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Abstract. Bootstrap ideas yield remarkably effective algorithms for realiz-
ing certain programs in statistics. These include the construction of (possibly
simultaneous) confidence sets and tests in classical models for which exact
or asymptotic distribution theory is intractable. Success of the bootstrap, in
the sense of doing what is expected under a probability model for data, is not
universal. Modifications to Efron’s definition of the bootstrap are needed to
make the idea work for modern procedures that are not classically regular.
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1. INTRODUCTION

Statistics is the study of algorithms for data analy-
sis. Both the nature of the study and the nature
of the algorithms have shifted with time. For the
first half of the twentieth century, the primary tools
available to statisticians were mathematics, logic and
mechanical calculators. Advances in probability the-
ory directed statisticians toward probability models for
data and toward discussions of abstract principles that
take such models for granted. In retrospect, the di-
verse statistical theories offered by Wald’s (1950) Sta-
tistical Decision Functions, Fisher’s (1956) Statistical
Methods and Scientific Inference and Savage’s (1954)
The Foundations of Statistics share a common reliance
on probability models. Throughout this period, statis-
tical computation remained laborious. Both Fisher’s
(1930) Statistical Methods for Research Workers and
Quenouille’s (1959) Rapid Statistical Calculations ex-
hibit how strongly computational environment influ-
ences the structure of statistical procedures.

After 1960, Prohorov’s results on weak convergence
of probability measures led to sustained development
of asymptotic theory in statistics. Notable achieve-
ments by about 1970 were the clarification of what is
meant by asymptotic optimality; the recognition that
maximum likelihood estimators behave badly in some

Rudolf Beran is Professor of Statistics, University
of California, Davis, California 95616 (e-mail:
beran@wald.ucdavis.edu).

175

regular parametric models but can be patched in var-
ious ways; the unexpected discovery of superefficient
estimators, such as the Hodges example, for which
asymptotic risk undercuts the information bound on
sets of Lebesgue measure zero; and the remarkable dis-
covery, through the James—Stein estimator, that super-
efficient estimators for parameters of sufficiently high
dimension can dominate the maximum likelihood es-
timator (MLE) globally. Modern estimators in mul-
tiparametric or nonparametric models, such as those
generated by adaptive penalized maximum likelihood,
use this insight to improve substantially on the risk of
maximum likelihood estimators.

By mid-century, mathematical logicians investigat-
ing the notion of proof had greatly refined the
concept of algorithm (Berlinski, 2001). As realized
in subsequent decades through digital computers, pro-
gramming languages, displays, printers and numerical
linear algebra, stable algorithms influenced statistical
practice. A much wider range of statistical proce-
dures, numerical and graphical, became computation-
ally feasible. Details of the performance of a statistical
procedure in case studies or in repeated pseudo-
random realizations from probability models began to
supplement or supplant results from asymptotic theory,
such as rates of convergence and asymptotic minimax
bounds.

The fundamental distinctions among data, proba-
bility model, pseudo-random numbers and algorithm
returned to prominence. The extent to which deter-
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ministic pseudo-random sequences can imitate prop-
erties of random variables received greater mathemati-
cal attention (Knuth, 1969, Chapter 3). Tukey’s (1970)
Exploratory Data Analysis gave a purely algorithmic
account of various statistical procedures. Although the
exposition of the book made no overt use of either
computers or probability models, the author remarked,
“Today’s understanding of how well elementary tech-
niques work owes much to both mathematical analysis
and experimentation by computer.” The design of the
S language and its implementations through the com-
mercial S-Plus and the later open-source R were further
stages in the algorithmic development of statistics.

One consequence of these trends was growing dif-
ferentiation of statistical interests. Some statisticians
continued to use probability models to analyze the be-
havior of statistical procedures, some focused on de-
vising computationally effective statistical algorithms,
whether or not inspired by a probability model and
some sought to analyze data, much of which does not
constitute a random sample. Dialog among these sub-
groups was limited. Important efforts at rapprochement
in the areas of time series analysis and robustness oc-
curred in the 1970s, but did not overcome the difficulty
of linking algorithmic and probability model formula-
tions of statistics.

Such was the backdrop to the publication of Efron’s
(1979) article on the bootstrap. Unlike many inno-
vations, the bootstrap quickly gained broad attention,
in part because it raised matters of immediate inter-
est to each statistical subgroup listed above. The re-
ception of the bootstrap may be contrasted with the
long neglect of subsampling, which was pioneered by
Gosset in Student (1908a, b). It was studies of the boot-
strap that revived research into subsampling (Politis,
Romano and Wolf, 1999). In the historical context of
the 1970s, some statisticians realized that statistical
procedures based largely on analytical manipulations
do not provide an effective technology for handling
data sets that arise in the computer age. Monte Carlo al-
gorithms for approximating bootstrap distributions of-
fered a remarkably intuitive way to estimate complex
sampling distributions that depend on unknown para-
meters. Mathematically interesting in their own right,
such Monte Carlo techniques reflected the growing role
of algorithms and computational experiments in statis-
tics. Indeed, in the future, the performance of a statisti-
cal procedure under probability models would remain
important, but would not be the sole theoretical arbiter
of its success.

