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Flexible Smoothing with B-splines
and Penalties
Paul H. C. Eilers and Brian D. Marx

Abstract. B-splines are attractive for nonparametric modelling, but
choosing the optimal number and positions of knots is a complex task.
Equidistant knots can be used, but their small and discrete number al-
lows only limited control over smoothness and fit. We propose to use a
relatively large number of knots and a difference penalty on coefficients
of adjacent B-splines. We show connections to the familiar spline penalty
on the integral of the squared second derivative. A short overview of B-
splines, of their construction and of penalized likelihood is presented. We
discuss properties of penalized B-splines and propose various criteria for
the choice of an optimal penalty parameter. Nonparametric logistic re-
gression, density estimation and scatterplot smoothing are used as ex-
amples. Some details of the computations are presented.

Key words and phrases: Generalized linear models, smoothing, non-
parametric models, splines, density estimation.

1. INTRODUCTION

There can be little doubt that smoothing has a re-
spectable place in statistics today. Many papers and
a number of books have appeared (Silverman, 1986;
Eubank, 1988; Hastie and Tibshirani, 1990; Härdle,
1990; Wahba, 1990; Wand and Jones, 1993; Green
and Silverman, 1994). There are several reasons for
this popularity: many data sets are too “rich” to
be fully modeled with parametric models; graphical
presentation has become increasingly more impor-
tant and easier to use; and exploratory analysis of
data has become more common.

Actually, the name nonparametric is not always
well chosen. It might apply to kernel smoothers
and running statistics, but spline smoothers are de-
scribed by parameters, although their number can
be large. It might be better to talk about “overpara-
metric” techniques or “anonymous” models; the pa-
rameters have no scientific interpretation.
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There exist several refinements of running statis-
tics, like kernel smoothers (Silverman, 1986;
Härdle, 1990) and LOWESS (Cleveland, 1979).
Splines come in several varieties: smoothing splines,
regression splines (Eubank, 1988) and B-splines
(de Boor, 1978; Dierckx, 1993). With so many tech-
niques available, why should we propose a new
one? We believe that a combination of B-splines
and difference penalties (on the estimated coeffi-
cients), which we call P-splines, has very attractive
properties. P-splines have no boundary effects, they
are a straightforward extension of (generalized) lin-
ear regression models, conserve moments (means,
variances) of the data and have polynomial curve
fits as limits. The computations, including those
for cross-validation, are relatively inexpensive and
easily incorporated into standard software.
B-splines are constructed from polynomial pieces,

joined at certain values of x, the knots. Once the
knots are given, it is easy to compute the B-splines
recursively, for any desired degree of the poly-
nomial; see de Boor (1977, 1978), Cox (1981) or
Dierckx (1993). The choice of knots has been a
subject of much research: too many knots lead to
overfitting of the data, too few knots lead to un-
derfitting. Some authors have proposed automatic
schemes for optimizing the number and the posi-
tions of the knots (Friedman and Silverman, 1989;
Kooperberg and Stone, 1991, 1992). This is a diffi-
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cult numerical problem and, to our knowledge, no
attractive all-purpose scheme exists.

A different track was chosen by O’Sullivan (1986,
1988). He proposed to use a relatively large num-
ber of knots. To prevent overfitting, a penalty on
the second derivative restricts the flexibility of the
fitted curve, similar to the penalty pioneered for
smoothing splines by Reinsch (1967) and that has
become the standard in much of the spline litera-
ture; see, for example, Eubank (1988), Wahba (1990)
and Green and Silverman (1994). In this paper we
simplify and generalize the approach of O’Sullivan,
in such a way that it can be applied in any con-
text where regression on B-splines is useful. Only
small modifications of the regression equations are
necessary.

The basic idea is not to use the integral of a
squared higher derivative of the fitted curve in
the penalty, but instead to use a simple difference
penalty on the coefficients themselves of adjacent
B-splines. We show that both approaches are very
similar for second-order differences. In some appli-
cations, however, it can be useful to use differences
of a smaller or higher order in the penalty. With
our approach it is simple to incorporate a penalty of
any order in the (generalized) regression equations.

A major problem of any smoothing technique is
the choice of the optimal amount of smoothing, in
our case the optimal weight of the penalty. We use
cross-validation and the Akaike information crite-
rion (AIC). In the latter the effective dimension,
that is, the effective number of parameters, of a
model plays a crucial role. We follow Hastie and
Tibshirani (1990) in using the trace of the smoother
matrix as the effective dimension. Because we use
standard regression techniques, this quantity can
be computed easily. We find the trace very useful
to compare the effective amount of smoothing for
different numbers of knots, different degrees of the
B-splines and different orders of penalties.

We investigate the conservation of moments of
different order, in relation to the degree of the
B-splines and the order of the differences in the
penalty. To illustrate the use of P-splines, we
present the following as applications: smoothing of
scatterplots; modeling of dose–response curves; and
density estimation.

2. B-SPLINES IN A NUTSHELL

Not all readers will be familiar with B-splines.
Basic references are de Boor (1978) and Dierckx
(1993), but, to illustrate the basic simplicity of the
ideas, we explain some essential background here.
A B-spline consists of polynomial pieces, connected

in a special way. A very simple example is shown at
the left of Figure 1(a): one B-spline of degree 1. It
consists of two linear pieces; one piece from x1 to x2,
the other from x2 to x3. The knots are x1, x2 and x3.
To the left of x1 and to the right of x3 this B-spline
is zero. In the right part of Figure 1(a), three more
B-splines of degree 1 are shown: each one based on
three knots. Of course, we can construct as large
a set of B-splines as we like, by introducing more
knots.

In the left part of Figure 1(b), a B-spline of
degree 2 is shown. It consists of three quadratic
pieces, joined at two knots. At the joining points not
only the ordinates of the polynomial pieces match,
but also their first derivatives are equal (but not
their second derivatives). The B-spline is based on
four adjacent knots: x1; : : : ; x4. In the right part
Figure 1(b), three more B-splines of degree 2 are
shown.

Note that the B-splines overlap each other.
First-degree B-splines overlap with two neighbors,
second-degree B-splines with four neighbors and so
on. Of course, the leftmost and rightmost splines
have less overlap. At a given x, two first-degree (or
three second-degree) B-splines are nonzero.

These examples illustrate the general properties
of a B-spline of degree q:

• it consists of q + 1 polynomial pieces, each of
degree q;
• the polynomial pieces join at q inner knots;
• at the joining points, derivatives up to order

q− 1 are continuous;
• the B-spline is positive on a domain spanned by

q+ 2 knots; everywhere else it is zero;
• except at the boundaries, it overlaps with 2q

polynomial pieces of its neighbors;
• at a given x, q+ 1 B-splines are nonzero.

Let the domain from xmin to xmax be divided into
n′ equal intervals by n′+1 knots. Each interval will
be covered by q+ 1 B-splines of degree q. The total
number of knots for construction of the B-splines
will be n′ + 2q+ 1. The number of B-splines in the
regression is n = n′ + q. This is easily verified by
constructing graphs like those in Figure 1.
B-splines are very attractive as base functions for

(“nonparametric”) univariate regression. A linear
combination of (say) third-degree B-splines gives a
smooth curve. Once one can compute the B-splines
themselves, their application is no more difficult
than polynomial regression.

De Boor (1978) gave an algorithm to compute B-
splines of any degree fromB-splines of lower degree.
Because a zero-degree B-spline is just a constant on
one interval between two knots, it is simple to com-
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Fig. 1. Illustrations of one isolated B-spline and several overlapping ones (a) degree 1; (b) degree 2.

pute B-splines of any degree. In this paper we use
only equidistant knots, but de Boor’s algorithm also
works for any placement of knots. For equidistant
knots, the algorithm can be further simplified, as
is illustrated by a small MATLAB function in the
Appendix.

Let Bj�xy q� denote the value at x of the jth B-
spline of degree q for a given equidistant grid of
knots. A fitted curve ŷ to data �xi; yi� is the linear
combination ŷ�x� = ∑n

j=1 âjBj�xy q�. When the de-
gree of the B-splines is clear from the context, or
immaterial, we use Bj�x� instead of Bj�xy q�.

The indexing of B-splines needs some care, espe-
cially when we are going to use derivatives. The in-
dexing connects a B-spline to a knot; that is, it gives
the index of the knot that characterizes the position
of the B-spline. Our choice is to take the leftmost
knot, the knot at which the B-spline starts to be-
come nonzero. In Figure 1(a), x1 is the positioning
knot for the first B-spline. This choice of indexing
demands that we introduce q knots to the left of the
domain of x. In the formulas that follow for deriva-
tives, the exact bounds of the index in the sums are
immaterial, so we have left them out.

De Boor (1978) gives a simple formula for deriva-
tives of B-splines:

h
∑
j

ajB
′
j�xy q� =

∑
j

ajBj�xy q− 1�

−
∑
j

aj+1Bj+1�xy q− 1�

= −
∑
j

1aj+1Bj�xy q− 1�;

(1)

where h is the distance between knots and 1aj =
aj − aj−1.

By induction we find the following for the second
derivative:

h2∑
j

ajB
′′
j�xy q� =

∑
j

12ajBj�xy q− 2�;(2)

where 12aj = 11aj = aj − 2aj−1 + aj−2. This fact
will prove very useful when we compare continuous
and discrete roughness penalties in the next section.

3. PENALTIES

Consider the regression of m data points �xi; yi�
on a set of n B-splines Bj�·�. The least squares ob-
jective function to minimize is

S =
m∑
i=1

{
yi −

n∑
j=1

ajBj�xi�
}2

:(3)

Let the number of knots be relatively large, such
that the fitted curve will show more variation than
is justified by the data. To make the result less flex-
ible, O’Sullivan (1986, 1988) introduced a penalty
on the second derivative of the fitted curve and so
formed the objective function

S =
m∑
i=1

{
yi −

n∑
j=1

ajBj�xi�
}2

+ λ
∫ xmax

xmin

{ n∑
j=1

ajB
′′
j�x�

}2

dx:

(4)

The integral of the square of the second derivative
of a fitted function has become common as a smooth-
ness penalty, since the seminal work on smoothing
splines by Reinsch (1967). There is nothing spe-
cial about the second derivative; in fact, lower or
higher orders might be used as well. In the context
of smoothing splines, the first derivative leads to
simple equations, and a piecewise linear fit, while
higher derivatives lead to rather complex mathe-
matics, systems of equations with a high bandwidth,
and a very smooth fit.

We propose to base the penalty on (higher-order)
finite differences of the coefficients of adjacent B-
splines:

S =
m∑
i=1

{
yi −

n∑
j=1

ajBj�xi�
}2

+ λ
n∑

j=k+1

�1kaj�2:(5)
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This approach reduces the dimensionality of the
problem to n, the number of B-splines, instead of
m, the number of observations, with smoothing
splines. We still have a parameter λ for continuous
control over smoothness of the fit. The difference
penalty is a good discrete approximation to the in-
tegrated square of the kth derivative. What is more
important: with this penalty moments of the data
are conserved and polynomial regression models oc-
cur as limits for large values of λ. See Section 5 for
details.

We will show below that there is a very strong
connection between a penalty on second-order dif-
ferences of the B-spline coefficients and O’Sullivan’s
choice of a penalty on the second derivative of the
fitted function. However, our penalty can be han-
dled mechanically for any order of the differences
(see the implementation in the Appendix).

Difference penalties have a long history that goes
back at least to Whittaker (1923); recent applica-
tions have been described by Green and Yandell
(1985) and Eilers (1989, 1991a, b, 1995).

The difference penalty is easily introduced into
the regression equations. That makes it possible to
experiment with different orders of the differences.
In some cases it is useful to work with even the
fourth or higher order. This stems from the fact
that for high values of λ the fitted curve approaches
a parametric (polynomial) model, as will be shown
below.

