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Abstract. Flow cytometry is frequently used for assessing individual
cell characteristic(s) for a large number of cells. It has a variety of med-
ical applications including assessing the quantity of intracellular DNA
and detecting the presence of antigens such as CD4. Flow cytometric
variables are evaluated for their clinical prognostic value, particularly
in cancer, and are often used for clinical screening of diseased patients.
The prognostic worth of these variables is questionable and is contro-
versial in the medical community. This controversy is caused in part by
the multiple methods of analysis and the lack of adherence to quality
control standards. The analysis of flow cytometric data presents a num-
ber of interesting statistical problems, particularly in deconvolution of
overlapping distributions and detection of abnormal subpopulation(s) of
cells. The current methods incorporate subjective procedures, may use
ill-founded assumptions and yield differing results. This article summa-
rizes the flow cytometry process of measurement and reviews unsolved
statistical and quality control issues pertaining to the analysis of flow
cytometric data. DNA histogram analysis is used to exemplify these
issues.

Key words and phrases: Aneuploid; DNA; DNA histogram; diploid; de-
convolution; fluorochromes; S-phase.

1. INTRODUCTION AND HISTORY

Flow cytometry presents a fertile research area
for statisticians, particularly in deconvolution and
estimation of overlapping distributions of unknown
form. Presently there are multiple methods used
in the field; most, if not all, of these methods in-
corporate subjective procedures. In addition, there
are many quality control issues. This article is writ-
ten with the intent of informing statisticians of the
statistical problems inherent in modeling flow cy-
tometry data and of the immense number of factors
which influence the variability of the data.

Flow cytometry can be used on any particle (not
just cells) and can be used to count a specific sub-
set of particles, to sort a specific subset of particles
away from the rest of the sample, and to mea-
sure a property (or properties) of each of the parti-
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cles. Individual cells are isolated in a thin stream of
fluid and then passed through an observation point
where a property or characteristic of the cell is indi-
rectly measured and then recorded. (The advantage
of flow cytometry is the rapidity of the measure-
ment, making it possible to measure thousands of
cells over a short period of time. Image cytometry
provides an alternative approach to the measure-
ment of cell characteristics but is usually limited to
a few hundred cells (review).) The flow cytometry
process is described in more detail in Section 2.

Flow cytometry has many clinical applications. in-
cluding hematological and immunological analyses,
analysis of surface antigen expression (such as CD4
counts) and DNA content analysis in cancers. As
pointed out by a reviewer, flow cytometry is cur-
rently used for screening a wide variety of clinical
malignancies in cancer patients and patients with
immune deficiency. “Clinical applications are also
being pursued in the fields of genetics, microbiol-
ogy, parasitology, pharmacology, reproductive biol-
ogy and toxicology” (Shapiro, 1995, page 30).

The primary medical use of flow cytometry is the
indirect measurement of intracellular DNA content.
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Measurement of the amount of DNA content in tu-
mor cells gives an indication of cell proliferation,
as well as cells with an abnormal amount of DNA,
and thus may be of prognostic value in clinical can-
cer studies. This article presents statistical model-
ing problems that arise in analyzing DNA content
in cells and discusses the magnitude of variability of
flow cytometric measures. Some of the same issues
arise in other applications of flow cytometry.

Immunologic phenotyping is probably the second
most common application of flow cytometry. (An ex-
ample of this is assessing the proportion of lym-
phocytes in an HIV patient that are CD4+.) Al-
though the techniques used in immunology are dif-
ferent than those used in DNA analysis, both appli-
cations share statistical problems in discriminating
between populations. A good critique on some of the
statistical methods used for analyzing immunologic
flow cytometry data can be found in Watson (1992).
Bagwell (1996) presents an overview of the estima-
tion methods used in flow cytometric immunofluo-
rescence analysis.

The problems presented here may not be apparent
to the statisticians who are recruited to analyze flow
cytometry data. A quick glance at Medline shows 13
citations with flow cytometry in 1977; 915 citations
between 1978 and 1982; 4,673 between 1983 and
1987; and 13,900 between 1988 and 1994. (A sub-
sequent search shows 11,047 citations from 1991
through 1995.) An analogous search through the
Current Index of Statistics yields less than a dozen
citations which are directly pertinent to the anal-
ysis of flow cytometric measures. Hence, although
the number of medical articles that use flow cyto-
metric measures is increasing at a rapid rate, the
small number of statistical articles that are directly
applicable is somewhat discordant.

Dean and Jett published a landmark paper on
DNA analysis in 1974, and since then hundreds of
methods of modeling for DNA histograms have been
proposed (Bagwell, 1993; Dean and Jett, 1974) (for
a description of DNA histograms see below). These
proposed methods, when published, are published in
the flow cytometry literature and as a consequence
have not come to the attention of most statisticians.
In addition, the more modern flow cytometry in-
struments have built-in data analysis procedures
that are frequently undocumented. I discuss pop-
ular modeling methods used in flow cytometry in
Section 3.