Studies of bootstrap procedures have brought out
several points:

e Bootstrap algorithms provide an effective and intu-
itive way to realize certain programs in statistics.
These include the construction of (possibly simulta-
neous) confidence sets, tests and prediction regions
in classical models for which exact or asymptotic
distribution theory is intractable.

e Success of the bootstrap, in the sense of doing what
is expected under a probability model for data, is not
universal. Modifications to Efron’s (1979) definition
of the bootstrap are needed to make the idea work
for estimators that are not classically regular.

e A probability model is a mathematical construct that
seeks to approximate salient relative frequencies in
data. In the application of bootstrap techniques to
data analysis, the pertinence and limitations of prob-
ability modeling are questions. For a discussion of
answers in the earlier context of spectrum analysis,
see Section 17 of Brillinger and Tukey (1984).

This article develops the first two of these points.
General background and bootstrap bibliographies can
be found in Beran and Ducharme (1991), Davison
and Hinkley (1997), Efron and Tibshirani (1993), Hall
(1992) and Mammen (1992).

2. BOOTSTRAP CONFIDENCE SETS

Consider a statistical model in which a sample X,
of size n has joint probability distribution Py ,, where
0 € © is unknown. The parameter space ® is an open
subset of a metric space, whether of finite or infinite
dimension. Of interest is the parameter T = T(6),
where T is a specified function on ®. The unknown
value of 7 liesin 7 = T (®). A confidence set C for T
is a random subset of J that depends on the sample X,
such that the coverage probability Py ,[C > t] is as
close as possible to a specified design level 8. We
write B in place of the conventional 1 — o with the
understanding that 8 is close to 1.

We pursue confidence set constructions based on a
real-valued root R,(X,, ), that has a left-continuous
c.d.f. under the model that is H, (x, 8) = Py n[Rn(Xy,
7) < x]. The proposed confidence set for 7 is C = {r €
T :R,(Xpn,t) <c(B)}, a form suggested by classical
confidence sets that are based on a pivot with a distri-
bution that does not depend on unknown parameters.
The crux of the matter is to choose the critical value
c(B) so as to bring the coverage probability close to .

If 6 were known and the c.d.f. H,(x,0) were
continuous in x, an oracular choice of critical value
would be c(8) = Hn_l(,B, 0), the largest Sth quantile
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of the c.d.f. Evidently

Co={teT :Ry(Xn,t) < H;'(8,6)}

(1)
= {l S T:Hn(Rm@) Sﬂ}

has exact coverage probability B, because the distribu-
tion of H,,(R,, 0) is Uniform(0, 1).

This oracle construction is, in fact, useful when the
root is a pivot, because in that case the c.d.f. H,(-,0)
does not depend on the unknown 6. Outside this
very restrictive setting, it is natural to seek asymptotic
constructions of the critical value. Let én denote an
estimator for 6 that is consistent in the metric d on
®:d (én, 0) — 0 in probability as n — 0o. An intuitive
solution is to estimate the c.d.f. H,(-,60) by FIB(~) =
H,(, én), which is called the bootstrap c.d.f. The
corresponding bootstrap confidence set is then

Cp={teT:Ry(Xn.1) < Hy ' (B))

() N
={r € 7 : Hg(R,) < B}.

As introduced above, the bootstrap distribution is
a random probability measure, which may be use-
fully reinterpreted as a conditional distribution. Con-
sider the bootstrap world in which the true parameter
is é,,, so that 7 is replaced by 7, = T(én), and observe
an artificial sample X that is drawn from the fitted
model Pén, ,- In other words, the conditional distribu-
tion of X given X, is Py Then Hg(-) is the condi-
tional c.d.f. of R, (X}, 7,) given X,,. This formulation
is the starting point for Monte Carlo algorithms that
approximate the bootstrap distribution and confidence
set.

A basic question is whether the coverage probability
of bootstrap confidence set Cg converges to the desired
level B as n — oo. The following, almost self-evident,
proposition provides a template for checking this.

TEMPLATE A. Suppose that, for every 6 € O,

(i) d(8,,0) — 0in Py, probability as n — oc.

(ii) (Triangular array convergence.) For any se-
quence {6, € O} such that d(6,,0) converges to 0, the
cd.fs{H,(-,0,)} converge weakly to H(-,0).

(iii) The limit c.d.f. H(x, 0) is continuous in x.

get I - | denote supremum norm on the real line. Then
|Hg — H(-,0)|| = 0 in Py, probability as n — oo
and, for B € (0, 1),

3) Jim Py ,[Cp > 7] =B.