O’Sullivan (1986, 1988) used third-degree B-
splines and the following penalty:

h2P = λ
∫ xmax

xmin

{∑
j

ajB
′′
j�xy 3�

}2

dx:(6)

From the derivative properties of B-splines it fol-
lows that

h2P = λ
∫ xmax

xmin

{∑
j

12ajBj�xy 1�
}2

dx:(7)

This can be written as

h2P = λ
∫ xmax

xmin

∑
j

∑
k

12aj 1
2ak

·Bj�xy 1�Bk�xy 1�dx:
(8)

Most of the cross products of Bj�xy 1� and Bk�xy 1�
disappear, because B-splines of degree 1 only over-

lap when j is k− 1, k or k+ 1. We thus have that

h2P = λ
∫ xmax

xmin

[{∑
j

12ajBj�xy 1�
}2

+ 2
∑
j

12aj 1
2aj−1

·Bj�xy 1�Bj−1�xy 1�
]
dx;

(9)

or

h2P = λ
∑
j

�12aj�2
∫ xmax

xmin

B2
j�xy 1�dx

+ 2λ
∑
j

12aj 1
2aj−1

·
∫ xmax

xmin

Bj�xy 1�Bj−1�xy 1�dx;

(10)

which can be written as

h2P = λ
{
c1
∑
j

�12aj�2 + c2
∑
j

12aj 1
2aj−1

}
;(11)

where c1 and c2 are constants for given (equidistant)
knots:

c1 =
∫ xmax

xmin

B2
j�xy 1�dxy

c2 =
∫ xmax

xmin

Bj�xy 1�Bj−1�xy 1�dx:
(12)

The first term in (11) is equivalent to our second-
order difference penalty, the second term contains
cross products of neighboring second differences.
This leads to more complex equations when mini-
mizing the penalized likelihood (equations in which
seven adjacent aj’s occur, compared to five if only
squares of second differences occur in the penalty).
The higher complexity of the penalty equations
stems from the overlapping of B-splines. With
higher order differences and/or higher degrees of
the B-splines, the complications grow rapidly and
make it rather difficult to construct an automatic
procedure for incorporating the penalty in the likeli-
hood equations. With the use of a difference penalty
on the coefficients of the B-splines this problem
disappears.

4. PENALIZED LIKELIHOOD

For least squares smoothing we have to minimize
S in (5). The system of equations that follows from
the minimization of S can be written as:

BTy = �BTB+ λDT
kDk�a;(13)

where Dk is the matrix representation of the differ-
ence operator 1k, and the elements of B are bij =
Bj�xi�. When λ = 0, we have the standard normal



FLEXIBLE SMOOTHING 93

equations of linear regression with a B-spline basis.
With k = 0 we have a special case of ridge regres-
sion. When λ > 0, the penalty only influences the
main diagonal and k subdiagonals (on both sides of
the main diagonal) of the system of equations. This
system has a banded structure because of the lim-
ited overlap of the B-splines. It is seldom worth the
trouble to exploit this special structure, as the num-
ber of equations is equal to the number of splines,
which is generally moderate (10–20).

In a generalized linear model (GLM), we in-
troduce a linear predictor ηi =

∑n
j=1 bijaj and a

(canonical) link function ηi = g�µi�, where µi is the
expectation of yi. The penalty now is subtracted
from the log-likelihood l�yy a� to form the penalized
likelihood function

L = l�yy a� − λ
2

n∑
j=k+1

�1kaj�2:(14)

The optimization of L leads to the following system
of equations:

BT�y− µ� = λDT
kDka:(15)

These are solved as usual with iterative weighted
linear regressions with the system

BTW̃�y− µ̃� +BTW̃Bã
= �BTW̃B+ λDT

kDk�a;
(16)

where ã and µ̃ are current approximations to the
solution and W̃ is a diagonal matrix of weights

wii =
1
vi

(
∂µi
∂ηi

)2

;(17)

where vi is the variance of yi, given µi. The only
difference with the standard procedure for fitting
of GLM’s (McCullagh and Nelder, 1989), with B-
splines as regressors, is the modification of BTW̃B
by λDT

kDk (which itself is constant for fixed λ) at
each iteration.

5. PROPERTIES OF P-SPLINES

P-splines have a number of useful properties,
partially inherited from B-splines. We give a short
overview, with somewhat informal proofs.

In the first place: P-splines show no boundary ef-
fects, as many types of kernel smoothers do. By this
we mean the spreading of a fitted curve or density
outside of the (physical) domain of the data, gener-
ally accompanied by bending toward zero. In Sec-
tion 8 this aspect is considered in some detail, in
the context of density smoothing.
P-splines can fit polynomial data exactly. Let data
�xi; yi� be given. If the yi are a polynomial in x of
degree k, then B-splines of degree k or higher will

exactly fit the data (de Boor, 1977). The same is true
for P-splines, if the order of the penalty is k + 1 or
higher, whatever the value of λ. To see that this
is true, take the case of a first-order penalty and
the fit to data y that are constant (a polynomial of
degree 0). Because

∑n
j=1 âjBj�x� = c, we have that∑n

j=1 âjB
′
j�xi�=0, for all x. Then it follows from the

relationship between differences and derivatives in
(1) that all 1aj are zero, and thus that

∑n
j=2 1aj =

0. Consequently, the penalty has no effect and the
fit is the same as for unpenalized B-splines. This
reasoning can easily be extended by induction to
data with a linear relationship between x and y,
and a second order difference penalty.
P-splines can conserve moments of the data. For

a linear model with P-splines of degree k+ 1 and a
penalty of order k+ 1, or higher, it holds that

m∑
i=1

xkyi =
m∑
i=1

xkŷi;(18)

for all values of λ, where ŷi =
∑n
j=1 bijâj are the fit-

ted values. For GLM’s with canonical links it holds
that

m∑
i=1

xkyi =
m∑
i=1

xkµ̂i:(19)

This property is especially useful in the context of
density smoothing: the mean and variance of the es-
timated density will be equal to mean and variance
of the data, for any amount of smoothing. This is
an advantage compared to kernel smoothers: these
inflate the variance increasingly with stronger
smoothing.

The limit of a P-splines fit with strong smoothing
is a polynomial. For large values of λ and a penalty
of order k, the fitted series will approach a polyno-
mial of degree k − 1, if the degree of the B-splines
is equal to, or higher than, k. Once again, the rela-
tionships between derivatives of a B-spline fit and
differences of coefficients, as in (1) and (2), are the
key. Take the example of a second-order difference
penalty: when λ is large,

∑n
j=3�12aj�2 has to be very

near zero. Thus each of the second differences has
to be near zero, and thus the second derivative of
the fit has to be near zero everywhere. In view of
these very useful results, it seems that B-splines
and difference penalties are the ideal marriage.

It is important to focus on the linearized smooth-
ing problem that is solved at each iteration, because
we will make use of properties of the smoothing ma-
trix. From (16) follows for the hat matrix H:

H = B�BTW̃B+ λDT
kDk�−1BTW̃:(20)
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The trace of H will approach k as λ increases. A
proof goes as follows. Let

QB = BTW̃B and Qλ = λDTD:(21)

Write tr�H� as

tr�H� = tr��QB +Qλ�−1QB�

= tr�Q1/2
B �QB +Qλ�−1Q

1/2
B �

= tr��I+Q−1/2
B QλQ

−1/2
B �−1�:

(22)

This can be written as

tr�H� = tr��I+ λL�−1� =
n∑
j=1

1
1+ λγj

;(23)

where

L = Q−1/2
B QλQ

−1/2
B(24)

and γj, for j = 1; : : : ; n, are the eigenvalues of L.
Because k eigenvalues of Qλ are zero, L has k zero
eigenvalues. When λ is large, only the �k� terms
with γj = 0 contribute to the leftmost term, and
thus to the trace of H. Hence tr�H� approaches k
for large λ.

6. OPTIMAL SMOOTHING, AIC AND
CROSS-VALIDATION

Now that we can easily influence the smoothness
of a fitted curve with λ, we need some way to choose
an “optimal” value for it. We propose to use the
Akaike information criterion (AIC).

The basic idea of AIC is to correct the log-
likelihood of a fitted model for the effective number
of parameters. An extensive discussion and appli-
cations can be found in Sakamoto, Ishiguro and
Kitagawa (1986). Instead of the log-likelihood, the
deviance is easier to use. The definition of AIC is
equivalent to

AIC�λ� = dev�yy a; λ� + 2 ∗dim�a; λ�;(25)

where dim�a; λ� is the (effective) dimension of the
vector of parameters, a, and dev�yy a; λ� is the
deviance.

Computation of the deviance is straightforward,
but how shall we determine the effective dimension
of our P-spline fit? We find a solution in Hastie and
Tibshirani (1990). They discuss the effective dimen-
sions of linear smoothers and propose to use the
trace of the smoother matrix as an approximation.
In our case that means dim�a� = tr�H�. Note that
tr�H� = n when λ = 0, as in (nonsingular) standard
linear regression.

As tr�AB� = tr�BA� (for conformable matrices),
it is computationally advantageous to use

tr�H� = tr�B�BTWB+ λDT
kDk�−1BTW�

= tr��BTWB+ λDT
kDk�−1BTWB�:

(26)

The latter expression involves only n-by-n matrices,
whereas H is an m-by-m matrix.

In some GLM’s, the scale of the data is known,
as for counts with a Poisson distribution and for
binomial data; then the deviance can be computed
directly. For linear data, an estimate of the variance
is needed. One approach is to take the variance of
the residuals from the ŷi that are computed when
λ = 0, say, σ̂2

0 :

AIC =
m∑
i=1

�yi − µ̂i�2
σ̂2

0
+ 2 tr�H�

−2m ln σ̂0 −m ln 2π:

(27)

This choice for the variance is rather arbitrary, as
it depends on the numer of knots. Alternatives can
be based on (generalized) cross-validation. For ordi-
nary cross-validation we compute

CV�λ� =
m∑
i=1

(
yi − ŷi
1− hii

)2

;(28)

where the hii are the diagonal elements of the hat
matrix H. For generalized cross-validation (Wahba,
1990), we compute

GCV�λ� =
m∑
i=1

�yi − ŷi�2
�m−∑m

i=1 hii�2
:(29)

The difference between both quantities is generally
small. The best λ is the value that minimizes CV�λ�
or GCV�λ�. The variance of the residuals at the op-
timal λ is a natural choice to use as an estimate of
σ2

0 for the computation of AIC�λ�. It is practical to
work with modified versions of CV�λ� and GCV�λ�,
with values that can be interpreted as estimates of
the cross-validation standard deviation:

CV�λ� =
√

CV�λ�/my

GCV�λ� =
√
mGCV�λ�:

(30)

The two terms in AIC�λ� represent the deviance
and the trace of the smoother matrix. The latter
term, say T�λ� = tr�H�λ��, is of interest on its own,
because it can be interpreted as the effective dimen-
sion of the fitted curve.
T�λ� is useful to compare fits for different num-

bers of knots and orders of penalties, whereas λ can
vary over a large range of values and has no clear
intuitive appeal. We will show in an example below
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Table 1
Values of several diagnostics for the motorcycle impact data, for several values of λ

λ 0.001 0.01 0.1 0.2 0.5 1 2 5 10
CV 24.77 24.02 23.52 23.37 23.26 23.38 23.90 25.50 27.49
GCV 25.32 24.93 24.17 23.94 23.74 23.81 24.28 25.87 27.85
AIC 159.6 156.2 149.0 146.7 144.7 145.4 150.6 169.1 194.3
tr�H� 21.2 19.4 15.13 13.6 11.7 10.4 9.2 7.7 6.8

that a plot of AIC against T is a useful diagnostic
tool.

In the case of P-splines, the maximum value that
T�λ� can attain is equal to the number of B-splines
(when λ = 0). The actual maximum depends on the
number and the distributions of the data points. The
minimum value of T�λ� occurs when λ goes to infin-
ity; it is equal to the order of the difference penalty.
This agrees with the fact that for high values of λ
the fit of P-splines approaches a polynomial of de-
gree k− 1.

7. APPLICATIONS TO GENERALIZED
LINEAR MODELLING

In this section we apply P-splines to a number of
nonparametric modelling situations, with normal as
well as nonnormal data.

First we look at a problem with additive errors.
Silverman (1985) used motorcycle crash helmet im-
pact data to illustrate smoothing of a scatterplot
with splines; the data can be found in Härdle (1990)
and (also on diskette) in Hand et al. (1994). The
data give head acceleration in units of g, at differ-
ent times after impact in simulated accidents. We
smooth with B-splines of degree 3 and a second-
order penalty. The chosen knots divide the domain
of x (0–60) into 20 intervals of equal width. When
we vary λ on an approximately geometric grid, we
get the results in Table 1, where σ̂0 is computed
from GCV�λ� at the optimal value of λ. At the op-
timal value of λ as determined by GCV, we get the
results as plotted in Figure 2.