In 1983 Hedley and co-workers (Hedley et al.,
1983) described a method for measuring cellu-
lar DNA content using archival, formalin-fixed,
paraffin-embedded tumors. This development,
which made large retrospective studies possible,

opened the door to the study of the relationship
between flow cytometry measurements of cellular
DNA content and long-term clinical outcome of pa-
tients. Since then there have been numerous studies
of the prognostic value of these measurements in
a number of different cancers. This paper will not
address the prognostic value of the DNA content
histogram variables; the literature on this is abun-
dant and often not in agreement. The reader is
referred to Cytometry 14(5), for a report of the 1992
DNA Cytometry Consensus Conference (Hedley,
Shankey and Wheeless, 1993) and the accompany-
ing articles. In breast cancer, for example, many
studies have found DNA measurements of prognos-
tic worth (Beerman et al., 1990; Clark et al., 1989;
Ferno et al., 1992; Gnant et al., 1992; Joensuu
et al., 1992; Joensuu and Toikkanen, 1992; Kallio-
niemi et al., 1987; Lewis, 1990; Sigurdsson et al.,
1990; Theissig et al., 1992; Toikkanen, Joensuu and
Klemi, 1989; Uyterlinde et al., 1990; Witzig et al.,
1991), while others (Dowle et al., 1987; Keyhani-
Rofagha et al., 1990; O’Reilly et al., 1990; Ottestad
et al., 1993) have found DNA measurements of
questionable use. The disagreements within the
literature may be due to the multiple methods of
statistical modeling as well as the variability in the
data and the lack of standardization for procedures.
In their review article, Vindelov and Christensen
(1990) state: “A review of the literature of the prog-
nostic significance of DNA data reveals differences
in the quality of the data and the statistical meth-
ods for deconvolution: : : : Data of this kind cannot
be pooled to constitute a reliable basis for clinical
decision making.”

Flow cytometric measures have three major
sources of variability: error due to processing of
cells for the flow cytometer, instrument measure-
ment error and inherent biological variation. In the
next section I give a short overview of the process
of flow cytometry, how it works, the goals of the
process and, in particular, the methods used for
analyzing DNA content in tumor cells. The main
problem in modeling flow cytometric data is de-
convolution of overlapping distributions. Section 3
presents modeling issues, a brief summary of the
cell cycle, a critique of currently used models and
other problems with currently used modeling meth-
ods including assessment of the quality of the data
set. The tremendous amount of intermodel variabil-
ity in flow cytometric variables is also discussed in
Section 3. In Section 4 components of variability
that are due to processing of the cells, due to mea-
surement and due to different models are discussed
in the context of quality control. Section 5 presents
a brief conclusion.
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Fig. 1. Components of a four-detector flow cytometer. Adapted by Givan (1992) from Becton Dickinson Immunocytometry Systems.

2. THE PROCESS OF FLOW CYTOMETRY

Now I briefly describe a flow cytometer and how
flow cytometry works. The interested reader is re-
ferred to Bauer, Duque and Shankey (1993), Givan
(1992), Grogan and Collins (1990), Shapiro (1988,
1995), and Van Dilla, Dean, Laerum and Melamed
(1985), among others, for more details on the process
than are presented here. The reader whose primary
interest is in statistical modeling issues can skip to
Section 3.

2.1 The Flow Cytometer

Current flow cytometers are quite complex; Fig-
ure 1 shows the components of a flow cytometer in
a somewhat simplified diagram. The flow cytome-
ter sits on a stable surface, the optical bench, upon
which a light source is fixed in rigid alignment with
an observation point. A stained cell suspension is
injected into the center of the flow chamber and
passes through the observation point. Various flu-

orochromes are used to stain the particles, or cells,
or cell characteristics, of interest. Once the stained
cells have been illuminated they emit fluorescent
light signals. These signals are detected by photo
detectors and translated into an electric impulse the
intensity of which should be proportional to the in-
tensity of the emitted light signal. The intensity of
this impulse is then digitized and recorded in a data
bank. Referring to Figure 1 the reader will note four
photodetectors: one for forward-scatter light, one for
side scatter light, one for “orange” signal and one
for “green” signal. With this flow cytometer, for each
cell that passes through the observation point, up to
four signals are recorded by the intensities of their
corresponding electrical impulses. For example, if a
cell were stained with two different fluorochromes
(say, one emitting green, the other emitting orange),
then four intensities would be recorded as this cell
passes through the observation point: that of for-
ward scatter, side scatter, green and orange. With
current technology flow cytometers have up to six
photodetectors.
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2.2 The Histogram

After the data are collected, presentation of a his-
togram of the cell frequencies in each intensity class
provides a summary. For each photodetector there
can be a frequency histogram with a number of
classes, usually either 256 classes (channels of light
intensity) or 1,024 classes. A control sample can
be used to define the histogram of light intensities
that would be apparent from unstained cells. Fig-
ure 2 shows a univariate histogram from a control
sample in the upper left-hand corner and then com-
pares this histogram with samples that have been
stained. When measuring DNA content in a cell the
intensity signal is theoretically proportional to the
amount of DNA in the cell. For each photodetector
there is a univariate histogram of the frequency of
cells per intensity class (channel). Bivariate plots
can also be constructed from the readings of two
photodetectors. Often these are presented as scatter
diagrams, with each of the axes representing the in-
tensity scale from one of the photodetectors, and the
height of the histogram class is represented either
by varying shades of gray to black, by color plots or
by contour plots. Alternatively, a two-dimensional
isometric representation of a three-dimensional his-
togram can be used. Reading measurements of the
height of the histogram (frequency of cells) is some-
what difficult on bivariate plots.