The skill in using this result lies in devising the
metric d. Condition (i) is easier to check if the
metric is weak, while condition (ii) is more likely
to hold if the metric is strong. The following two
examples illustrate an important general point: whether
directly or through its Monte Carlo approximation,
the intuitive confidence set Cg solves some classical
parametric and nonparametric confidence set problems
where asymptotic distributions are intractable. In such
problems, the conditions of Template A can often be
checked (we omit details) and Cg therefore has correct
asymptotic coverage probability.

EXAMPLE 2.1 (Kolmogorov—Smirnov confidence
band). The sample consists of n i.i.d. random vari-
ables, each of which has unknown c.d.f. F. The prob-
lem is to construct a fixed-width confidence band for F
using the root R, (X,,, F) = n'/?||F,, — F||, where F,, is
the empirical c.d.f. and the norm is supremum norm.
Here 0 =t = F. Let é,, — F. In contrast to the usual
direct asymptotic construction, Cg has correct asymp-
totic coverage probability whether or not F is continu-
ous.

EXAMPLE 2.2 (Confidence double cone for an
eigenvector). The sample consists of » i.i.d. random
k vectors, each having an unknown distribution P with
finite mean vector and covariance matrix X (P). Here
6 = P. The problem, stemming from principal compo-
nent analysis, is to construct a confidence double cone
for the eigenvector (actually eigenaxis) t that is asso-
ciated with the largest eigenvalue of X (P). The root
is R,(X,, 1) =n(l — |7,7]), where T, is the sample
eigenvector associated with the largest eigenvalue of
the sample covariance matrix. Let én = 13” denote the
empirical distribution of the sample. Although the as-
ymptotic distribution of the root lacks workable ana-
lytic expression, Cp has correct asymptotic coverage
probability if the largest eigenvalue of X (P) is unique.

When the root is not a pivot, the coverage probability
of Cp at sample size n usually differs from the design
goal B. We consider structurally how properties of the
root influence the error in coverage probability. To
this end, suppose that the c.d.f. H,(x,6) admits an

asymptotic expansion
Hy(x,0)
@) —ro/2 —(ro+1)/2
=H(x,0)+n"""h(x,0)+ O(n~"° )

that holds locally uniformly in 6. In the expansion,
ro is positive, the limit c.d.f. H(-,6) is continuous
and strictly monotone on its support, and A(-,6) is
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continuous. Moreover, suppose that 6, is a root-n
consistent estimator of 6. We distinguish two cases,
according to whether or not the limit c.d.f. H(-, 8) de-
pends on 6. Heuristic reasoning suggests the following
conclusions:

CASE AP (Asymptotic pivot). Suppose that the
limit c.d.f. does not depend on 6, so that H(x,0) =
H(x). Then typically the bootstrap confidence set
Cp has coverage probability g + O(n~"0tD/2) n
contrast, the asymptotic confidence set Ca that is
constructed like Cg but uses critical value H~'(8)
has coverage probability 8 + O (n~"0/2). In this case,
confidence set Cp has asymptotically smaller error in
converge probability than does confidence set Cx . This
is an important advantage to the bootstrap confidence
set that goes beyond relative ease of construction.

CASE NAP (Not asymptotic pivot). Suppose that
the limit c.d.f. H(A-,Q) depends on 6 and the c.d.f.
Ju (-, 0) of Hy(Ry,, 6,) admits the expansion

Ju(x,0)
=Ux)+ n_”/zu(x, 0) + O(n—(r1+1)/2)’

where U (-) is the Uniform(0, 1) c.d.f. Then typically
both Cp and Ca—the asymptotic analog of Cg that
uses critical value H ! B, é,,)—have coverage proba-
bility g 4+ O(n~"1/?).

®)

Examples 2.1 (with discontinuous F) and 2.2 il-
lustrate NAP situations where construction of Cp is
difficult while Monte Carlo approximation of Cp is
straightforward. The next two examples show boot-
strap confidence set Cg in its preferred AP setting.

EXAMPLE 2.3 (Behrens—Fisher confidence inter-
val). The sample is the union of two independent
subsamples. Subsample i contains n; i.i.d. random
variables, each having a N (u;, oiz) distribution. Here
0= (u1, ,uz,alz, 022). The problem is to construct a
confidence interval for T = u; — up. The Behrens—
Fisher root is R,(X,, ) = |(ii1 — {12) — 1:|/[812/n1 +
622/n2]1/ 2 where f; and &iz are the sample mean
and variance. Let 6, = (f1, fiz, 612, 622). Suppose that
ny = |nA] and np = n — ny; with 0 < A < 1. While
the exact distribution of the root depends on the un-
known ratio (712 /022, the limit distribution as n — oo
is the folded-over standard normal. Further asymptotic
analysis reveals that, in this AP example, Cp is asymp-
totically as accurate as Welch’s confidence interval for
the Behrens—Fisher problem. Unlike the latter, Cy re-
quires no algebraic intervention by the user.