It is interesting to note that the amount of work
to investigate several values of λ is largely indepen-
dent of the number of data points when using GCV.
The system to be solved is

�BTB+ λDT
kDk�a = BTy:(31)

The sum of squares is

S = �y−Ba�2 = yTy− 2aTBTy+ aTBTBa:(32)

So BTB and BTy have to be computed only once.
The hat matrix H is m by m, but for its trace we
found an expression in (26) that involves only BTB
and DT

kDk. So we do not need the original data for
cross-validation at any value of λ.

Our second example concerns logistic regression.
The model is

ln
(

pi
1− pi

)
= ηi =

n∑
j=1

ajBj�xi�:(33)

The observations are triples �xi; ti; yi�, where ti is
the number of individuals under study at dose xi,
and yi is the number of “successes.” We assume that
yi has a binomial distribution with probability pi
and ti trials. The expected value of yi is tipi and
the variance is tipi�1− pi�.

Figure 3 shows data from Ashford and Walker
(1972) on the numbers of Trypanosome organisms
killed at different doses of a certain poison. The data
points and two fitted curves are shown. For the thick
line curve λ = 1 and AIC = 13:4; this value of λ is
optimal for the chosen B-splines of degree 3 and a
penalty of order 2. The thin line curve shows the
fit for λ = 108 (AIC = 27:8). With a second-order
penalty, this essentially a logistic fit.

Figure 4 shows curves of AIC�λ� against T�λ� at
different values of k, the order of the penalty. We
find that k = 3 can give a lower value of AIC (for
λ = 5, AIC = 11:8). For k = 4 we find that a very
high value of λ is allowed; then AIC = 11:4, hardly
different from the lowest possible value (11.1). A
large value of λ with a fourth-order penalty means
that effectively the fitted curve for η is a third-order
polynomial. The limit of the fit with P-splines thus
indicates a cubic logistic fit as a good parametric
model. Here we have seen an application where a
fourth-order penalty is useful.

Our third example is a time series of counts yi,
which we will model with a Poisson distribution
with smoothly changing expectation:

lnµi = ηi =
n∑
j=1

ajBj�xi�:(34)

In this special case the xi are equidistant, but this
is immaterial. Figure 5 shows the numbers of dis-
asters in British coal mines for the years 1850–
1962, as presented in (Diggle and Marron, 1988).
The counts are drawn as narrow vertical bars, the
line is the fitted trend. The number of intervals is
20, the B-splines have degree 3 and the order of the
penalty is 2. An optimal value of λ was searched
on the approximately geometric grid 1, 2, 5, 10 and
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Fig. 2. Motorcycle crash helmet impact data: optimal fit with B-splines of third degree, a second-order penalty and λ = 0:5.

Fig. 3. Nonparametric logistic regression of Trypanosome data: P-splines of order 3 with 13 knots, difference penalty of order 2; λ = 1
and AIC = 13:4 (thick line); the thin line is effectively the logistic fit �λ = 108 and AIC = 27:8�.

Fig. 4. AIC�λ� versus T�λ�; the effective dimension, for several orders of the penalty �k�.

so on. The minimum of AIC (126.0) was found for
λ = 1;000.

The raw data of the coal mining accidents pre-
sumably were the dates on which they occurred.
So the data we use here are in fact a histogram
with one-year-wide bins. With events on a time scale
it seems natural to smooth counts over intervals,
but the same idea applies to any form of histogram
(bin counts) or density smoothing. This was already

noted by Diggle and Marron (1988). In the next sec-
tion we take a detailed look at density smoothing
with P-splines.

8. DENSITY SMOOTHING

In the preceding section we noted that a time se-
ries of counts is just a histogram on the time axis.
Any other histogram might be smoothed in the same
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Fig. 5. Numbers of severe accidents in British coal mines: number per year shown as vertical lines; fitted trend of the expectation of the
Poisson distribution; B-splines of degree 3; penalty of order 3; 20 intervals between 1850 and 1970; λ = 1;000 and AIC = 126:0.

way. However, it is our experience that this idea
is hard to swallow for many colleagues. They see
the construction of a frequency histogram as an un-
allowable discretization of the data and as a pre-
lude to disaster. Perhaps this feeling stems from
the well-known fact that maximum likelihood es-
timation of histograms leads to pathological results,
namely, delta functions at the observations (Scott,
1992). However, if we optimize a penalized likeli-
hood, we arrive at stable and very useful results, as
we will show below.

Let yi, i = 1; : : : ;m, be a histogram. Let the ori-
gin of x be chosen in such a way that the midpoints
of the bins are xi = ih; thus yi is the number of raw
observations with xi − h/2 ≤ x < xi + h/2. If pi is
the probability of finding a raw observation in cell i,
then the likelihood of the given histogram is propor-
tional to the multinomial likelihood

∏m
i=1p

yi
i . Equiv-

alently (see Bishop, Fienberg and Holland, 1975,
Chapter 13), one can work with the likelihood of m
Poisson distributions with expectations µi = piy+,
where y+ =

∑m
i=1 yi.

To smooth the histogram, we again use a general-
ized linear model with the canonical log link (which
guarantees positive µ):

lnµi = ηi =
n∑
j=1

ajBj�xi�(35)

and construct the penalized log likelihood

L =
m∑
i=1

yi lnµi −
m∑
i=1

µi − λ
n∑

j=k+1

�1kaj�2
2

;(36)

with n a suitable (i.e., relatively large) number of
knots for the B-splines. The penalized likelihood
equations follow from the minimization of L:

m∑
i=1

�yi − µi�Bj�xi� = λ
n∑

l=k+1

djlal:(37)

These equations are solved with iteratively re-
weighted regression, as described in Section 4.

Now we let h, the width of the cells of the his-
togram, shrink to a very small value. If the raw
data are given to infinite precision, we will even-
tually arrive at a situation in which each cell of
the histogram has at most one observation. In other
words, we have a very large number (m) of cells, of
which y+ are 1 and all others 0. Let I be the set of
indices of cells for which yi = 1. Then

m∑
i=1

yiBj�xi� =
∑
i∈I
Bj�xi�:(38)

If the raw observations are ut for t = 1; : : : ; r, with
r = y+, then we can write

∑
i∈I
Bj�xi� =

r∑
t=1

Bj�ut� = B+j ;(39)

and the penalized likelihood equations in (37)
change to

B+j −
m∑
i=1

µiBj�xi� = λ
n∑

l=k+1

djlal:(40)

For any j, the first term on the left-hand side of
(40) can be interpreted as the “empirical sum” of B-
spline j, while the second term on the left can be
interpreted as the “expected sum” of that B-spline
for the fitted density. When λ = 0, these terms have
to be equal to each other for each j.

Note that the second term on the left-hand side
of (40) is in fact a numerical approximation of an
integral:

m∑
i=1

µiBj�xi�/y+

≈
∫ xmax

xmin

Bj�x� exp
{ n∑
l=1

alBl�x�
}
dx:

(41)
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Table 2
The value of AIC at several values of lambda for the Old Faithful density estimate

λ 0.001 0.01 0.02 0.05 0.1 0.2 0.5 1 10
AIC 50.79 48.21 47.67 47.37 47.70 48.61 50.59 52.81 65.66

The smaller h (the larger m), the better the app-
proximation. In other words: the discretization is
only needed to solve an integral numerically for
which, as far as we know, no closed form solution
exists. For practical purposes the simple sum is suf-
ficient, but a more sophisticated integration scheme
is possible. Note that the sums to calculate B+j in-
volve all raw observations, but in fact at each of
these only q + 1 terms Bj�ut� add to their corre-
sponding B+j .

The necessary computations can be done in terms
of the sufficient statistics B+j : we have seen their
role in the penalized likelihood equations above. But
also the deviance and thus AIC can be computed
directly:

dev�yy a� = 2
m∑
i=1

yi ln�yi/µi�

= 2
m∑
i=1

yi lnyi − 2
m∑
i=1

yi

n∑
j=1

ajBj�xi�

= 2
m∑
i=1

yi lnyi − 2
n∑
j=1

ajB
+
j :

(42)

In the extreme case, when the yi are either 0 or
1, the term

∑
yi lnyi vanishes. In any case it is

independent of the fitted density.
The density smoother with P-splines is very

attractive: the estimated density is positive and
continuous, it can be described relatively parsimo-
niously in terms of the coefficients of the B-splines,
and it is a proper density. Moments are conserved,
as follows from (19). This implies that with third-
degree B-splines and a third-order penalty, mean
and variance of the estimated distribution are equal
to those of the raw data, whatever the amount of
smoothing; the limit for high λ is a normal distri-
bution.

The P-spline density smoother is not troubled by
boundary effects, as for instance kernel smoothers
are. Marron and Ruppert (1994) give examples and
a rather complicated remedy, based on transforma-
tions. With P-splines no special precautions are nec-
essary, but it is important to specify the domain of
the data correctly. We will present an example be-
low.

We now take as a first example a data set from
(Silverman, 1986). The data are durations of 107
eruptions of the Old Faithful geyser. Third-degree
B-splines were used, with a third-order penalty. The

domain from 0 to 6 was divided into 20 intervals
to determine the knots. In the figure two fits are
shown, for λ = 0:001 and for λ = 0:05. The latter
value gives the minimum of AIC, as Table 2 shows.
We see that of the two clearly separated humps, the
right one seems to be a mixture of two peaks.

The second example also comes from (Silverman,
1986). The data are lengths of spells of psychiatric
treatments in a suicide study. Figure 7 shows the
raw data and the estimated density when the do-
main is chosen from 0 to 1,000. Third-degree B-
splines were used, with a second-order penalty. A
fairly large amount of smoothing (λ = 100) is in-
dicated by AIC; the fitted density is nearly expo-
nential. In fact, if one considers only the domain
from 0 to 500, then λ can become arbitrarily large
and a pure exponential density results. However, if
we choose the domain from −200 to 800 we get a
quite different fit, as Figure 8 shows. By extending
the domain we force the estimated density also to
cover negative values of x, where there are no data
(which means zero counts). Consequently, it has to
drop toward zero, missing the peak for small posi-
tive values. The optimal value of λ now is 0.01 and
a much more wiggly fit results, with an appreciably
higher value of AIC. This nicely illustrates how, with
a proper choice of the domain, the P-spline density
smoother can be free from the boundary effects that
give so much trouble with kernel smoothers.

9. DISCUSSION

We believe that P-splines come near to being the
ideal smoother. With their grounding in classic re-
gression methods and generalized linear models,
their properties are easy to verify and understand.
Moments of the data are conserved and the limiting
behavior with a strong penalty is well defined and
gives a connection to polynomial models. Bound-
ary effects do not occur if the domain of the data is
properly specified.

The necessary computations, including cross-
validation, are comparable in size to those for a
medium sized regression problem. The regression
context makes it natural to extend P-splines to
semiparametric models, in which additional ex-
planatory variables occur. The computed fit is
described compactly by the coefficients of the B-
splines.
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Fig. 6. Density smoothing of durations of Old Faithful geyser eruptions: density histogram and fitted densities; thin line, third-order
penalty with λ = 0:001�AIC = 84:05�; thick line, optimal λ = 0:05, with AIC = 80:17; B-splines of degree 3 with 20 intervals on the
domain from 1 to 6.

Fig. 7. Density smoothing of suicide data: positive domain (0–1,000); B-splines of degree 3; penalty of order 2; 20 intervals, λ =
100; AIC = 69:9.

Fig. 8. Density smoothing of suicide data: the domain includes negative values �−200–800�; B-splines of degree 3; penalty of order 2,
20 intervals, λ = 0:01; AIC = 83:6.

P-splines can be very useful in (generalized) ad-
ditive models. For each dimension a B-spline ba-
sis and a penalty are introduced. With n knots in
each base and d dimensions, a system of nd-by-nd
(weighted) regression equations results. Backfitting,

the iterative smoothing for each separate dimen-
sion, is eliminated. We have reported on this ap-
plication elsewhere (Marx and Eilers, 1994, 1996).