3. DNA HISTOGRAM MODELING

3.1 The Cell Cycle and the Ideal DNA Histogram

The tumor cells are prepared, isolated, stained
(with a stain specific for DNA) and injected into the
flow cytometer for analysis. Ideally, the stained cells
fluoresce with an intensity proportional to the cellu-
lar content of DNA. Essentially, the intensity of the
signal from each photodetector is summarized in a
univariate histogram or from two photodetectors in
a bivariate plot (details of this process are described
in Section 3.2).

Examples of DNA histograms from a recent ar-
ticle (Isobe et al., 1995) are shown in Figure 3
(definitions of terms in the caption are in Sections
3.4 and 3.5). To understand the components of this
graph, a brief review of cell biology is needed. Af-
ter discussing the DNA histogram of normal cells,
I discuss the abnormalities that frequently occur
with tumor cells.

With the exception of germ cells and cells prepar-
ing for division (mitosis), all healthy somatic cells in
an organism have the same amount of DNA. Since
each normal somatic cell contains two copies of N
chromosomes this quantity of DNA is referred to as

2N or 2C and is called diploid (Omerod, 1994; Gi-
van, 1992). In healthy tissue a large majority of the
cells will have 2N DNA (this phase is called G1,
a resting phase is called G0). A smaller proportion
of healthy cells will be in the process of synthesiz-
ing DNA for cell division; hence these cells have
between 2N and 4N DNA. This period of cell life
is referred to as S-phase. Once a cell has twice its
normal DNA content (4N, in the phase called G2)
it makes the final preparations for cell division and
then divides into two cells (a phase called M for
mitosis) each with 2N DNA.

The perfect DNA histogram of normal cells would
consist of a spike at a signal intensity that would
come from cells with 2N DNA (G1/G0, or diploid), a
spike of less than half the height of the diploid spike
at twice that intensity (G2/M cells) and a distribu-
tion shorter than the G2/M spike ranging over the
intensities in between from cells in S-phase (Fig-
ure 4b). Due mostly to the spectral distribution of
the fluorochrome and the lack of a perfect one-to-
one correspondence between the DNA and the flu-
orochrome present, as well as the other sources of
variability (refer to Section 4), the ideal DNA his-
togram is just that, an unrealizable ideal. As a con-
sequence the histogram that results is a distribution
of intensity signals which theoretically has a mode
centered over the intensity for diploid cells and a
shorter mode centered over the intensity for G2/M
cells (see Figure 4). A reviewer points out that in
perturbed samples of cells the mode over the inten-
sity channel for the G2/M cells may be higher on
the frequency scale than the mode for the G1/G0
cells.

3.2 Analog-to-Digital Conversion:
Why a DNA Histogram Is a Data Set

The intensity of the signal from each photodetec-
tor is translated to an electrical impulse and ampli-
fied either through a linear function or a logarithmic
function. Flow cytometers have an analog-to-digital
converter (ADC) which converts the amplified elec-
trical impulse (a continuous variable) to an integer
channel number (a discrete variable). The resolution
of the ADC dictates whether there are 256 channels
(0 to 255) or 1,024 channels (0 to 1,023) and con-
sequently defines the resolution of the histogram.
By digitizing the amplified signal from the fluoresc-
ing dye the ADC is creating the DNA histogram; so
to flow cytometrists a DNA data set from a tissue
sample and its corresponding DNA histogram are
somewhat analogous. The continuous measurement
from the amplified signal is not retrievable.

A few observations are of import here. The typ-
ical problem with histograms exists here in that
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Fig. 2. Histograms comparing control populations with stained populations and different brightness of stain from Givan (1992): vertical
scale represents the number of cells within an intensity channel, or bin. On the horizontal scale are the channel numbers (proportional
to measured fluorescence intensity); here 256 channels are used.

too few channels may not provide enough detail
to preserve the accuracy of the original analog sig-
nal. With a higher-resolution ADC (1,024 channels),
DNA Cytometry Consensus Conference Guidelines
(Shankey et al., 1993) recommend a minimum of
10,000 cells to insure that minor statistical fluctu-

ations in the data set are not seen as a measur-
able attribute. Note also that an increase of 10%
in analog signal is needed to jump from channel 10
to channel 11, but an increase of 0.1% in signal is
needed for the jump from channel 1,000 to 1,001.
Hence the higher the channel number, the higher
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Fig. 3. Representative DNA distribution histograms prepared
from mesothelioma paraffin blocks: histogram A, diploid; his-
togram B–D, aneuploid. Histograms C and D were obtained from
two different paraffin-embedded blocks of the same tumor (DI,
DNA index; CV; coefficient of variation). From Isobe et al. (1995).

the resolution of the DNA histogram. Watson (1992)
points out that this introduces a positive skew into
the recorded histogram. A cytometrist can shift the
histogram into the channels with higher resolution
(hence decreasing the band width of the histogram
channels) by increasing the detector voltage (review;
Shapiro, 1995).