EXAMPLE 2.4 (Likelihood ratio confidence set).
The sample consists of # i.i.d. random variables drawn
from a distribution that belongs to a canonical expo-
nential family indexed by 6 in R*. Let T =0,let L,(0)
be the log-likelihood function and let 8, be the maxi-
mum likelihood estimator of 6. The root R, (X,,,0) =
2[Ln(én) — L, (0)] has a chi-squared asymptotic dis-
tribution with k degrees of freedom, an instance of
AP. Deeper asymptotic analysis shows that Cp indi-
rectly accomplishes the Bartlett adjustment to the chi-
squared asymptotics. That Cg automatically matches
the Bartlett adjustment for standard likelihood ratio
confidence sets associated with the multivariate normal
model is a powerful result that has not been much ex-
ploited.

On reflection, the bootstrap itself provides an intu-
itive way to change an NAP root into an AP root. In
the setting of Template A, the distribution of the trans-
formed root

(6)  Rp1(Xp,7) = Hp[Ry(Xy, 7)) = Hy(Ry, 0)

converges to the Uniform(0, 1) distribution. Conse-
quently, R, 1 is an AP root if its c.d.f. has a suitable
asymptotic expansion. The transformation that maps
R, into R, is called prepivoting. Let H, 1(x,6) =
Py u[Ry1(X,,7) <x]andlet Hg | = H, 1(-,6,) beits
bootstrap estimator. The bootstrap confidence set deter-
mined by R, 1(X,, 7) is then

Cy,1 = {r € T:Hp 1[Ry1(X,, 1)] < B}
={t e T:Ry(Xu.t) < Hy '[H5 1 (B)]}.

The construction of Cp 1 involves two bootstrap
worlds. In the first bootstrap world, as already de-
scribed, the true parameter is 6y, so that T is replaced
by 7, = T (6,), and we observe an artificial sample X
with a conditional distribution, given X, of Pén, .- Let
0% = 0(X;) be the reestimation of 6 based on this
sample from the first bootstrap world. In the second
bootstrap world, the true parameter is 6,, so that 7 is
replaced by 7, = T'(6), and we observe an artificial
sample X* with a conditional distribution, given X,
and X', of Pgx . Then:

)

e Hp is the conditional c.d.f. of R = R,(X}, T0),
given X,.

° PAIB,l is the conditional distribution of R;f’l =
R, (X}, T,), given X,,. Moreover,

RY = Hy(R}.0;

= PG;;,}’![Rn < Rnlxn’Xn]v
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where R} = R, (X*, t%).

From this we see that a double nested Monte Carlo
algorithm serves to approximate Cg,;. The inner level
of the algorithm replicates X' to approximate Hg. For
each replicate of X, the outer level replicates X* to
approximate [:13,1.

Working with the second bootstrap world is often
called double bootstrapping and confidence sets such
as Cg,1 that rely on the second bootstrap world are
called double-bootstrap confidence sets. Hall (1992)
developed a mathematical setting where double boot-
strapping, in several asymptotically equivalent forms,
reduces coverage probability error asymptotically.

As noted above, prepivoting typically transforms a
NAP root into an AP root that generates bootstrap con-
fidence sets with smaller error in coverage probabil-
ity than bootstrap confidence sets based on the NAP
root. In addition, prepivoting an AP root typically re-
duces the asymptotic order of the second term in its
asymptotic distribution. Consequently, bootstrap con-
fidence sets based on prepivoted AP roots also often
enjoy asymptotically smaller error in coverage proba-
bility than those based on the initial root. This is an
argument for continued prepivoting. However, the
computational burden discourages more than double
bootstrapping and the asymptotic theory just outlined
may not capture all factors that influence coverage
probability at finite sample sizes.

EXAMPLE 2.3 (Continued). Under the normal
model, Welch’s analytic confidence interval and the
bootstrap confidence interval Cp based on the
Behrens—Fisher root both have error in coverage prob-
ability of order n~2. The double-bootstrap confidence
interval Cg 1 has error in coverage probability that is
of order n~3. Simulations with normal pseudo-random
samples indicate the reality of these improvements at
remarkably small sample sizes.

EXAMPLE 2.5 (Nonparametric ¢ statistic). Stu-
dentizing is another way to transform a root to AP.
Suppose that the sample is i.i.d. with unknown c.d.f. F
that has finite mean w(F) and finite variance. Here
0 = F and of interest is T = w(F). As the root, take
the one-sided ¢ statistic n!/%(i — u(F))/&, using the
standard mean and variance estimators. Let é,, = f’n
be the empirical c.d.f. of the sample. The error in
the coverage probability of Cp is usually of order
n~! when F is not symmetric. Simulations reveal
that actual errors in coverage probability at moderate
sample sizes depend strongly on the shape of F and
may be considerable.

Specific references for this section are Bickel and
Freedman (1981), Beran and Srivastava (1985) and
Beran (1987, 1988Db).