Penalized likelihood is a subject with a grow-
ing popularity. We already mentioned the work of
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O’Sullivan. In the book by Green and Silverman
(1994), many applications and references can be
found. Almost exclusively, penalties are defined in
terms of the square of the second derivative of the
fitted curve. Generalizations to penalties on higher
derivatives have been mentioned in the literature,
but to our knowledge, practical applications are
very rare. The shift from the continuous penalty to
the discrete penalty in terms of the coefficents of
the B-splines is not spectacular in itself. But we
have seen that it leads to very useful results, while
giving a mechanical way to work with higher-order
penalties. The modelling of binomial dose–response
in Section 7 showed the usefulness of higher-order
penalties.

A remarkable property of AIC is that it is easier to
compute it for certain nonnormal distributions, like
the Poisson and binomial, than for normal distribu-
tions. This is so because for these distributions the
relationship between mean and variance is known.
We should warn the reader that AIC may lead to
undersmoothing when the data are overdispersed,
since the assumed variance of the data may then be
too low. We are presently investigating smoothing
with P-splines and overdispersed distributions like
the negative binomial and the beta-binomial. Also
ideas of quasilikelihood will be incorporated.

We have paid extra attention to density smooth-
ing, because we feel that in this area the advan-
tages of P-splines really shine. Traditionally, kernel
smoothers have been popular in this field, but they
inflate the variance and have troubles with bound-
aries of data domains; their computation is expen-
sive, cross-validation even more so, and one cannot
report an estimated density in a compact way.

Possibly kernel smoothers still have advantages
in two or more dimensions, but it seems that
P-splines can also be used for two-dimensional
smoothing with Kronecker products of B-splines.
With a grid of, say, 10 by 10 knots and a third-order
penalty, a system of 130 equations results, with
half bandwidth of approximately 30. This can easily
be handled on a personal computer. The automatic
construction of the equations will be more difficult
than in one dimension. First experiments with this
approach look promising; we will report on them in
due time.

We have not touched on many obvious and in-
teresting extensions to P-splines. Robustness can
be obtained with any nonlinear reweighting scheme
that can be used with regression models. Circular
domains can be handled by wrapping the B-splines
and the penalty around the origin. The penalty can
be extended with weights, to give a fit with noncon-
stant stiffness. It this way it will be easy to specify

a varying stiffness, but it is quite another matter to
estimate the weights from the data.

Finally, we like to remark that P-splines form a
bridge between the purely discrete smoothing prob-
lem, as set forth originally by Whittaker (1923) and
continuous smoothing. B-splines of degree zero are
constant on an interval between two knots, and zero
elsewhere; they have no overlap. Thus the fitted
function gives for each interval the value of the co-
efficient of the corresponding B-spline.

APPENDIX: COMPUTATIONAL DETAILS

Here we look at the computation of B-splines
and derivatives of the penalty. We use S-PLUS and
MATLAB as example languages because of their
widespread use. Also we give some impressions of
the speed of the computations.

In the linear case we have to solve the system of
equations

�BTB+ λDT
kDk�â = BTy(43)

and to compute �y−Bâ�2 and tr��BTB+λDTD�−1 ·
BTB�. We need a function to compute B, the B-
spline base matrix. In S-PLUS, this is a simple mat-
ter, as there is a built-in function spline.des() that
computes (derivatives) of B-splines. We only have to
construct the sequence of knots. Let us assume that
xl is the left of the x-domain, xr the right, and that
there are ndx intervals on that domain. To compute
B for a given vector x, based on B-splines of degree
bdeg, we can use the following function:

bspline <- function(x, xl, xr, ndx, bdeg) {

dx <- (xr - xl) / ndx

knots <- seq(xl - bdeg * dx, xr + bdeg * dx, by = dx)

B <- spline.des(knots, x, bdeg + 1, 0 * x)$design

B

}

Note that S-PLUS works with the order of B-
splines, following the original definition of de Boor
(1977): the order is the degree plus 1.

The matrix Dk can also be computed easily. The
identity matrix of size n by n is constructed by
diag(n) and there is a built-in function diff() to
difference it. With a short loop we arrive at Dk.
The computations thus are given as (with pord the
order of the penalty) follows:

B <- bspline(x, xl, xr, ndx, bdeg)

D <- diag(ncol(B))

for (k in 1:pord) D <- diff(D)

a <- solve(t(B) %*% B + lambda * t(D) %*% D,

t(B) %*% y)
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yhat <- B %*% a

s <- sum((y - yhat)^2)

Q <- solve(t(B) %*% B + lambda * t(D) %*% D)

# matrix inversion

t <- sum(diag(Q %*% (t(B) %*% B)))

gcv <- s / (nrow(B) - t)^2

There is room to optimize the computations above
by storing and reusing intermediate results.

MATLAB has no built-in function to compute B-
splines, so we have to program the recursions our-
self. We start with the recurrence relation that is
given in de Boor (1978, Chapter 10):

Bj; k�x�
tj+k − tj

= x− tj
tj+k−1 − tj

Bj; k−1�x�
tj+k−1 − tj

+ tjk − x
tj+k − tj

Bj+1; k−1�x�
tj+k − tj+1

;

(44)

where Bj; k�x� in de Boor’s notation is our Bj�xy k−
1� (de Boor uses order 1 for the constant B-splines,
whereas we use degree 0). The use of a uniform
grid of knots at distances dx = �xmax − xmin�/n′
greatly simplifies the formulas. If we define p =
�x−xmin�/dx, we arrive at the following recurrence
formula:

Bj�xy k� =
k+ p− j+ 1

k
Bj−1�xy k− 1�

+ j− p
k

Bj�xy k− 1�:
(45)

The recursion can be started with k = 0, because
Bj�xy 0� = 1 when �j − 1�dx < x − xmin ≤ jd, and
zero for all other j. Also, Bj�xy k� = 0 for j < 0 and
j > n. This leads to the following function:

function B = bspline(x, xl, xr, ndx, bdeg)

dx = (xr - xl) / ndx;

t = xl + dx * [-bdeg:ndx-1];

T = (0 * x + 1) * t;

X = x * (0 * t + 1);

P = (X - T) / dx;

B = (T <= X) & (X < (T + dx));

r = [2:length(t) 1];

for k = 1:bdeg

B = (P .* B + (k + 1 - P) .* B(:, r)) / k;

end;

end;

The computation of Dk is a little simpler, because
there is the built-in function diff() that accepts
a parameter for the order of the difference. Conse-
quently, in MATLAB the computations look like the

following:

B = bspline(x, xl, xr, ndx, bdeg);

[m n] = size(B);

D = diff(eye(n), pord);

a = (B’ * B + lambda * D’ * D) \ (B’ * y);

yhat = B * a;

Q = inv(B’ * B + lambda * D’ * D);

s = sum((y - yhat) .^ 2)

t = sum(diag(Q * (B’ * B)));

gcv = s / (m - t)^2;

The formulas for the penalized likelihood equa-
tions describe how to incorporate the penalty when
one has access to all the individual steps of the re-
gression computations. If this is not the case, data
augmentation can help. Instead of working with the
matrices B of B-splines regressors and Dk of the
penalty separately, and combining their inner prod-
ucts, augmented data can be constructed as follows:

[
y

0

]
≈
[

B√
λDk

]
;(46)

where ≈ indicates regression of the left-hand vector
on the right-hand matrix. For linear problems, it
is enough to do this only one time. In generalized
linear models, data augmentation has to be done
anew in each of the iterations with weighted linear
regressions.

We tested the above program fragments on a PC
with 75-MHz Pentium processor, with S-PLUS 3.3
and MATLAB 4.2, both operating under Windows
for Workgroups. The data were those from the mo-
torcycle helmet experiment, as presented in Fig-
ure 2. There are 133 data points and we used 20
intervals on the x-domain. S-PLUS took about 0.9
second, Matlab about 0.2 second (for one value of
λ). These times can be reduced to 0.6 second and 0.1
second, respectively, by storing and reusing some in-
termediate results (BTB and the inverse of BTB +
λDT

kDk).
Functions for generalized linear estimation can

be obtained from the first author. We are preparing
a submission to Statlib.
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Comment
S-T. Chiu

Authors Paul Eilers and Brian Marx provide a
very interesting approach to nonparametric curve
fitting. They give a brief but very concise review of

S-T. Chiu is with the Department of Statistics,
Colorado State University, Fort Collins, Colorado
80523-0001.

B-splines. I also enjoyed reading the part where the
authors applied their procedure to some examples.
As shown in the paper, the approach has several
merits which deserve to be studied in more detail.

Similar to any nonparametric smoother, the pro-
posed procedure needs a smoothing parameter λ to
control the smoothness of the fitting curve. My com-
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ments mainly concern the selection of the smoothing
parameter.

It is well known that the classical selectors such
as AIC, GCV, Mallows’s Cp and so on do not give
a satisfactory result. For the regression case, more
details about the defects can be found in Rice (1984)
and Chiu (1991a). Scott and Terrell (1987) and Chiu
(1991b) discuss the case of density estimation. The
classical selectors have a large sample variation and
a tendency to select a small smoothing parameter,
thus producing a very rough curve estimate. It is
natural to expect that they have a similar problem
when applied to selecting the smoothing parameter
for P-splines.

Several procedures have been suggested to rem-
edy the defects of the classical procedures. Chiu
(1996) provides a survey of some of these newer
selectors for density estimation. For the regres-
sion case, some procedures are suggested in Chiu
(1991a), Hall and Johnstone (1992) and Hall, Mar-
ron and Park (1992).

In the following, I provide a brief review to ex-
plain the defects and some remedy to the classical
selectors for kernel regression estimate. Let us as-
sume the simplest model of a circular design with
equally spaced design points. yt = µ�xt�+ εt, where
εt are i.i.d. noise. For the kernel estimate µ̂β with
a bandwidth β, we often use the mean of sum of
squared errors

�1� R�β� = E
[∑
�µ̂β�xt� − µ�xj��2

]

to measure the closeness between µ̂�x� and µ�x�.
The goal of bandwidth selection is to select the

optimal bandwidth which minimizes R�β�. Since in
practice µ is unknown, we have to estimate R�β�
and use the minimizer of the estimated R�λ� as
an estimate of the optimal bandwidth. For exam-
ple, Mallows’s Cp has the form

�2� R̂�β� = RSS�β� −Tσ2 + 2σ2w�0�/β:

Here w�x� is the kernel and σ2 is the error variance.
Other classical procedures such as AIC and GCV
have a similar form and were shown to be asymp-
totically equivalent in Rice (1984). All of these pro-
cedures rely on the residual sum of squares RSS�β�.

Mallows (1973) proposed the procedure based on
the observation that

R�β� = E�RSS�β�� −Tσ2 + 2σ2w�0�/β:

As we will explain later, the main problem here is
that RSS�β� is not a good estimate of its expected
value.

By using the Fourier transform, (1) and (2) could
be written, respectively, as

�3�
R�β� = 4π

N∑
j=1

IS�λj��1−Wβ�λj��2

+ σ2
N∑
j=1

Wβ�λ�2 + σ2

and

�4�
R̂�β� = 4π

N∑
j=1

{
IY�λj� −

σ2

2π

}
�1−Wβ�λj��2

+ σ2
N∑
j=1

Wβ�λ�2 + σ2;

where IY and IS are the periodograms ofYt and the
signal St = µ�t/T�, respectively, and λj = 2πj/T,
j = 1; : : : ;N = �T/2�. Also, Wβ�λ� is the transfer
function of w�t/�βT��/�βT�.

Comparing (3) and (4), we see that R̂ attempts to
use IY�λ�−σ2/�2π� to estimate IS�λ�. The difficulty
is that at high frequency, IY is dominated by the
noise and thus does not give a good estimate of IS.

Chiu (1991a) suggested truncating the high-
frequency portion when we estimate R�β�,

�5�
R̃�β� = 4π

J∑
j=1

{
IY�λj� −

σ2

2π

}
�1−Wβ�λj��2

+ σ2
N∑
j=1

Wβ�λ�2 + σ2:

Here J is selected in such a way that there is no sig-
nificant IS beyond frequency λJ. The selector R̃�β�
has a much better performance than the classical
ones. Hall, Marron and Park (1992) proposed an-
other procedure which downweights the contribu-
tion from the high-frequency part.