3.3 Modeling of the DNA Histogram

Let X represent DNA content of a cell. Let Y
represent signal intensity (i.e., channel intensity) of
a single observation from a flow cytometer. Then
Y = X + ε; where ε is error due to measurement
and due to processing of the cell. The goal of DNA
histogram analysis is estimation of the distribution
of X: In normal cells this distribution has three
components: cells in G0/G1, cells in S-phase and
cells in G2/M: The common assumption about the
density of ε is that it is Gaussian. The main problem
here, in estimating the distribution of DNA content
for a sample of cells, is one of deconvolution.

The percentage of cells in S-phase (S-phase frac-
tion, or SPF) is the measurement which is used as a
proxy for tumor proliferation and may be of clinical
prognostic value. Estimating SPF necessitates mod-
eling the DNA histogram to estimate the distribu-
tion of G1/G0 (or diploid cells), that of S-phase cells
and that of G2/M: A critique of the methods used
currently is summarized below for normal cells; the
situation becomes more complicated when analyz-
ing tumor cells (Section 3.4).

(a)

(b)

Fig. 4. (a) The cell cycle and the components of the DNA his-
togram: G0 and G1 have 2N component of DNA; S-phase has be-
tween 2N and 4N component of DNA; and G2/M has 4N com-
ponent of DNA. From Rabinovitch (1993). (b) A “perfect” DNA
histogram for healthy cells versus an idealized empirical DNA
histogram. The solid lines represent a theoretical representation
of a DNA histogram if there were no errors in measurement: the
spikes represent the fluorescence of the DNA from cells in G0/G1
andG2 respectively; the trapezoid in between the spikes represents
the distribution of fluorescence from DNA from cells reproducing
DNA in S-phase. The dotted lines represent the theoretical his-
togram of fluorescence from DNA with errors in measurement
which assumes that the error component results in a Gaussian
broadening of the peaks. From Rabinovitch (1993).

Presently it is assumed that the distributions of
normal cells in G1/G0 phase and those in G2/M
phase are symmetrical about their respective modes
and are Gaussian. These assumptions arise from
assuming that ε; the error per intensity channel, is
Gaussian. Most, if not all, of the approaches to mod-
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eling DNA histograms make these assumptions. As
there is no “gold standard” for human cells it is not
known if these assumptions are plausible. The left
side of the G1/G0 phase and the right side of the
G2/M phase are observed, but the other sides of
these distributions are obscured with the S-phase
distribution. Bagwell (1993), Dean (1985) and Rabi-
novitch and Jacobberger (1995) give expositions of
the more commonly used procedures. Mendelsohn
and Rice (1982) proposed a method of deconvolu-
tion using B-splines assuming a constant coefficient
of variation across intensity channels. Using max-
imum likelihood, Vindelov and Christensen (1990)
use a mixture model to fit DNA for deconvolution.

The assumptions about the shape of the S-phase
distribution are less rigid. A simplified method
makes no attempt to model this distribution but
rather estimates the percentage of cells in S-phase
as the remainder of the histogram after subtracting
the two “Gaussian” components. This “outside-in”
method is very sensitive to skewness in the two
Gaussians (since it assumes no skew) and tends
to underestimate S-phase (Bagwell, 1993). Alter-
natively, the S-phase distribution is modeled in a
variety of ways, including extrapolated rectangular,
extrapolated trapezoidal and extrapolated polyno-
mial. In each of these “extrapolated” models the
S-phase region is defined, the model (e.g., rectangu-
lar) is fit to the DNA histogram in this region and
then extrapolated to the modes of the G1/G0 phase
and G2/M phase (Bagwell 1993). Fried (1976) pro-
posed using a series of broadened Gaussian curves
to fit the S-phase distribution. Vindelov and Chris-
tensen (1990) assume that “S-phase distribution
can be described by the exponential function of a
polynomial of a given degree.”

The problem becomes even more complicated by
the presence of readings from more than one cell
(aggregation) and readings from debris in the sam-
ple. Readings due to aggregation and debris need
to be either screened out or accounted for in the
model. Estimation of the part of the histogram
which is attributable to debris and aggregate cells
is also an unsettled problem. The debris is modeled
assuming that any signal intensity below that cov-
ered by the distribution of the diploid cells is debris
(and yet this may be due to cells with a deficient
amount of DNA). The shape of the distribution of
debris is assumed to be exponential, or sometimes
truncated exponential (Vindelov and Christensen,
1990), when the modeling is parametric. Nonpara-
metric approaches, which are histogram dependent,
assume that the distribution of intensities from de-
bris would behave as intensities emitted from sliced
nuclei. These latter approaches seem to fit better,

as the exponential model tends to overestimate
the component of debris present past the G1/G0
peak (Bagwell, 1993; Rabinovitch, 1993; Shankey,
et al., 1993)

There are two popular ways to account for read-
ings from aggregate cells; both are ad hoc. One ap-
proach is to gate out (exclude) readings from aggre-
gate cells as they pass through the laser beam. If
there is a dip in the pulse, then it is likely that this
pulse has come from two cells in quick succession
to one another. However, this method is not sensi-
tive to aggregate cells which are clumped such that
one cell is behind the other with respect to the laser
beam; such a double cell would not be distinguish-
able from a single cell with 4N. In addition, cells
which are heterogeneous in shape (not aggregate)
may produce a pulse with a dip.