3. BOOTSTRAP SIMULTANEOUS
CONFIDENCE SETS

The two-step bootstrap, to be distinguished from
double bootstrap, is an intuitive technique that greatly
extends the Tukey and Scheffé methods for construct-
ing simultaneous confidence sets. As well, it achieves
tighter asymptotic control of coverage probabilities
than do constructions based on the Bonferroni in-
equality. Retaining the notation of Section 2, suppose
that the parameter v = T(0) has components {1, =
T,(0):u € U}. The index set U is a metric space. For
each u, let C, denote a confidence set for the com-
ponent t,,. By simultaneously asserting the confidence
sets {C, :u € U}, we obtain a simultaneous confidence
set C for the components {z,}.

We assume that the components {t,} are logically
similar. The problem is to construct the confidence
sets {C,} in such a way that

) PG,n[Cu ERA
and

(10) PonlCyat,YueclU]l=Py,[C>1]=8.

is the same Vu € U

Property (9) is called balance. It reflects our wish that
the confidence set C treat the logically similar compo-
nents 7, in an even-handed way while controlling the
simultaneous coverage probability (10).

EXAMPLE 3.1 (Scheffé’s method). Suppose that
the sample of size n has an N (Dy,azln) distribu-
tion, where the vector y is p x 1 and the matrix D
has rank p. The unknown parameter 6 = (y,o?) is
estimated by 6 = (7,62) from least squares theory.
Let U be a subspace of R” that has dimension q.
The components of interest are the linear combina-
tions {t, = u'y:u € U}. Let 6> = u'(D'D)"'ué?.
Scheffé’s simultaneous confidence set Cg for the linear
combinations {#y} is the simultaneous assertion of the
component confidence intervals

(11 CS,u = {l/t/)/ : |”/()> - y)|/6u
1/2
<q"%F,)> (B}, uel.

The coverage probabilities of {Cs ,} are clearly equal,
while the overall coverage probability of Cs is B
(Miller, 1966, Chapter 2). The F-distribution theory
that underlies (11) breaks down if U is not a subspace
or if the normal model is not pertinent.
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Consider the general situation where R, , =
Ry 4 (X,, t,) is aroot for the component 7. Let 7;, and
T denote, respectively, the ranges of t, = 7,,(8) and
T =T (0). Every point in J can be written in the com-
ponent form ¢t = {t, :u € U}. The simultaneous confi-
dence sets to be considered are

(12) C={reT:Ryu(Xp. 1) <c,(B)Yu cU}.

The problem is to devise critical values {c, (8)} so that,
to a satisfactory approximation, C is balanced and has
simultaneous coverage probability g for {7,}.

Let H, ,(-,6) and H,(-,0) denote the left-conti-
nuous cumulative distribution functions of R, ,, and of
sup,cy Hnu(Ryu.0), respectively. If 6§ were known
and the two c.d.f.s just defined were continuous in
their first arguments, an oracular choice of critical
values for the component confidence sets would be
cu(B) = H,:,i [Hn_l(,B, 0), 8]. The oracular component
confidence set

Cu= {tu €Ty Ryu(Xn, ty) < Cu(IB)}

(13)
={ty € Tu: Hyu(Rou, 0) < H, ' (B,6))

has coverage probability H~!(8, @) for 7,. The oracu-
lar simultaneous confidence set C, defined through (12),
has coverage probability S for t by definition
of H,(-,0).

To approximate this oracle construction in bootstrap
terms is straightforward. Suppose that 6, is a consistent
estimator of 8. The bootstrap estimators of H, ,(-,6)
and H,(-,0) are, respectively, FIB,M = Hy ,(, é) and
[:IB =H,(, é). Define the bootstrap critical values

(14) ¢y, (B) = Hy [Hy ' (B)].
Define a bootstrap confidence set for t,, by
(15) CB,u = {tu €Tu: Rn,u(Xna tu) = éB’u(ﬂ)}

Simultaneously asserting these confidence sets gener-
ates the following bootstrap simultaneous confidence
set for the {7, }:

(16) Cp={reT :Ryu(Xy,t,) 56B’u(,3) YueU}.

The definition of the simultaneous confidence set Cp
involves only the first bootstrap world. Indeed, let
Tou = Tu (én). Then PAIB,M and ﬁB are just the condi-
tional distributions, given X,,, of R, , (X}, T,.,) and of
sup,ey Hnul Rnu(X5, Tuou)s 6,]. Thus, a Monte Carlo
approximation to the bootstrap critical values (14) re-
quires only one round of bootstrap sampling.
Computation of the supremum over U may require fur-
ther approximations when the cardinality of U is not

finite. In practice, the case of a finite number of com-
ponents {t,} is both approachable and important.

The following template outlines a way to check
whether Cp has correct asymptotic coverage probabil-
ity for T = {1,} and whether it is asymptotically bal-
anced. Suppose that ® is an open subset of a metric
space with metric d and that U is also a metric space.
Let C(U) be the set of all continuous bounded func-
tions on U, metrized by supremum norm. Assume that
C(U) is topologically complete and that the processes
R, (X,,0) = {R,(X,,, T,(0)):u € U,n > 1} indexed
by u have sample paths in C(U). We observe that
boundedness of the sample paths can be assured by
making a continuous, bounded and strictly monotone
transformation of {R, ,} and that this transformation
of the roots does not affect the bootstrap simultaneous
confidence set Cg.