It is clear that the bases of the kernel regression
are the sinusoid waves. The primary reason of suc-
cess of criterion (5) is that most information about
µ concentrates at low frequency. In other words, we
just need quite a few bases to approximate the true
curve well.

However, since each basis of the B-spline is very
local to a certain interval, we cannot use just a few
bases to approximate the curve over the whole re-
gion. In my opinion, this could be a big obstacle to
the understanding and improvement of the classical
smoothing parameter selectors.
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Comment
Douglas Nychka and David Cummins

One strength of the authors’s presentation is the
simple ridge regression formulas that result for the
estimator. We would like to point out a decompo-
sition using a different set of basis functions that
helps to interpret this smoother. This alternative
basis, derived from B-splines, facilitates the compu-
tation of the GCV function and confidence bands for
the estimated curve.

To simplify this discussion assume that W = I so
that the hat matrix is

H = B�BTB+ λDTD�−1BT = G�I+ λ0�−1GT;

G = BQ−1/2
2 U, Q2 = BTB U, 0 = diag�γ� and U is

an orthogonal matrix such that Q−1/2
2 DTDQ

−1/2
2 =

U0UT. The columns of G can be identified with
a new set of functions known as the Demmler–
Reinsch (DR) basis. Specifically these are piecewise
polynomial functions, �ψν� so that the elements of
G satisfy ψν�xi� = Giν. Besides having useful or-
thogonality properties the DR basis can be ordered
by frequency and larger values of γν will exhibit
more oscillations (in fact ν − 1 zero crossings). Fig-
ure 1(a) plots several of the basis functions for
m = 133 equally spaced x’s and 20 equally spaced
interior knots. Figure 1(b) illustrates the expected
polynomial increase in the size of γν as a function
of ν.

The Demmler–Reinsch basis provides an informa-
tive interpretation of the spline estimate. Let f̂ de-

Douglas Nychka is Professor of Statistics and David
Cummins is with the Department of Statistics, North
Carolina State University, Raleigh, North Carolina
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note the P-spline and let α = GTy denote the least
squares coefficients from regressing y on the DR ba-
sis functions:

f̂�xi� = �Hy�i = �G�I+ λ0�−1GTy�i

=
m∑
ν=1

ψν�xi�
αν

1+ λγν
:

Note that the smoother is just a linear combi-
nation of the DR basis functions using coefficients
that are downweighted (or tapered) by the fac-
tor 1/�1 + λγν� from the least squares estimates.
Because of the relationship between γν and ψν
(see Figure 1), the basis functions that represent
higher-frequency structure will have coefficients
that are more severely downweighted. In this way
the smoother is a low-pass filter, tending to preserve
low-frequency structure and downweighting higher-
frequency terms. The residual sum of squares and
the trace of H can be computed rapidly (order n)
using the DR representation. Thus the GCV func-
tion can also be evaluated in order n operations for
a given value of λ.

Another application of the DR form is in comput-
ing a confidence band. Consider a set of candidate
functions that contain the true function with the
correct level of confidence. The confidence band is
then the envelope implied by considering all func-
tions in this set. For example, let f̂ denote the func-
tion estimate and for C1;C2 > 0 let

B =
{
hx h is a B-spline with coefficients b,

n∑
i=1

�f̂�xi�−h�xi��2≤C1 and bTDTD b≤C2

}
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Fig. 1. Illustration of several Demmler–Reinsch basis functions and the associated eigenvalues for 20 equally spaced knots, 133 equally
spaced observations and second divided differences �k = 2�: the upper plot (a) is �ψν� for ν = �3;5;10;15�; the numerals identify the
order of these basis functions and in the second plot (b) identify the eigenvalues for these functions.

The constants C1 and C2 are determined so that
P�f ∈ B� equals the desired confidence level. The
upper and lower boundaries of the confidence band
are then

U�x� = max�h�x�x h ∈ B�

and

L�x� = min�h�x�x h ∈ B�

In practice we work with the coefficients and
thus the computation of U and L at each x is
a minimization problem with two quadratic con-

straints. Using the DR basis reduces both con-
straints to quadratic forms with diagonal matrices
and thus both are computable in order n opera-
tions. Moreover this strategy does not depend on
the roughness penalty being divided differences but
will work for any nonnegative matrix used as a
penalty (e.g., thin plate splines). Currently we are
investigating the choice of C1 and C2 based on the
GCV estimate of f.
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Comment
Chong Gu

I would like to begin by congratulating the au-
thors Eilers and Marx for a clear exposition of an
interesting variant of penalized regression splines.
My comments center around three questions: Are
P-splines really better? What does optimal smooth-
ing stand for? And what does the future hold for
nonparametric function estimation?

ARE P-SPLINES REALLY BETTER?

P-splines can certainly be as useful as other vari-
ants of penalized regression splines, but I am not
sure that they are really advantageous over the oth-
ers. It is true that with huge sample sizes, one may
choose n much smaller than m to save on computa-
tion without sacrificing performance, but other vari-
ants of regression splines also share the same ad-
vantage. The mechanical handling of the difference
penalty is certainly very interesting computation-
ally, but as far as the end users are concerned, I
do not see why the discrete penalties are necessar-
ily advantageous over the continuous ones. Higher-
order derivative penalties are certainly as feasible
as discrete penalties computationally, albeit more
difficult to implement, but the difference is irrele-
vant to the end users whose main interest is the
interface.

The users may be more interested in what the pro-
gram computes rather than how it computes, how-
ever, and in this respect, I only see P-splines lose
out to penalized regression splines with the usual
derivative penalties that everyone can understand.
Being told that B-splines provide a good basis
for function approximation, the users may simply
ignore whatever other properties B-splines have
and still have a clear picture about what they are
getting from derivative penalties or, for that mat-
ter, from Whittaker’s discrete penalties which use
the differences of adjacent function values. With
the P-splines, however, the intuition is unfortu-
nately taken away from the users, and even with
a thorough knowledge of all the properties of B-
splines, I am not sure one can easily perceive what

Chong Gu is Assistant Professor, Department of
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the penalty is really doing, other than that it is re-
ducing the effective dimension in some not so easily
comprehensible way.

Penalized smoothers with quadratic penalties are
known to be equivalent to Bayes estimates with
Gaussian priors. When Q = DT

kDk is of full rank,
the corresponding prior for the B-spline coefficients
a has mean 0 and covariance proportional to Q−1.
When Q is rank-deficient, the prior has a “fixed ef-
fect” component diffuse in the null space of Q and
a “random effect” component with mean 0 and co-
variance proportional to Q+, the Moore–Penrose in-
verse of Q. From this perspective, P-splines differ
from other variants of penalized regression splines
only in the specification of Q.

WHAT DOES OPTIMAL SMOOTHING
STAND FOR?

One probably can never overstate the importance
of smoothing parameter selection for any success-
ful practical application of any smoothing method.
AIC and cross-validation are among the most ac-
cepted (and successful) working criteria for model
selection, yet their optimalities are established, the-
oretically or empirically, only for specific problem
settings under appropriate conditions. Naive adap-
tations of these criteria in new problem settings do
not necessarily deliver fits that are nearly optimal.

Specifically, I am somewhat worried about the
“optimality” of the naive adaptations of these cri-
teria proclaimed in Section 6. First, it is not clear in
what sense these criteria are “optimal” in the prob-
lem settings to which they are applied; second, there
is no empirical (or theoretical) evidence illustrating
the presumed “optimality.” AIC or cross-validation
may deliver nearly optimal fits, but they surely do
not by themselves define the notion of optimality.

My worries stem from previous empirical ex-
periments with smoothing parameter selection by
myself and by others, especially in non-Gaussian
regression problems (commonly referred to as gen-
eralized linear models). Using Kullback–Leibler
discrepancy or its symmetrized version to define
optimality, it has been found that a naive adap-
tation of GCV in non-Gaussian regression, which
appears similar to what the authors suggest in Sec-
tion 7, may return anything but nearly optimal fits.
See, for example, Cox and Chang (1990), Gu (1992)
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and Xiang and Wahba (1996). For the density esti-
mation problem in Section 8, I could not find the
definition of the H matrix to understand the AIC
proposed, but whatever it is, it should be subject
to the same scrutiny before being recommended as
“optimal.”

In ordinary Gaussian regression, the optimality
of GCV is well established in the literature. For
the AIC score presented in (27), however, I would
like some empirical evidence to be convinced of its
optimality. The skepticism is partly due to some
empirical evidence suggesting that the trace of H
may not be a consistent characterization of the ef-
fective dimension of the model. Such evidence can
be found in Gu (1996), available online at http://

www.stat.lsa.umich.edu/~chong/ps/modl.ps.

WHAT DOES THE FUTURE HOLD
FOR FUNCTION ESTIMATION?

In response to Statistical Science’s desideration
for speculations regarding future research direc-
tions, I would like to take this opportunity to offer
some of my thoughts.

It has long been said that all smoothing methods
perform similarly in one dimension, provided that
the smoothing parameter selection is done prop-
erly, yet time and again new and not so new meth-
ods keep being invented. The real challenge, how-
ever, seems to lie in multivariate problems. Amid
the curse of dimensionality and potential structures
associated with multivariate problems, the choice
of methods can make a real difference in multidi-
mension, in the ease of computation and smoothing
parameter selection, in the convenience of incor-
poration of structures, and so on. Among methods
with the most potential are the adaptive regres-
sion splines developed by Friedman, Stone and co-
workers, and the smoothing splines developed by
the Wisconsin spline school lead by Wahba. The pe-
nalized regression spline approach, however, seems
somewhat handicapped by the lack of effective ba-
sis, say in dimensions beyond two or three.

More challenging still, an important line of re-
search that has been largely neglected is inference.
What one usually gets from the function estimation
literature are point estimates possibly with asymp-
totic convergence rates, and intuitive smoothing
parameter selectors not always accompanied by
justifications. Besides a few entries based on the
Bayes model of smoothing splines by Wahba (1983),
Cox, Koh, Wahba and Yandell (1988), Barry (1993)
and some follow-ups, practical procedures that of-
fer interval estimates, test of hypothesis, and so
on, are largely missing in the literature. To guard
against the danger of overinterpreting data by the
use of nonparametric methods, such inferential
tools should be a top priority in future research.
Under a Bayes model where the target function is
treated as a realization of a stochastic process, the
development may proceed within the conventional
inferential framework. Under the traditional set-
ting where the target function is considered fixed,
however, one may have to turn his back on the con-
ventional Neyman–Pearson thinking before he can
call any useful inferential tools non-ad-hoc.
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Comment
M. C. Jones

Eilers and Marx present a clear and interesting
account of their P-spline smoothing methodology.
Clearly, P-splines constitute another respectable
approach to smoothing. However, their good prop-
erties appear to be, broadly, on a par with those of
various other approaches; the method is no nearer
to, or further from, “being the ideal smoother” than
others.

“P-splines have no boundary effects, they are a
straightforward extension of (generalized) linear re-
gression models, conserve moments (means, vari-
ances) of the data, and have polynomial curve fits as
limits.” Except for the third point, the same claims
can be made of spline smoothing (Green and Sil-
verman, 1994) or local polynomial fitting (Fan and
Gijbels, 1996).

Conservation of moments seems unimportant. In
regression, I do not see the desirability. In density
estimation, simple corrections of kernel density es-
timates for variance inflation exist, but make lit-
tle difference away from the normal density (Jones,
1991). Indeed, getting means and variances right
is a normality-based concept, so corrected kernel
estimators act in a normal-driven semiparametric
manner. Efron and Tibshirani (1996) propose more
sophisticated moment conservation, but initial indi-
cations are that this is no better nor worse than al-
ternative semiparametric density estimators (Hjort,
1996).

“The computations, including those for cross-
validation, are relatively inexpensive and easily
incorporated into standard software.” Again, pro-
ponents of the two competing methods I have
mentioned would claim the same for the first half
of this and advocates of regression splines would
claim the lot.

The authors make no particularly novel contri-
bution to automatic bandwidth selection. Cross-
validation and AIC are in a class of methods (e.g.,
Härdle, 1990, pages 166–167) which, while not be-
ing downright bad, allow scope for improvement.
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Calculating thesebandwidth selectors quickly is
less important than developing better selectors. For
local polynomials, improvements are offered (for
normal errors) by Fan and Gijbels (1995) and Rup-
pert, Sheather and Wand (1995) and unpublished
work extends these to more general situations.