The other approach is to model the component
of the histogram that is due to aggregate readings.
Usually, the component of the distribution which
is assigned to be aggregate is based on the dis-
tribution beyond the distribution of the tetraploid
cells. Current models for aggregation arise from at-
tempts to model the probability distribution of ag-
gregation (including doublets, triplets, quadruplets
etc.) as a function of surface area of the cells (or nu-
clei) and a constant probability of aggregation (Bag-
well 1993; Rabinovitch, 1993). However, it is also
possible that readings beyond the normal tetraploid
range are an indication of cells with an abnormal
amount of DNA.

A third approach, pointed out by a reviewer, is
software gating which excludes observations from
the data list. In this method the data are listed in
a multivariate format and can be displayed in his-
togram(s), and the flow cytometrist can set gates
based on values determined from the histogram(s).
Wheeless (1991) gives an example of software gating
(in a data set with variables nuclear fluorescence,
nuclear diameter and cell diameter) where the gate
is defined to subset the data list to those observa-
tions with a low ratio of nuclear diameter to cell
diameter. In DNA analysis the cytometrist can set
a gate based on the peak fluorescence intensity and
integrated intensity (reviewer) to screen out aggre-
gate cells.

Whether aggregate cells should be gated out
(through hardware, described first, or software, de-
scribed third) or modeled is controversial (Shankey
et al., 1993). Modeling aggregation is probably
more reliable than attempts at gating out intensi-
ties from cells with bimodal pulses as the latter will
not be sensitive to cells that pass through the laser
beam in a formation which is parallel to that of
the beam or in a very tight formation. All methods
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share the difficulty of not using objective crite-
ria for screening out aggregate readings. It should
be noted that using both gating and modeling for
aggregation will over compensate (Bagwell, 1993;
Shankey et al., 1993).

3.4 Modeling of DNA Histograms from
Samples of Cancer Cells

I now turn to the modeling of tumor cells. There
are two main questions to address in DNA analysis
of tumor cells. The first of these is: “Within a tu-
mor, are there more cells proliferating than would
be expected in healthy tissue?” One measurement
that has been proposed as a quantification of cell
proliferation is the percentage of cells that are in
S-phase. The existence of subpopulation(s) compli-
cates the modeling problems into one of deconvolu-
tion of multiple subpopulations including quantify-
ing the S-phase fraction for the normal cells and for
the abnormal cells (see Figure 3, parts B and C).

In addition to the modeling issues discussed
previously clinicians find a need to categorize
the percentage of cells in S-phase into possible
risk groups. A categorization of “high S-phase” is
thought to be an indication of high cell proliferation
and is used as an explanatory variable for clinical
outcome of patients. A difficulty arises in defining
high S-phase, since (1) methods for defining the
distribution of S-phase cells are multiple and sub-
jective, and (2) there is much variability in the flow
cytometry data itself. Even the definition of high
S-phase is very subjective: Shankey et al. (1993)
suggest the use of “high S-phase,” “intermediate
S-phase,” and “low S-phase” as a preferable catego-
rization and, further, that these should be defined
within laboratory and within tumor type. A recent
advertisement for a DNA analysis software pack-
age emphasizes the subjectivity of cutoffs between
“high,” “intermediate,” and “low” S-phase by stat-
ing “You’ve determined your lab’s S-phase cutoffs,
so where does this analysis fit into those ranges.
Enter your cutoffs : : :and it happily answers the
question and more” (Verity Software House, Inc.,
1996). Often data-driven “cut-point” analyses are
used to define the cut-point between “low S-phase”
and “high S-phase,” giving a researcher the false
impression that there is an objective statistically
significant difference between the clinical outcomes
of the “low S-phase” group and the “high S-phase”
group.

Another primary goal of analyzing DNA his-
tograms from tumor cells is to answer the question:
“Are there cells which have an unusual amount of
DNA?” The existence of one or more subpopulations
of cells with an unusual amount of DNA may be

prognostic of clinical outcome. There are two sta-
tistical issues here. The first problem is finding an
objective method for detecting whether such a sub-
population exists. The second issue is that presence
of such a subpopulation complicates the modeling
issue presented in the previous section into one in-
volving the estimation of overlapping distributions
from multiple subpopulations.