TEMPLATE B. Suppose that, for every 6 € ©,

@) d(én, 0) — 0in Py, probability as n — o0.

(i1) (Triangular array convergence.) There exists
a process R(0) = {R,(0):u € U} with sample paths
in CWU) such that if lim,_od(6,,0) = 0,
then L[R,(Xp,6,)|Pg, n] converges weakly in C(U)
to LIR(0)], which has separable support.

(iii) The family {H,(x,0):u € U}, where H,(x,0)
denotes the c.d.f. of R, (0), is equicontinuous in x. For
every € > 0 there exists 6 > 0 such that sup, . | H, (x,
0) — H,(y,0)| < & whenever |x — y| <.

(iv) The cdf. H(x,0) of sup,cy Hu[R.(0),0] is
continuous and strictly monotone in x. Then, for

p (0, 1),

(17) nll)ngo P@,n[CB 351l = :3

and

(18)  lim sup|Py,[Cp, 31,0 — H '(8,0)|=0.
n—>oou€U

Moreover, FIB_ 1(,3) converges in Py , probability to
H~1(B.06).

If the conditions for Template B are met, Cp has as-
ymptotic coverage probability 8, Cp is asymptotically
balanced and each Cp , has coverage probability that is
estimated asymptotically by FIB_ 1(,3). Using this tem-
plate may require skillful choice of the metrics on ®
and U . The following two examples illustrate the scope
of bootstrap simultaneous set Cg.

EXAMPLE 3.1 (Continued). If U is a g-dimen-
sional subspace of R”, then the bootstrap confidence
set Cp coincides with Scheffé’s exact construction
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described earlier. This simplification occurs because
R, , and R, turn out to be pivots. By Template B, si-
multaneous confidence set Cp remains asymptotically
valid if U is any closed subset of R”, including the
important case of a finite set. Template B continues to
apply when the linear model errors are i.i.d. with mean
zero and finite variance, their distribution P being un-
known. In this context, & = (y, P) and 0 = (v, P),
where P is the empirical distribution of the residuals,
recentered to have average 0.

EXAMPLE 3.2 (Simultaneous confidence cones for
mean directions). The sample consists of r indepen-
dent directional subsamples of sizes {n,:1 <u <r}.
The observations in subsample u are i.i.d.
unit vectors in R? drawn from an unknown spherical
distribution P,. The mean direction of P, is the unit
vector m(P,) = u(P,)/|u(Py,)|, where u(P,) is the
expectation of P,, assumed to be a nonnull vector. We
wish to construct simultaneous confidence cones for
the » mean directions {m(P,):1 <u <r}. Here 6 =
(P, Pa,..., P), 0 is the corresponding set of empir-
ical distributions, U = {1,2,...,r} and t, = m(P,).
Let m, denote the resultant of the uth subsample,
normalized to unit length. Suitable roots are R, , =
ny[l — m),m(P,)] for 1 <u <r. Template B is ap-
plicable. Confidence set Cg consists of r simultaneous
confidence cones for the mean directions {m(P,)}. The
half angle of each cone varies so as to achieve asymp-
totic balance.

The ability of Cy to handle implicitly the asymptotic
distribution theory needed for balanced simultaneous
confidence sets is just the start of the story. At finite
sample sizes, simultaneous confidence set Cp usually
suffers error in its overall coverage probability and lack
of balance among the marginal coverage probabilities
of its constituent confidence sets {Cp ,}. A suitable
use of prepivoting can reduce both types of error
asymptotically—a task that would rarely be possible
by direct analytical approaches. Let

(19) Sn,u = ﬁB[ﬁB,M(Rﬂ,M)]

and apply the construction of Cp to the transformed
roots {S, ,} to obtain the simultaneous confidence
set C, 1.

In greater detail, let K, ,(-,60) and K,(-,6) be the
left-continuous c.d.f.s of S, , and sup,cy Kn.u(Snu.
0), respectively. The corresponding bootstrap esti-
mates of these c.d.f.s are I%B,u =Knu(, én) and I%B =
K, (, é,,). Confidence set Cp, 1 has the form (16) with

the critical values {cy  (B)} replaced by the refined
critical values ’

20) &g, (B)=Hy\[Hy ' [Ks, (K5 (B]1]].

The interpretation of ﬁB, « and I-AIB as conditional
c.d.f.s in the first bootstrap world was discussed fol-
lowing (16). The second bootstrap world yields an
analogous interpretation of Kp , and Kp that serves as
a basis for Monte Carlo approximation of the double-
bootstrap critical values in (20). Currently available
asymptotic analysis of the refined simultaneous con-
fidence set Cg,1 is mostly heuristic. Rigorous analysis
in a few examples supports the promise of Cp | for re-
ducing errors in balance and in overall coverage prob-
ability.