The comparison of (5) with (11) focusses on the
small extra complexity of the latter. But which is
more interpretable: a roughness penalty on a curve
or on a series of coefficients? Changing the penalty
in a smoothing spline setup allows different para-
metric limits (e.g., Ansley, Kohn and Wong, 1993);
how can P-splines cope with this?

An exasperating aspect of spline-based approach-
es is the lack of straightforward (asymptotic) mean
squared error–type results to indicate theoreti-
cal performance relative to kernel/local polynomial
approaches for which such results are simply ob-
tained and, within limitations, informative. I doubt
whether P-splines can facilitate such developments
(reason given below).

It seems that P-splines have no particular attrac-
tiveness for multivariate applications. The examples
are noteworthy only for looking like results obtain-
able by other methods too.

The idea behind density estimation P-splines
is to treat a fine binning as Poisson regression
data. OK, but again equally applicable to other
approaches and already investigated for local poly-
nomial smoothing. Simonoff (1996, Section 6.4)
and Jones (1996) explain how such regression
approaches to density estimation are discretized
versions of certain “direct” local likelihood density
estimation methods (Hjort and Jones, 1996; Loader,
1996). Binning is the major computational device of
all kernel-type estimators (Fan and Marron, 1994).
The local likelihood approach is already deeply
understood theoretically.

Comparison of P-splines’s reasonable boundary
performance with local polynomials’s reasonable
boundary performance is not yet available through
theory or simulations.

An interesting point mentioned in the paper is the
apparent continuum between few-parameter para-
metric fits at one end and fully “nonparametric”
techniques at the other, with many-parameter para-
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metric models and semiparametric approaches in
between: a dichotomy into parametric and nonpara-
metric is inappropriate, and there is a huge grey
area of overlap. The equivalent degrees-of-freedom
ideas of Hastie and Tibshirani (1990) provide a fine
(but possibly improveable?) attempt to give this con-
tinuum a scale. Theoretical development might be
made more difficult by P-splines for reasons asso-
ciated with quantifying the “nonparametricness” of
intermediate methods.

Finally, we come back to my main point. In an ad-
mirable “personal view of smoothing and statistics,”
Marron (1996) gives a list of smoothing methods
and another of factors (to which I might add others)
involved in the choice between methods. Marron
says “All of the methods : : : listed : : :have differing
strengths and weaknesses in : : :divergent senses.
None of these methods dominates any other in all
of the senses. : : :Since these factors are so differ-
ent, almost any method can be ‘best’, simply by an
appropriate personal weighting of the various fac-
tors involved.” P-splines are a reasonable addition
to Marron’s first list, but have no special status
with respect to his second.
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Comment
Joachim Engel and Alois Kneip

Paul Eilers and Brian Marx have provided us
with a nice and flexible addition to the smoother’s
toolkit. Their proposed P-spline estimator can be
considered as some compromise between the usual
B-spline estimation and the smoothing spline ap-
proach. Different from many papers on B-splines,
however, they do not consider the delicate problem
of optimal knot selection. Instead, they propose to
use a large number of equidistant knots. Smoothing
is introduced by a roughness penalty on the differ-
ence of spline coefficients.
P-spline estimation is equivalent to smoothing

splines when choosing as many knots as there are
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observations �n = m� with a knot placed at each
data point. However, this is not the situation the
authors have in mind. They propose to choose a
large number n of knots, but n < m. Such an ap-
proach is of considerable interest. We know from
personal experience that nonparametric regression
fits based on B-splines are often visually more ap-
pealing than, for example, kernel estimates. The
same seems to be true for P-splines if a moder-
ate number of knots is used. Furthermore, as the
authors indicate, P-splines together with the dif-
ference penalty enjoy many important practical ad-
vantages and are flexible enough to be applied in
different modelling situations, for example, in addi-
tive models or self-modelling regression where the
backfitting algorithm is used.

Nevertheless, we do not yet see much evidence
for the authors’s claim that P-splines “come near
being the ideal smoother.” For example, local poly-
nomial regression is known to exhibit no boundary
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problems (in first order) and to possess certain op-
timality and minimax properties (Fan, 1993). For
density estimation Engel and Gasser (1995) show
a minimax property of the fixed bandwith kernel
method within a large class of estimators contain-
ing penalized likelihood estimators. The presented
paper does not provide any argument, neither theo-
retical nor by simulations, supporting any superior-
ity of P-splines over their many competitors.

In the regression case, the theoretical properties
of P-splines might be evaluated by combining ar-
guments of de Boor (1978) on the asymptotic bias
and variance of B-splines in (dependence on m, the
spline order k and the smoothness of the underlying
function) with the well-known results on smoothing
splines.

The authors propose to use AIC or cross-
validation to select the smoothing parameter λ.
However, a careful look at their method reveals
that there are in fact two free parameters: λ and
the number n of knots. If n ≈ m, then we essen-
tially obtain a smoothing spline fit, while results

might be very different if n � m. Indeed, the esti-
mate might crucially depend on n. Therefore, why
not determine λ and n by cross-validation or a re-
lated method? The following theoretical arguments
may suggest that such a procedure will work. Note
that AIC and cross-validation are very close to un-
biased risk estimation which consists of estimating
the optimal values of λ and n by minimizing

m∑
i=1

�yi − µ̂i�2 + 2σ2 tr�Hλ;n�;

where H ≡Hλ;n is the corresponding smoother ma-
trix. Let ASE�λ;n� denote the average squared er-
ror of the fit obtained by using some parameters λ
and n. Under some technical conditions, it then fol-
lows from results of Kneip (1994) that, as m→∞,

ASE�λ̂; m̂�/ASE�λopt;mopt� →P 1:

Here λ̂ and m̂ are the parameters estimated by un-
biased risk estimation, while λopt and mopt repre-
sent the optimal choice of the parameters minimiz-
ing ASE.

Comment
Charles Kooperberg

Eilers and Marx present an interesting approach
to spline modeling. While function estimation based
on smoothing splines often yields reasonable re-
sults, the computational burden can be very large.
If the number of basis functions is limited, however,
the computations become much easier, and when
the knots are equally spaced, the solution indeed
becomes rather elegant. To increase the credibility
of the claim that P-splines are close to the “ideal
smoother,” several issues need to be addressed:

1. In density estimation, when the range of the data
is � (�+), it is useful that a density estimate be
positive on � (�+), for example, for resampling.
Some methods can estimate densities on bounded
or unbounded intervals. P-splines do not seem to
have this property: lower and upper bounds have
to be specified and there seems to be no natural

Charles Kooperberg is Assistant Professor, Depart-
ment of Statistics, University of Washington, Seattle,
Washington 98195-0001.

way to extrapolate beyond these bounds. Is there
any way around that? Can infinity be a bound?

How would one specify the bounds? From the
suicide example it appears that this may influ-
ence the results considerably.

2. To use P-splines, additional choices need to be
made. How many knots should one use? Is the
procedure insensitive to the number of knots pro-
vided that there are enough of them? If so, how
many is enough? How does the computational
burden depend on the number of knots?

What order of penalty should be used? Do you
advocate examining several possible penalties, as
in the logistic regression example, or do you have
another recommendation, such as using k = 3 for
density estimation so that the limit of your esti-
mate as λ→∞ is a normal density? Since many
smoothing and density estimation procedures are
used as EDA tools, good defaults are very worth-
while.

3. It would be interesting to see an application of
the P-spline methodology to more challenging
data, such as the income data described below,
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which involves thousands of cases, a narrow peak
and a severe outlier.

How would the P-spline algorithm, where
knots are positioned equidistantly, behave when
there are severe outliers, which would dominate
the positioning of the knots? Is it possible to po-
sition knots nonequidistantly, for example, based
on order statistics?

4. Are there theoretical results about the large sam-
ple behavior of P-splines?

POLYNOMIAL SPLINES AND LOGSPLINE
DENSITY ESTIMATION

Besides the penalized likelihood approach, there
is an entirely different approach to function es-
timation based on splines. Whereas for P-splines
both the number and the locations of the knots
are fixed in advance and the smoothness is gov-
erned by a smoothing parameter, in the polynomial
spline framework the number and location of the
knots are determined adaptively using a step-
wise algorithm and no smoothing parameter is
needed. Such polynomial spline methods have been
used for regression (Friedman, 1991), density es-
timation (Kooperberg and Stone, 1992), polychoto-
mous (multiple logistic) regression (Kooperberg,
Bose and Stone, 1997), survival analysis (Kooper-
berg, Stone and Truong, 1995a) and spectral den-
sity estimation (Kooperberg, Stone and Truong,
1995b).

In univariate polynomial spline methodologies
the algorithm starts with a fairly small number of
knots. It then adds knots in those regions where
an added knot would have the most influence, us-
ing Rao (score) statistics to decide on the best
location; after a prespecified maximum number of
knots is reached, knots are deleted one at a time,
using Wald statistics to decide which knot to re-
move. Out of the sequence of fitted models, the one
having the smallest value for the BIC criterion is
selected.

Polynomial spline algorithms for multivariate
function estimation are similar, except that at each
addition step the algorithm adds either a knot in
one variable or a tensor product of two or more
univariate basis functions. We have successfully ap-
plied such methodologies to data sets as small as 50
for one-dimensional density estimation and as large
as 112,000 for a 63-dimensional polychotomous
regression problem with 46 classes. For nonadap-
tive polynomial spline methodologies theoretical
results regarding the L2-rate of convergence are es-
tablished. Stone, Hansen, Kooperberg and Truong

(1996) provide an overview of polynomial splines
and their applications.

Logspline density estimation, in which a (univari-
ate) log-density is modeled by a cubic spline, is dis-
cussed in Kooperberg and Stone (1992) and Stone
et al. (1996). Software for the 1992 version, written
in C and interfaced to S-PLUS, is publically avail-
able from Statlib. (The 1992 version of LOGSPLINE
employs only knot deletion; here, however, we focus
on the 1996 version, which uses both knot addition
and knot deletion.) LOGSPLINE can provide esti-
mates on both finite and infinite intervals, and it
can handle censored data.

The results of LOGSPLINE on the Old Faithful
data and the suicide data are very similar to the cor-
responding results of P-splines [the suicide data is
an example in Kooperberg and Stone (1992)]. Here
we consider a much more challenging data set. The
solid line in Figure 1 shows the logspline density es-
timate based on a random sample of 7,125 annual
net incomes in the United Kingdom [Family Expen-
diture Survey (1968–1983)]. (The data have been
rescaled to have mean 1.) The nine knots that were
selected by LOGSPLINE are indicated. Note that
four of these knots are extremely close to the peak
near 0:24. This peak is due to the UK old age pen-
sion, which caused many people to have nearly iden-
tical incomes. In Kooperberg and Stone (1992) we
concluded that the height and location of this peak
are accurately estimated by LOGSPLINE. There are
several reasons why this data is more challenging
than the Old Faithful and suicide data: the data
set is much larger, so that it is more of a challenge
to computing resources (the LOGSPLINE estimate
took 9 seconds on a Sparc 10 workstation); the width
of the peak is about 0.02, compared to the range 11.5
of the data; there is a severe outlier (the largest ob-
servation is 11.5, the second largest is 7.8); and the
rise of the density to the left of the peak is very
steep.

To get an impression of what the P-splines proce-
dure would yield for this data, I first removed the
largest observation so that there would not be any
long gaps in the data, reducing the maximum ob-
servation to 7.8. The dashed line in Figure 1 is the
LOGSPLINE estimate to the data with fixed knots
at �i/20� × 7:8, for i = 0;1; : : : ;20 (using 20 inter-
vals, as in most P-spline examples.) The resulting
fit should be similar to a P-spline fit with λ = 0.
In this estimate it appears that the narrow peak
is completely missed and that, because of the steep
rise of the density to the left of the peak and the
lack of sufficiently many knots near the peak, two
modes are estimated where only one mode exists.
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Fig. 1. Logspline density estimate for the income data (solid line); the x indicate the locations of the knots; logspline approximation of
the P-spline estimate with penalty parameter 0 (dashed line).