Cells which are neither diploid, nor diploid cells
that have doubled their DNA for mitosis, nor
diploid cells synthesizing DNA are referred to as
aneuploid cells. There are two definitions of ane-
uploidy; the distinction is not often made in the
literature but it is an important one. Cells with
an abnormal number of chromosomes (not 2N in
G0/G1) are called karyotypic aneuploid; this cannot
be observed with DNA flow cytometry data de-
scribed here. DNA-aneuploid cells have an unusual
DNA content in their G1/G0 phase that is repli-
cated through S-phase and into the G2/M phase;
their presence is unusual in healthy cells. Although
many tumor cells are DNA diploid, a tumor cell
may (more commonly) develop extra DNA or may
be missing some of its initial DNA. If there are a
number of tumor cells which are DNA-aneuploid, a
peak will be formed on the DNA histogram which is
neither a diploid peak nor a tetraploid peak, but an
aneuploid peak. Distributions of aneuploid peaks
have been developed from rat tumor cells, and the
development of a peak can be seen in Figure 5. In
this figure the aneuploid peak is evident only five
days after implantation of prostatic carcinoma, and
the subsequent histograms give strong evidence
that this is an aneuploid peak rather than an arti-
fact of sample preparation or variability in the data
(Section 4).

When modeling DNA histograms of human tu-
mor cells the cytometrist does not have a series
of histograms over time. Aneuploid peaks can be
difficult to discern from statistical noise in the
S-phase region and, conversely, peaks which are
thought to be aneuploid could be due to variabil-
ity in the data (see Section 4). Cusick, Milton and
Ewen (1990) discuss the problem of discerning an
aneuploid peak created from a small proportion of
aneuploid cells or where the aneuploid peak is close
to the diploid peak. Sometimes another variable
can be measured to distinguish between aneuploid
cells and diploid cells. For example, Gong, Traganos
and Darzynkiewicz (1993) used cyclin B (protein
expressed during G2� as a marker to distinguish
between diploid cells in G2 and aneuploid cells with
around 4N content. However, most of the meth-
ods used for discerning whether a subpopulation
of aneuploid cells exists are totally ad hoc, often
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Fig. 5. Increase in aneuploidy of rat prostatic carcinoma with
age: the DNA distribution of an R 3327 G carcinoma 5–50 days
after implantation, from Grogan and Collins (1990) reprinted
from Collins et al. (1981). In panel (a) the peak at channel 25
is from diploid cells �2N�; the peak at channel 40 (DNA index
40/25 = 1:6) is from aneuploid cells. The proportion of aneuploid
cells is seen to increase with time from implantation of tumor.

nothing more than a subjective call from the flow
cytometrist. Even when a peak looks suspicious for
aneuploidy, it is difficult to discern the fraction of
cells that are aneuploid as the distribution overlaps
with the diploid cells’ distribution. The question
also arises of how to distinguish the component
of the distribution which is due to aggregate cells
from the contribution due to cells with an abnor-
mally high content of DNA that are at the end of
their cell cycle.

Using a DNA diploid reference, or control sample,
can help to identify the diploid peak in the tumor
sample and thus help with the detection of an aneu-
ploid peak and the estimation of S-phase (Dressler,
1990; Muirhead, 1993; Rabinovitch, 1993; Shankey
et al., 1993). Ideally the control sample is nonma-
lignant epithelial tissue from the same site and pa-
tient which has been handled identically to the tu-
mor sample. All of these authors point out that in
paraffin-embedded tissue a suitable control sample
(which should also be paraffin-embedded) is usually
not available. Thus detection of aneuploid peaks can
be quite difficult and is subjective and nonverifiable.

Even when an aneuploid component is clearly
present, if the aneuploid peak is close to the diploid
peak, it creates problems in analyzing the his-
togram. Since the peak is overlapping the S-phase
region for the diploid cells it is impossible to distin-
guish the S-phase fraction of diploid cells from the
distribution of aneuploid cells and their respective
aneuploid S-phase distribution.

Another variable which is commonly studied for
prognostic significance (review) is the DNA index
(DI). The DNA index is the ratio of the modal G1
fluorescence channel of aneuploid cells to that of
diploid cells. Hence the determination of the exis-
tence of an aneuploid peak and the positions of the
G1 peak for the diploid and the aneuploid popula-
tion becomes important.

3.5 Model Fitting and Assessing Data Quality

Open statistical problems also exist in fitting
models and assessing the quality of the data. Mea-
surement of the two primary variables, percentage
of cells in S-phase and presence of aneuploid sub-
populations, rests heavily on the model used to
analyze the DNA histogram and on the quality of
the data.

Choosing which method is appropriate for each
histogram is, at present, a subjective call. Van Dilla
(1985) and Dean (1985) give a short summary of
how to choose a method based on the shape of the
histogram itself. Van Dilla goes on to point out that
when cell growth is perturbed (through chemother-
apy) the S-phase distribution may be altered in such
a way as to make modeling difficult, resulting in in-
accurate estimates. As there is no direct way to mea-
sure S-phase fraction in paraffin-embedded samples
it is not known how accurate any of the models are
even in analyzing samples of healthy cells. Baisch
et al. (1982), using both simulated data and experi-
mental data, compared 12 different methods of mod-
eling DNA histograms. These authors found that
goodness-of-fit was not a criterion for accuracy of
S-phase fraction estimate because models with sim-
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ilar goodness-of-fit statistics can yield dramatically
different estimates for the fraction of cells in S-
phase. They also found that variations in the shape
of the DNA histogram in the S-phase region affected
the accuracy of S-phase fraction.