Specific references for this section are Beran (1988a,
1990) and Beran and Fisher (1998).

4. BOOTSTRAP TESTS

The scope of hypothesis testing is limited by the
narrowness of its formulation. The abuse of testing
theory in problems for which it is not designed, such
as model selection, makes the point. Nevertheless, we
consider briefly the impact of bootstrap distributions
on the construction of tests.

The test statistic approach constructs a bootstrap null
distribution for a chosen test statistic. In the setting
of Section 2, let ®y denote a subset of ®. Consider
the problem of testing the composite null hypothesis
6 € ©¢ against the alternative that this is not so. The
test statistic is V,, = V,,(X},), large values of V, being
evidence against the null hypothesis. For 6 € ®, let
Hy(x,0) = Py [V, < x] denote the left-continuous
c.df. of V,. Let én be an estimator of ® that is
consistent under the null hypothesis and that has values
restricted to ®¢. The bootstrap null distribution is then
Hg =H ¢, én) The bootstrap test of nominal level o
rejects the null hypothesis if V,, > Hg’ "1 —a).

Intuitively we expect that lim, o Py nlV, >
PAIB_I(I — )] = « for every 0 € ©g. In this event,
we say that the asymptotic rejection probability of the
bootstrap test is « for every 6 in null hypothesis set ©.
Template A with ® replaced by ®¢ provides a way to
verify this property in particular examples. The con-
dition that the possible values of é,, lie in ®¢ is not
needed for the argument under the null hypothesis, but
is important for the power of the test.

EXAMPLE 4.1 (Minimum Kolmogorov distance
tests). The sample consists of n i.i.d. random vari-
ables, each of which has unknown c.d.f. . Under the
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null hypothesis, F' belongs to a specified parametric
family of c.d.f.s {G¢:& € E}, where E is an open sub-
set of RX. Let £, be the empirical c.d.f. and let the
test statistic be V,, = n!/? infeeg ||ﬁn — G¢ll. In this
problem, 8 = F and é,, = Gén’ £
||1:"n — G¢|| over & € E. The bootstrap test just out-
lined has asymptotic rejection probability « for every
distribution F in the parametric null hypothesis. This
bootstrap construction solves a problem that is diffi-
cult for analytical approaches. Moreover, it may be ex-
tended to minimum distance tests in higher dimensions
that involve empirical measures on half-spaces or other
Vapnik—Cervonenkis classes.

where &, minimizes

Outside the simplest settings, constructing a plausi-
ble bootstrap null distribution may encounter difficul-
ties because there is more than one way to construct a
fitted model that satisfies the composite null hypothe-
sis. Example 4.2 below is an instance. Inverting a per-
tinent bootstrap confidence set offers a clearer path in
such cases.

The confidence set approach considers the testing
problem where, under the null hypothesis, T (6) = 19
for given function T and specified value 7o. We con-
struct a bootstrap confidence set of nominal level 1 — «
for T = T (0) using a root R, (X, 7). The test rejects
the null hypothesis if this bootstrap confidence set does
not contain tp. Under Template A for bootstrap confi-
dence sets, the asymptotic rejection probability of this
bootstrap test is « for every 6 that satisfies the null hy-
pothesis. In this approach, the estimator 6,, used to con-
struct the bootstrap distribution is not required to take
values in ®yp—a substantial practical advantage in ex-
amples where restricting 6, to © can be done in sev-
eral ways.

EXAMPLE 4.2 (Testing equality of two mean di-
rections). The sample consists of two independent
subsamples, the observations in subsample j being
n; ii.d. random unit vectors in R3 drawn from an un-
known spherical distribution P;. The problem is to
test equality of the two mean directions m(P;) and
m(P,), defined in Example 3.2. For unit column vec-
tors di and d» in R3, p(dy, d») = (djda, (dy x d2)")
is a unit column vector in R* that represents, in one-
to-one manner, the rotation which takes d; into d» in
the plane determined by those two vectors. Suppose
that ny = |nA| and no =n — ny with 0 < A < 1. Let
7= p(m(Py),m(P,)) and 7, = p(imy, my) using nota-
tion from Example 3.2. A suitable root is R, (X,, 1) =
n(l — 7,7). The test rejects if bootstrap confidence

set Cg for T contains the vector (1,0, 0,0)’ and has
asymptotic rejection probability o under the null hy-
pothesis that the two mean directions are equal.

The discussion in Section 2 of double bootstrapping
may be extended to bootstrap tests of either variety.
The discussion in Section 3 of simultaneous confidence
sets has implications for simultaneous bootstrap tests,
but these seem not to have been explored.

Specific references for this section are Beran (1986,
1988b), Beran and Millar (1986), Beran and Fisher
(1998) and Bickel and Ren (2001).

