error is approximately√

0.05 · 0.95/5000 = 0.003

N Q2(θ̂) Q2(θ) − Q2(θ̂ )

20 Asymptotic 0.072 0.084
20 Bootstrap (with) 0.060 0.073
20 Bootstrap (without) 0.015∗ 0.049

50 Asymptotic 0.065 0.069
50 Bootstrap (with) 0.058 0.041
50 Bootstrap (without) 0.057∗ 0.038

100 Asymptotic 0.054 0.061
100 Bootstrap (with) 0.039 0.050
100 Bootstrap (without) 0.036∗ 0.066

∗Not recommended; see text.

on asymptotic chi-squared is slightly higher than the
power using bootstrap with recentering, because the
test size based on the asymptotic result is inflated.

Alternatives to using bootstrapping or empirical
likelihood methods to improve small sample properties
include the exponential tilting estimator of Kitamura
and Stutzer (1997) and Imbens, Spady and Johnson
(1998). These authors applied Cressie and Read’s
(1984) power divergence statistics to this problem and
therefrom introduced the exponential tilting estimator,
which is based on minimizing the Kullback–Leibler
information criterion. Smith (1997) and Newey and
Smith (2002) showed that the empirical likelihood
and exponential tilting estimators are all in a class of

TABLE 2
Simulated test power based on the quadratic inference
function with asymptotic and bootstrap critical values

(with recentering and without recentering moment
conditions) when the mean-zero model assumption

does not hold; the simulation standard error is
approximately

√
0.05 · 0.95/5000 = 0.003

N Q2(θ̂)

50 Asymptotic 0.370
50 Bootstrap (with) 0.328
50 Bootstrap (without) 0.065*

100 Asymptotic 0.533
100 Bootstrap (with) 0.503
100 Bootstrap (without) 0.279*

∗Not recommended; see text.
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generalized empirical likelihood estimators and have
the same asymptotic distribution as GMM, but the
asymptotic properties of higher orders are different
among these estimators.

Another alternative approach for more accurate in-
ference is the saddlepoint approximation for
M-estimators (Field, 1982; Jing and Robinson, 1994;
Robinson, Ronchetti and Young, 2003; Ronchetti and
Trojani, 2002). The relationship between empirical
likelihood and empirical saddlepoint approximation
was investigated by Monti and Ronchetti (1993).

7. CONCLUSION

In this paper, we hope to have broadened the hori-
zon of potential applications of the quadratic infer-
ence function. The QIF is built on a semiparametric
framework defined by a set of mean-zero estimating
functions, but is also applicable to parametric or non-
parametric settings. The QIF has advantages of the es-
timating function approach such as not requiring the
specification of the likelihood function, but also over-
comes limitations of the estimating function approach
such as a lack of objective functions for selecting a cor-
rect root in multiple-root problems (Small, Wang and
Yang, 2000) and a lack of likelihood-type functions for
testing.

The origin of the QIF can be traced back to Pearson’s
(1900) χ2 test and Rao’s score test (1948), but it is
more closely related to Ferguson’s (1958) minimum
χ2 method and Hansen’s (1982) generalized method of
moments, popular in econometrics. We compared the
QIF to similar existing approaches such as generalized
score tests (Rotnitzky and Jewell, 1990; Boos, 1992)
and generalized weighted least squares, and tied spe-
cial cases of the QIF to Pearson’s (1900) and Neyman’s
(1949) χ2 tests.

We have paid particular attention as to how to select
basic scores, since this can provide robust and efficient
estimation of regression parameters by combining
robust and efficient scores optimally (Park, 2000).
Selecting scores from different missing patterns also
provides a simple tool to test for ignorable missingness
in estimating equation approaches (Qu and Song,
2002). Notice that for these applications of the QIF it
is not necessary to satisfy the mean-zero assumption
of the moment conditions, as the QIF approach is
also valid under a nonparametric interpretation. The
goodness-of-fit test of the QIF plays an important role
in testing the mean-zero assumption. This test is rather
simple to use compared to other goodness-of-fit tests

in the GEE literature (Barnhart and Williamson, 1998;
Pan, 2002).

Finally, the QIF is also related to empirical likeli-
hood which is popular for nonparametric models. We
illustrated the Edgeworth expansion of the QIF and
showed how a bootstrap strategy could improve test-
ing accuracy for small samples. Overall, the improve-
ments using bootstrapping were modest. It is worth
pointing out, however, that an additional advantage to
carrying out a bootstrap analysis is that the existence of
large differences between the bootstrap and asymptotic
p-values can be used as a diagnostic for the failure of
the large-sample theory.

APPENDIX

PROOF OF (8). Let b̄ = 1/n
∑n

i=1 bi , where bi =
(bi1, . . . , biK)′ and bij = I {xi ∈ Aj } − Pθ(Aj) for j =
1, . . . ,K . Therefore,

b̄j = 1

n

n∑
i=1

(
I {xi ∈ Aj } − Pθ(Aj)

)

= nj

n
− Pθ(Aj) = p̂j − pj .

Let p = (p1, . . . , pK)′ and p̂ = (p̂1, . . . , p̂K)′. Since
bi follows a multinomial distribution,

Var(bi ) = Diag(p) − pp′ 
= �θ,

where Diag(p) is a diagonal matrix with pj as a
diagonal component; we denote Diag as D hereafter.
This matrix is not full rank, so we consider the
following argument to find a generalized inverse.
Notice that

{D(p)}−1/2�θ {D(p)}−1/2

= I − {D(p)}−1/2pp′{D(p)}−1/2 = A

is an idempotent matrix. The eigenvalues of an idem-
potent matrix are either 0 or 1; the generalized inverse
A− = ∑K

j=1 λ−1
j ejej

′, where the λi’s are all 1’s. There-
fore, A− = A. This implies

�−
θ = {D(p)}−1/2A{D(p)}−1/2

= {D(p)}−1�θ {D(p)}−1 = D(1/p) − 11′.
Now Var(b̄) = n−1�θ , so the QIF

Q2
u = b̄′{Var(b̄)}−1b̄

= n(p̂ − p)′{D(1/p) − 11′}(p̂ − p)

= n(p̂ − p)′D(1/p)(p̂ − p),

which is Pearson’s χ2. �



INFERENCE FUNCTIONS AND QUADRATIC SCORE TESTS 409

PROOF OF (12). By the definition of the QIF,

Q2
u =

(∑
bi

)′(∑
bib′

i

)−1(∑
bi

)

=
(∑

bi

)′(∑
(bi − b̄)(bi − b̄)′ + nb̄b̄′)−1

·
(∑

bi

)

=
(∑

bi

)′
(S2 + nb̄b̄′)−1

(∑
bi

)

=
(∑

bi

)′
S−1(I + nS−1b̄b̄′S−1)−1S−1

(∑
bi

)
.

It can be shown that (I + cc′)−1 = I − kcc′, where
k = (1 + c′c)−1. We can calculate k = (1 + n−1Q2

c)
−1

in our case. Hence, to simplify Q2
u, we have

Q2
u = Q2

c − n−1Q4
c(1 + n−1Q2

c)
−1

= Q2
c/(1 + n−1Q2

c). �
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