Currently, models are fit by assessing a χ2-
statistic. As the models are convolutions of different
components, a nonlinear least squares algorithm is
used to minimize the χ2-statistic. The method that
Bagwell cites as being most frequently used is that
of Marquardt (1963). This method finds the mini-
mum χ2-statistic by combining two search methods.
The first is a gradient search method which esti-
mates the direction of maximum in the χ2-statistic
as a function of the model parameters and changes
the estimates to minimize the statistic. The second
search minimizes the first-order Taylor expansion of
the χ2-function (for the current model) with respect
to the model parameters. The algorithm varies in
choosing the optimal method of search at the cur-
rent set of parameter estimates. The rate of this
variation and the starting point can be adjusted to
suit the needs of DNA histogram modeling. The al-
gorithm also gives error estimation for the model
parameter estimates.

The quality of the data set forming the DNA his-
togram is often assessed by estimating the coef-
ficient of variation (CV) for the G0/G1 peak and
the CV of the G2/M peak. Yet again there are dif-
ferent methods to do this, some of which are de-
pendent on a flow cytometrist graphically defining
the peak in question. These ad hoc calculations are
based on the assumption that the underlying peaks
are Gaussian. Even deciding which data sets (pre-
sented as histograms) are “clean” enough for analy-
sis is a subjective call. Shankey et al. (1993) suggest
guidelines for determining which DNA histograms
are adequate for detection of an aneuploid popu-
lation and for estimation of S-phase. Benson and
Braylan (1994) give guidelines for CV’s of peaks,
proportion of cells within peaks and separation of
peaks (DNA index of aneuploid peak) for detection of
aneuploidy.

3.6 Intermodel Variability of DNA
Histogram Variables

Silvestrini and the SICCAB Group for Quality
Control of Cell Kinetic Determinations (Silvestrini,
1994) found tremendous intermodel variation in
S-phase estimates on breast cancer tissue when
the laboratories were under strict quality con-
trol (review). They compared four different mod-
els and found the intermodel discrepancies were
more apparent in aneuploid tumors. Weaver et al.
(1990) found that the correlation between mea-

surements from frozen tissue and those from
paraffin-embedded tissues differs with algorithm
for removal of debris component from the his-
togram. Frierson (1991) and Herman (1992) also
observed a high reproducibility of S-phase estimates
between institutions when the same method of mod-
eling was used, but the estimates differed when
different methods of modeling were used. These in-
termodel differences in S-phase estimates were not
significant when healthy tissue was analyzed. How-
ever, results between laboratories are frequently
not consistent. Hitchcock (1991) found variability
between methods of modeling the same data and
also between laboratories using the same method of
modeling. Kallioniemi et al. (1994) describe an algo-
rithm for fully automated DNA histogram analysis,
measuring DNA index, S-phase fraction and pres-
ence of an aneuploid peak, that they found works
rather well and is consistent with conventional
DNA histogram analysis. Kallioniemi, Joensuu,
Klemi and Koivula (1990) observed interlaboratory
variation in detecting aneuploid populations, DI
and S-phase estimation within the same method
of modeling. Discordant ploidy and DI status led
to differing estimation of S-phase. In 4 of the 33
paraffin-embedded tissues two experienced labora-
tories disagreed on ploidy. For the other 29 cases
the correlation between the S-phase estimates was
quite high �r = 0:90�: Baldetorp et al. (1995) found
discrepancies across 12 laboratories due to differ-
ing categorizations of S-phase, differing methods
for detecting aneuploid populations and differ-
ing estimators for S-phase fraction. These authors
state that “the most suitable method(s) for SPF
calculation remain(s) to be established.”

3.7 Summary of Modeling Issues
in DNA Histograms

In summary, choice of method of DNA histogram
analysis can have a dramatic effect on the value of
the resulting variables. Many of the procedures for
analyzing the histogram (choice of model, detecting
presence of aneuploid population, measurement of
quality of the histogram) are ad hoc. In order for
the flow cytometric variables to be of scientific use
there must be methods of modeling which are more
objective and based on valid statistical models. Cur-
rently, the validity of the models being used is ques-
tionable, as is the objectivity of some of the measure-
ments. There are a wealth of statistical problems to
be solved which include the following:

1. estimation of overlapping distributions (G0/G1
phase, S-phase, G2/M phase, debris distribution,
aggregation distribution);
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2. quantitative recognition of the existence of ab-
normal subpopulations and estimation of their
overlapping distributions;

3. estimation of the variability of flow cytometric
variables that result from (1) and (2);

4. estimation of the variability in flow cytometric
variables due to different modeling techniques,
different laboratory processes, and so on;

5. quantification of model fit that picks the model
that yields the most accurate flow cytometric
measurements (S-phase fraction, presence of
aneuploid population(s)).