5. CLASSICAL CHARACTER OF THE BOOTSTRAP

Bootstrap constructions of asymptotically valid con-
fidence sets and tests are an important algorithmic
success. A deep link between correct convergence of
bootstrap distributions and the properties of classically
regular estimators in regular statistical models strongly
constrains the scope of this success. Investigation of
this link returns us to the theoretical milieu in which
the bootstrap arose.

Suppose that the sample X,, consists of n i.i.d. ran-
dom variables that have joint distribution Py ,. Here
0 is an unknown element of parameter space ®, which
is an open subset of R¥. Of interest is T'(9) € R,
where T is a differentiable function with m x k deriv-
ative matrix VT (@) of full rank. For any 6y € ® and
every h € R, let L, (h,6p) denote the log-likelihood
ratio of the absolutely continuous part of Py 4,172 ,
with respect to Py, ,. The model is locally asymptoti-
cally normal (LAN) at 0y if there exists a random col-
umn vector Y, (6p) and a nonsingular symmetric matrix
1 (6p) such that:

(a) Under Py, ,, Ly(hy,60) — W'Y, (6p) — 270
I(6p)h = 0,(1) for every h € R* and every sequence
h, — h;

(b) LI[Yn(00)|Pgy,n] = N (O, I(60)).

The LAN property is possessed by smoothly parame-
trized exponential families and other regular paramet-
ric models.

For any sequence of estimators {7,} of T (6), let
H, (6) denote L[n'/?(£, — T (9))| Ps.,]. The estimators
{t,} are locally asymprotically equivariant (LAE) at 6
if, for every h € RF and every sequence h, — h,
H,(0p +n~"2h,) = H(8y).

Estimators {7, g} that are classically efficient for
T (6p) in a model that is LAN at 6 satisfy

taE=T(60) +n">VT @)~ (00) Y, (60)

@) +o,(1)
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under Py, , and are LAE at 6p. The distributions
{OC[nl/z(fn,E — T (60)|Pg,1} converge weakly to the
N(0, X7(69)) distribution, where X7(6g) =
VT (00)I 1 (00)[VT (6p)]. In estimation theory, the
precise role of the estimators {7, g}, which include
(possibly emended) MLE:s, is revealed by Hdjek’s con-
volution theorem.

CONVOLUTION THEOREM. Let K,,(0) = L[(n!/?-
(Th — Tw.B), Yn(0))| Pg.n]. Suppose that the model is
LAN and that H,(6y) = H(6y) as n — oco. The fol-
lowing two statements are equivalent:

e The estimator sequence {7,} is LAE at 6y with limit
distribution H (6g).

e For every h € R* and every sequence h, — h,
K, (6o +n""2h,) = D(6y) x N(0, I (6)) for some
distribution  D(6y) such that H(6)) =
D(6p) * N (0, Zr(60))-

The local asymptotics just described have global
implications. Suppose that H,(0) = H(0) for every
0 € ©. Then there exists a Lebesgue null set £ in ®
such that the estimators {7,} are LAE at every 0 €
® — E. It follows that the limit distribution H (6) must
have convolution structure for almost every 6 € ©.
Moreover, if H(@) and X7 (0) are both continuous
in 0, the former in the topology of weak convergence,
then H (0) has convolution structure for every 8. This is
often the case for classical parametric estimators of the
maximum likelihood or minimum distance type. These
considerations surrounding the convolution theorem
have an elegant consequence that concerns supereffi-
ciency. For loss function w[n'/?(%, — T (6p))], where
w is any symmetric, subconvex, continuous and non-
negative function, no estimator sequence {7,} can have
smaller asymptotic risk at 6y than {7, g} unless 6y be-
longs in the null set of non-LAE points of {,}.

A deep connection exists between the convolution
theorem and correct convergence of bootstrap distribu-
tions. Let {én} be estimators of 6. The parametric boot-
strap estimator of distribution H, (6) is I:IB = H, (én).
Let J,, () denote £[n'/%(8, — )| Py.].

BOOTSTRAP CONVERGENCE THEOREM. Assume
the hypotheses for the convolution theorem. As
n — 00, suppose that J,(00) = J(60y), a limit distri-
bution that has full support on R¥. The following two
statements are then equivalent:

o The estimator sequence {t,} is LAE at 0y with limit
dAistribution H ().
e Hg = H(0o) in Py, , probability as n — oo.

The practical significance of this result is that ordi-
nary bootstrapping will not work as desired at para-
meter values where the estimator being bootstrapped is
not classically regular. Important instances of irregular
estimators are Stein shrinkage estimators and their rel-
atives, which include adaptive penalized least squares
estimators and adaptive model-selection estimators. To
deal with possibly non-LAE estimators requires mod-
ifications of the bootstrap idea. Among these are the
m out of n bootstrap, subsampling and the multipara-
metric bootstrap.

Specific references for this section are Le Cam
and Yang (1990), Beran (1997), Bickel and Freedman
(1981), Politis, Romano and Wolf (1999) and Beran
and Diimbgen (1998).
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