It would be very much of interest to see how the
P-spline methodology behaves on this data, and in
particular whether it can accurately represent the
sharp peak near 0.24.
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Comment
Dennis D. Cox

The main new idea in this paper is a roughness
penalty based on the B-spline coefficients. There
will be critics—I give some criticisms below—but
there is considerable appeal in the simplicity of
the idea. If I had to develop the software ab initio,
it is clear that the roughness penalties proposed
here would require less effort to implement than
the standard ones based on L2-norm of a second
derivative.

There is a precedent for the use of the B-spline
coefficients in such a direct way, from computer

Dennis D. Cox is with Department of Statistics, Rice
University, P.O. Box 1892, Houston, Texas 77251.

graphics (CG) and computer aided design (CAD).
The “control point” typically used in parametric B-
spline representations of curves and surfaces basi-
cally consists of the B-spline coefficients. See Foley
and van Dam (1995, Section 11.2.3). This is demon-
strated in Figure 1, where the control points for the
solid curve are just random uniform added to a lin-
ear trend, and the same points are shrunk toward
0.5 before adding the trend to obtain the control
points for the dashed curve. The ordinate of each
control point is the cubic cardinal B-spline coeffi-
cient and the abscissa is the midpoint of support.
In CG/CAD applications, the control points are ma-
nipulated to obtain a curve or surface with desirable
shape or smoothness. The CG/CAD practitioners be-
come familiar with these control points and develop
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Fig. 1. Example of control points: the solid curve derives from the solid control points, and the dashed curve from the triangular control
points.

a feel for their influence on the curve or surface.
Similarly, statisticians may find after some effort
that B-spline coefficients are very natural.

If I had equally easy to use software for smoothing
splines or P-splines, I would prefer the former, par-
tially from Bayesian considerations. The Bayesian
interpretation of P-splines (i.e., the differenced B-
spline coefficients are a Gaussian white noise un-
der the prior) is more artificial than the usual pri-
ors as in Wahba (1978). In particular, the usual
priors are specified independently of sample size,
whereas one would want to use more B-splines with
a larger sample. Furthermore, the integral of the
second derivative squared is easier to interpret from
a non-Bayesian perspective than the sum of squares
of second differences of B-spline coefficients.

I take issue with the authors’s claim that their
method does not have boundary problems. P-splines
are approximately equivalent to smoothing splines
which do have boundary effects (Speckman, 1983).
To explain, consider minimizing from equation (5),

S�a� =
m∑
i=1

{
yi −

n∑
j=1

ajBj�xi�
}2

+ λ
n∑
j=3

�12aj�2:

A discrete form of the variational derivation in
Speckman (1983) leads to the system

λ12a3 +
∑
i

B1�xi�
∑
j

ajBj�xi�

=
∑
i

yiB1�xi�;

λ13a4 − λ12a3 +
∑
i

B2�xi�
∑
j

ajBj�xi�

=
∑
i

yiB2�xi�;

λ14ak +
∑
i

Bk�xi�
∑
j

ajBj�xi�

=
∑
i

yiBk�xi�; 3 ≤ k ≤ n− 2;

−λ13an − λ12an +
∑
i

Bn−1�xi�
∑
j

ajBj�xi�

=
∑
i

yiBn−1�xi�;

λ12an +
∑
i

Bn�xi�
∑
j

ajBj�xi�

=
∑
i

yiBn�xi�:
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Notice that the equations for coefficients near the
end involve lower-order differencing so there is less
smoothness imposed.
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Comment
Stephan R. Sain and David W. Scott

We have been interested in formulations of the
smoothing problem that are simultaneously global
in nature with locally adaptive behavior. Rough-
ness penalties based on functionals such as the in-
tegral of squared second derivatives of the fitted
curve have enjoyed much popularity. The solution
to such optimization problems is often a spline. The
authors are to be congratulated for introducing the
idea of penalizing on the smoothness of the spline
coefficients, which reduces the dimensionality of the
problem as well as reducing the complexity of the
calculations. There is much to say for this approach.

It is generally of interest to try to work out
the equivalent kernel formulation of all smooth-
ing methods. This was done for Nadarya–Watson
regression smoothing by Silverman (1984), who
demonstrated the asymptotic manner in which the
estimator adapted locally.

In the density estimation setting, we have been
investigating the nature of the best locally adaptive
density estimator along the lines of the Breiman–
Meisel–Purcell estimator (Breiman, Meisel and Pur-
cell, 1977)

f̂�x�= 1
n

n∑
i=1

1
hi
K

(
x− xi
hi

)
= 1
n

n∑
i=1

Khi
�x− xi�:(1)

The goal is to find an optimal set of bandwidths
ĥi; i = 1; : : : ; n, without restrictions on the func-
tional form. Sain and Scott (1996) explore an ap-
proach using a binned version of (1) where the band-
widths were found numerically by optimizing over
a variation of the least-squares or unbiased cross-
validation (UCV) criterion.

The surprising finding of our research is that the
optimal estimator contains distinctly nonlocal as

Stephan R. Sain is with Southern Methodist Uni-
versity. David W. Scott is Professor of Statistics, Rice
University, Houston, Texas 77251-1892.

well as local adaptive features. That is, the band-
widths for some data points, particularly in the
tails, are very large. This was rather unexpected
since Terrell and Scott (1992) discussed the nega-
tive consequences of such large bandwidths when
hi = h/

√
f�xi�, an idea suggested by Abramson

(1982) and studied extensively in the literature.
Furthermore, Sain and Scott (1996) showed that
this “square-root law,” in practice, lacks flexibility
due to the dependence solely on the level of the un-
derlying density. We refer the interested reader to
those articles.

In Figure 1 we show three densities of the geyser
data: (1) our optimal locally adaptive estimate; (2) a
fixed kernel estimate (bandwidth also chosen by
UCV); and (3) the authors’s P-spline. The fixed
bandwidth approach cannot find a single band-
width to smooth both modes appropriately, leaving
the right mode undersmoothed. The more flexible
adaptive estimator recognizes the local structure
of the underlying density and gives a clear repre-
sentation of the two modes in the data (rejecting
the possibility of a third mode) without excessive
noise. The P-spline estimator yields an estimate ly-
ing somewhere between the two approaches. It is

Fig. 1. Estimated densities using the Old Faithful geyser data.
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interesting to note that the adaptive approach is not
oversmoothed as the heights of the two modes are
not affected.

The P-spline (and other similar estimators) allow
some local adaptiveness through the penalty mecha-
nism and the restrictions on the roughness of the fit-
ted curve. However, the choice of knots (in this case
an arbitrarily large number of equally spaced knots)
can also affect the local nature of the P-spline esti-
mator. It would be interesting to see more on how to
choose the knots, including an “adaptive” approach
that might lead to a more parsimonious model as
well as better local behavior. Finally, one must won-
der how the choice of the bin width for the initial

histogram affects the resulting P-spline estimate.
In our experience, reliance on such pilot estimators
can lead to poor results as well as difficulties in au-
tomatic implementation.

We would be very interested to see a more thor-
ough study of how P-splines behave vis-à-vis some
notion of optimal local adaptiveness, and how the
penalty and AIC criterion, as well as other parame-
ters, can be set to achieve such behavior.
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Rejoinder
Paul H. C. Eilers and Brian D. Marx

INTRODUCTION

Do P-splines deserve a place in the spotlight? We
claimed so, generating a lot of discussion. We are
grateful for the many careful, positive and detailed
comments. For our rejoinder, we group them as fol-
lows:

• extensions and clarifications, especially con-
cerning optimal smoothing;
• challenges to the performance of P-splines;
• doubts about our claim that P-splines come

near to the ideal smoother.

We will react in the same order, first commenting on
the extensions. Then we will show analyses and ex-
amples to show that we can meet all challenges with
standard P-splines, except adaptive flexibility (but
the need for that is less than one might think). Af-
ter that we present a kind of “consumer test,” with
a scoring table, to compare P-splines to the compe-
tition. Finally, we will conclude that P-splines meet
nearly all challenges and summarize why they are
attractive to use.

OPTIMAL SMOOTHING

We did not mean to imply that AIC and cross-
validation are the final word on optimal smooth-
ing. We advocated their use because they can be
computed easily and fast, and because we have had
good experiences in many real-life applications. But
the search for optimal criteria has to continue, and

there is no obstacle in P-splines to prevent the use
of more sophisticated methods.

Chiu’s filtering approach is interesting. However,
it seems limited to equidistantly sampled data, be-
cause a (fast) Fourier transform is needed.

Nychka and Cummins introduce an interesting
interpretation of P-spline smoothing as a projection
on the Demmler–Reinsch basis. They use an equis-
paced x-vector implictly. For sparse designs, some
of the columns of B may become empty, making
BTB singular. We suspect that additional restric-
tions (like a small ridge penalty) then will be needed
to make the construction of G possible. The advan-
tages of the Demmler–Reinsch basis are mainly con-
ceptual: the computation the trace of the hat ma-
trix and GCV can already be done efficiently with
P-splines.

While we are on this subject we would like to
add that we do not understand the widespread
preoccupation with the sum of squares functional∫
�f − f̂�2 dx as a measure of performance in den-

sity estimation, and the detailed analyses that have
been made. One would expect some deviance-like
functional, or Kullback–Leibler distance, such as
Gu is using. After all, no one fits a density to a
histogram with least squares. It seems that math-
ematical tractability is the driving force behind it,
reminding us of the drunkard searching under a
street lantern for the keys he lost elsewhere in the
dark. To help him, bright mathematicians hook up
a metal detector to the lantern.
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We note that for so-called second-generation cri-
teria (Jones, Marron and Sheather, 1996), P-splines
can be very useful when one has to estimate (in-
tegrals of squared) third or higher derivatives,
because of the ease of generating high-degree B-
splines. But we are very content about AIC. Figure
1 shows data from Cook and Weisberg (1994), giving
the lean body mass of Australian athletes. These
data were used as a test bed by Jones, Marron and
Sheather (1996). We use AIC and get essentially
the same amount of smoothing, “a second genera-
tion result at a first generation price.” Again, we
do not wish to imply that AIC is the final answer,
but show that it is more useful than sometimes
suggested.

THE KNOTS

In our paper we were rather conservative in the
number of knots we used and advised to use. Yet
many variations are possible. Below we will see ex-
amples with very many knots, even more than there
are data points, giving a counterexample to Engel
and Kneip’s assumption. They are right that, with
as many knots as there are data points, we come
very near to the smoothing spline, if the x’s are
equidistant. If this is not the case, we need knots on
a non-equidistant grid. But then the penalty has to
change too: divided differences, like �aj−aj−1�/�tj−
tj−1� in the case of a first-order penalty, have to be
used. We have not yet fully analyzed this situation,
but we suspect some interesting results, because B-
splines on an arbitrary grid are computed with a
divided difference scheme.

Fig. 1. Histogram and density estimate of lean body mass of

Australian athletes �male and female); 20 P-splines of degree 3;

penalty of order 3; λ = 10.

The number of knots is largely immaterial, as
long as it is large enough. Yet the sugestion of Engel
and Kneip to optimize both λ and n can have value
when striving for parsimony. With λ = 0, we can
change n until we find that for optimal smoothing
a number between a certain n′ − 1 and n′ appears
needed. Take n = n′ and increase λ for the last part
of the road to optimality. However, problems may
arise with sparse designs, in which case nonidenti-
fiablity may occur without a penalty.

BOUNDARIES

Regarding Kooperberg’s concern in choosing
boundaries, we must discern “physical” from “tech-
nical” boundaries. A physical boundary is deter-
mined by the nature of the variable under study. In
the suicide example, zero is a physical left bound-
ary, because time intervals cannot have negative
length, and so there can be no density below zero.
If we choose as a technical boundary a certain neg-
ative value, we say that there can be negative data,
that we did not observe them, but that it is rea-
sonable to estimate a density in that region. In the
same example the upper boundary is technical, be-
cause we know of no upper limit (well, maybe 80
years or so). It does not matter much which value
we take, a practical choice is 2 times the highest
observed value.

Kooperberg asks how we extrapolate. We do not
do that: we choose the boundaries (when physically
meaningful) wide enough to include the domain
where “extrapolation” is wanted.

Cox shows that there is indeed a boundary effect,
but of a more subtle kind than we were considering
in our paper, where we meant the unpleasant prop-
erty of kernels to distribute probability mass outside
the (physical) boundaries in density estimation, or
tending toward zero in kernel regression.

DEFAULT PARAMETER VALUES

As Kooperberg rightly remarks, we were vague in
giving default values for some parameters. Rules of
thumb might be the following: take the interval be-
tween knots as half the width of the narrowest peak
that should be visible in a fitted curve; use B-splines
of degree 3 and a penalty of order 3. We recommend
plots of AIC or GCV against effective dimension, for
the orders 1, 2 and 3 of the difference penalty. For
density estimation by histogram smoothing we rec-
ommend 100 bins or more. It can do no harm to take
a large number of B-splines, such as 50 or 100, be-
cause the penalty takes care of any overfitting. Of
course, for faster computation it is best to have a
small number of B-splines.
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In some cases B-splines of degree zero, which are
just constant between two knots, and zero elswhere,
are sufficient. If we take the number of knots equal
to the number of (equidistantly sampled) data, B
is the identity matrix. We cannot resist the temp-
tation to show how simple smoothing becomes that
way. Let the vector y be the data and w be a vector
of 0–1 weights to indicate missing data. Then the
three MATLAB lines

I = eye(length(y));

D = diff(I, 3);

mu = (diag(w) + lambda * D’ * D) \ (diag(w) * y);

do the trick. In fact this is just Whittaker’s (1923)
“graduation” algorithm.

ASYMPTOTICS

We did not yet have any asymptotic results on
rates of convergence. However, borrowing from
the asymptotic GLM theory, upon convergence
with fixed λ, the asymptotic variance–covariance
matrix of the P-splines coefficients is 8̃ = �QB +
Qλ�−1QB�QB + Qλ�−1. This result is particu-
larly useful for straightforward construction of
twice standard error bands for g�µ̃�, that is,
var�g�µ̃�� = B8̃BT. Other asymptotic theory fol-
lows regarding variance and bias of the P-spline
coefficients. Of course, these have to be translated
to propeties of the estimated curve, because the
coeffients themselves have a limited interpretation.

ADAPTIVE SMOOTHING

P-splines have constant flexibility. Kooperberg,
Sain and Scott discuss adaptive estimation, in
which non-constant flexibility is needed. First we
will analyze the income data, then Old Faithful.

We have to admit right from the start that P-
splines in their present form cannot challenge the
extreme control on flexibility that LOGSPLINE of-
fers. Yet we can come a long way with constant flex-
ibility. Figure 2 shows a histogram of the data with
bin width 0.1 (because of the large number of bins,
the counts are drawn as vertical lines in the mid-
point of each bin). The same interval is used for
the knots of the B-splines of degree 3, giving 153 of
them. You cannot have such a large number without
a penalty, because of severe identifiability problems.
We see that the optimal fit is very near to the his-
togram itself, giving too wiggly a right tail. Without
the outlier, we get nearly the same result, which
is to be expected with a small amount of smooth-
ing. Figure 3 is based on a part of the data, us-
ing smaller bins. The left peak is recovered rather
well, but again the right part seems too wiggly. We

conclude that the high number of observations and
the outlier do not wreak havoc on P-splines, but
that their fixed flexibility leads to a small amount
of smoothing.

Incomes are positive and show a large ratio be-
tween maximum and minimum. Data of that type
should always be studied also on a logarithmic scale.
This is done in Figure 4. The estimated density
looks very reasonable. An inflection between the two
peaks is indicated that LOGSPLINE does not pick
up.

Fig. 2. Histogram �bin width 0:1� and minimum AIC fit of 153

P-splines to the income data; λ = 10−6.

Fig. 3. Histogram �bin width 0:1� of income data with x < 2 and

minimum AIC fit of 53 P-splines to the income data; λ = 10−6.
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Fig. 4. Histogram �bin width 0:1� and minimum AIC fit of 53

P-splines to the logarithm of the income data; λ = 10−6.

Logarithms also work well for the Old Faithful
data, as Figure 5 shows. We estimated a density
for the logarithms of the data and transformed that
back to the linear scale. Note that the tail at the
right side is much shorter than the one Sain and
Scott present in their figure; is it variance inflation
by the kernel smoother? Sain and Scott mention
that they found unexpectedly larger kernel band
widths in the tails. The left tail of that curve is
rather strange, being appreciably larger than zero
over a long stretch.

It is interesting to note that the effective dimen-
sion we computed is 10.8 for the linear data and 8.2
for the logarithmic data, indicating that on the lat-
ter scale appreciably stronger smoothing is allowed.

Fig. 5. Histogram and minimum AIC fit of the Old Faithful data,

on both a linear and a �back-transformed� logarithmic scale; the

curve with two modes on the right is based on the linear scale.

Of course, there will be situations in which a
simple transformation will not work. A noncon-
stant flexibility might be realized by using suitable
weights in the penalty, like

∑
vj�1daj�2. A sim-

ple way of adaptive estimation might be borrowed
from Fan and Gijbels (1995): divide the support in
a number of (overlapping) intervals, do the smooth-
ing for each of these separately, giving a number
of optimal λ’s. These can be interpolated to give a
smooth curve of λ. The v’s in the weighted penalty
can be set proportional to the values of that curve
at the knots.

Fan et al. (1996) studied kernel smoothing with
continuously varying band width b�x� by smooth
interpolation of a low-dimensional set of points
�xj; bj�, and optimizing the bj’s. One can imagine
optimizing the elements of v in a similar way.

DERIVATIVE OR DIFFERENCES?

Several discussants suggest that a penalty on the
second derivative is more clear than one on the coef-
ficients ofB-splines. We think not. Those coefficients
are the heights of the B-splines that build the fit-
ted curve and so they have a direct intuitive inter-
pretation. Smoothness demands that the heights of
neighboring B-splines may not differ to much. The
penalty lets the B-splines “hold hands” to withstand
erratic fluctuations in the data.

Figure 6 shows simulated data and a B-spline fit
without a penalty, while in Figure 7 a strong penalty
(λ = 2, with second-order differences) is used. Note
the smooth envelope that is suggested by the tops
of the B-splines.

Fig. 6. Simulated data, individual B-splines and the fitted curve

�thick line� without a penalty.
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Fig. 7. Simulated data, individual B-splines and the fitted curve

�thick line� with a second order penalty and λ = 2.

The parametric limit can be illustrated in the
same way: when the tops of the B-splines are on
a straight line (a parabola), the fitted curve is lin-
ear (quadratic).

As Cox rightly judges from CAD experience, with
some practice one can develop a good intuitive un-
derstanding of B-splines.

We agree with Gu that the (very liberally stated)
“the penalty is the prior.” We also must admit that
there the connection to derivatives is much clearer
than one to differences of B-spline heights. At
present we can only point to the near equivalence
of both criteria, as shown in the paper, but we will
search for a more intuitive understanding.

SPECIALIZED PENALTIES

We now come to penalties for special paramet-
ric limits and use an example to make our point.
Suppose that we change the penalty λ

∑�aj −
2aj−1 + aj−2�2 to λ

∑�aj − 2caj−1 + aj−2�2, with
c = cos�2πt/p�, and t the distance between knots,
then for high λ the series a tends to a sine function
with period p: aj = a0 cos�2πjt/p+φ�, with a0 and
φ determined by the data. This forces the fitted se-
ries toward a sine signal, interpolated by B-splines.
With t small compared to p, this will effectively be
a sine curve. Figure 8 shows a part of a series of
measurements of velocities of a variable star, cen-
tered to have zero mean; the data were provided
by Conny Aerts of Leuven University. The assumed
value for the period p is 0.161 day.

The figure also shows that extreme holes in the
data can be handled with P-splines. With the differ-

Fig. 8. Velocities of a variable star �dots� and fit of 50 P-splines

with a specialized penalty that forces the fit toward a sine curve.

ence penalty this would work too, but there would
be very large and very smooth swings up and down
in regions without data, because there it is only
smoothness that counts. This can be remedied by
adding a small ridge penalty, another example of
specializing the penalty to the problem.

For completeness we note that Eilers (1991a)
used mixed penalties in a regression problem with
ordered regressors. Eilers (1988) proposed to use
penalized least squares to estimate autoregressive
models for noisy signals with possibly missing data.

CONSERVATION OF MOMENTS

Jones does not see the need for conservation of
moments in regression. We think it is important:
if they were not conserved, the parametric model
that is approached with strong smoothing would be
different from the one obtained with polynomial re-
gression. In density estimation, variance inflation is
undesirable. The work of several first-class statisti-
cians, including Jones himself, testifies to this.

MULTIVARIATE APPLICATIONS

As for multivariate applications, we have efficient
MATLAB functions for two-dimensional P-splines,
based on tensor products of one-dimenional B-
splines. In two dimensions the probability of sparse
data is high. To prevent identifiability problems,
a penalty is nearly mandatory. We are not opti-
mistic about generalizations to higher dimensions.
In theory it is not so difficult, but the organization
of the computations is difficult. Also the number of
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Table 1
Consumer test of smoothing methods; the abbreviations stand for the following: KS, kernel smoother; KSB, kernel smoother with binning;
LR, local regression; LRB, local regression with binning; SS, smoothing splines; SSB, smoothing splines with band solver; RSF, regres-
sion splines with fixed knots; RSA, regression splines with adaptive knots; PS, P-splines. The row “Adaptive flexibility available” means

that a software implementation is readily available

Aspect KS KSB LR LRB SS SSB RSF RSA PS

Speed of fitting — + — + — + + + +
Speed of optimization — + — + — + — — +
Boundary effects — — + + + + + + +
Sparse designs — — — — + + — + +
Semi parametric models — — — — + — + + +
Non-normal data + + + + + + + + +
Easy implementation + — + — + — + — +
Parametric limit — — + + + + + + +
Specialized limits — — — — + + — — +
Variance inflation — — + + + + + + +
Adaptive flexibility possible + + + + + + — + +
Adaptive flexibility available — — — — — — — + —
Compact result — — — — — — + + +
Conservation of moments — — + + + + + + +
Easy standard errors — — + + — + + + +

the basis functions may easily become larger than
the number of observations.

BIN WIDTH OF HISTOGRAMS

Sain and Scott like to see an investigation of how
much the bin width of a histogram influences the P-
spline density estimate. We do that empirically with
the Old Faithful (that name gets a new meaning
here) data. In Figure 9 we plot the estimated density
for five values of the bin width: 0.2, 0.1, 0.05, 0.02
and 0.01. The optimal value λopt was found by trying
a decreasing series of integer powers of 10, start-
ing at 104, stopping when AIC started to rise. To the

Fig. 9. Five estimated densities for the Old Faithful data, based

on histograms with bin widths 0:2, 0:1, 0:05, 0:02, 0:01; the curve

with the lowest peaks is for bin width 0:2:

last three pairs �log λ;AIC�, a parabola was fitted;
the location of its minimum gave log λopt. It appears
that bins of 0.2 are too coarse, but for the other val-
ues the curves are practically the same. As a rule of
thumb we might derive that a histogram with 100
or more bins is a good choice.

A CONSUMER TEST

Several discussants doubt whether P-splines
come as near to the ideal smoother as we claim.
Every good property we mentioned can also be
found in one or more other methods. In Table 1 we
have constructed a “consumer test” of smoothers to
make comparison easier. We have neglected most
ad-hoc changes that have been published to remedy
troubles like boundary effects and sparse designs,
because they have not yet appeared in readily avail-
able software. The meaning of “specialized limits”
will be explained below. Of course one can argue
about some of the pluses or minuses of the compet-
ing methods, but the advantages of P-splines have
a firm basis. Anyone wishing to use them can be on
track in a few hours, in any language that supports
matrix operations and/or regression, starting from
the algorithms in our Appendix.

A HAPPY ENDING

Yes, we think that P-splines deserve a place in
the spotlight. They are easy to use, easy to pro-
gram and easy to understand. They respect bound-
aries, have no problems with sparse designs and
give compact results. Polynomial and exponential
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(sinusoidal) limits can be forced with almost trivial
changes to the difference operator in the penalty.

Yet there remains a lot to be done, especially
on optimizing the weight of the penalty and on
adaptive flexibility. A better understanding of the
Bayesian interpretation of the penalty is needed.
We will continue our research in these areas. We
hope to meet many others there who also have
recognized the charm of P-splines.
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