In addition, a reviewer points out that analysis of
multivariate flow cytometric measurement (mea-
surement from more than one characteristic of the
cell) “will be a fertile research arena.” For exam-
ple, the bivariate measure of DNA content and
bromodeoxyuridine (BrdUrd) is being studied for
the measurement of tumor potential doubling time
(Begg, 1995; Terry and Peters, 1995). Cells can be
pulsed in vivo with BrdUrd or another thymidine
analog. Those cells that are replicating DNA will re-
place thymidine with BrdUrd. The sample can then
be stained with fluorochrome-tagged monoclonal
antibodies specific for BrdUrd and fluorochromes
specific for DNA to produce the bivariate response
(Darzynkiewicz, 1993). Vindelov and Christensen
(1990) emphasize the need to use correlated bi-
variate analysis for deconvolution of two or more
overlapping populations within the S-phase region.
In addition, dual-parameter (bivariate) flow cytom-
etry is currently being used for estimation of the
proportion of cells in resting phase (G0) (Pellicciari
et al., 1995).

4. QUALITY CONTROL

Variability in flow cytometric data arises both
from the preparation of the cells, from the pro-
cess of measurement itself and from the interaction
of both of these. Quality control issues are read-
ily apparent. Standards and guidelines are under
continual review by professional societies (Inter-
national Society of Analytical Cytometry, Society
of Clinical Cytometry) and are presented at work-
shops of conferences (Rabinovitch and Jacobberger,
1995); several recent articles (Dressler, 1990; Muir-
head, 1993; Shankey et al., 1993; Silvestrini, 1994)
summarize the problems with the inconsistencies in
laboratory process and suggest guidelines. Lack of
adherence to suggested guidelines is common and,
as Shapiro (1995) points out, many operators of flow
cytometers have insufficient training. The result
is that flow cytometry data is often quite “dirty”
and this has a direct bearing on the subsequent

analysis of the data. Some of the major sources of
variability, and their influence on DNA data and
histograms, are summarized in this section.

To start with, the intensity of light emitted by
the fluorochromes is not necessarily proportional to
the presence of the quantity being measured (here,
DNA). This can result from the type of fluorochrome
being used, the preparation of the cell suspension,
the orientation of the cell suspension within the
flow cytometer, as well as the inability of the fluo-
rochrome to behave as expected. Rabinovitch (1993)
states that only a portion of the DNA is accessi-
ble to binding and, further, that this accessibility is
dependent on “cell type, cell cycle status, cell dif-
ferentiation, and cell viability.” Additionally, stain-
ing and fixation have an interactive effect on the
accessibility of the DNA binding sites (Becker and
Mikel, 1990; Darzynkiewicz, 1990; Dressler, 1990;
Rabinovitch, 1993; Larsen, Munch-Peterson, Chris-
tiansen and Jorgensen, 1986). Kusuda and Melamed
(1994) report that there are time-dependent changes
in fluorescence caused by changes in the equilibrium
of the dye solution, changes in the flow stream, cell
settling, changes in permeabilization, denaturation
and other artifacts. Several authors find that dif-
ferent staining protocols can lead to differences in
DNA measurements (Hitchcock and Ensley, 1993;
Rabinovitch, 1993). Shankey et al. (1993) maintain
that it is critical to maintain a stable dye-to-cell
ratio.

There is discrepancy in measurement due to tis-
sue source. DNA measurements can be made from
fresh cells, frozen cells or cells that have been
paraffin-embedded for preservation. (Recall that
use of paraffin-embedded tissue has made it possi-
ble to analyze flow cytometry data with long-term
follow-up data.) DNA flow cytometric measures are
comparable between fresh cells and frozen cells,
but these are not necessarily comparable with
the measures taken from paraffin-embedded cells
(Frierson, 1988; Hitchcock and Ensley, 1993; McIn-
tire, Goldey, Benson and Braylan, 1987; Zalupski
et al., 1993; Pelstring, Hurtubise and Swerdlow,
1990). Other authors have found that the measure-
ments from fresh or frozen cells are comparable to
those from paraffin-embedded tissue (Alanen et al
1989; Weaver et al., 1990). In addition, Kenyon
et al. (1994) found DNA analysis to be more precise
when analyzing a sample that had been sorted to
be rich in tumor cells.

The processing of paraffin-embedded tumor cells
has many steps and choices of procedure within
each step. Even the thickness of the slice of tis-
sue can affect the amount of debris present in the
cell suspension (Hitchcock and Ensley, 1993). Pres-
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ence of a false aneuploid peak can be the result
of choice of fixative (Carr and Abaza, 1993; Her-
bert et al., 1989; Pelstring, Hurtubise and Swerdlow,
1990; Shankey et al., 1993). Autolysis can yield poor
quality data sets, skewed diploid peaks, false ane-
uploid peaks, increased debris, artifactual antigen
expression and changed chromatic structure which
alters the stoichiometry of dye binding to DNA (Ala-
nen, Joensuu and Klemi, 1989; Hitchcock and Ens-
ley, 1993; Joensuu, Alanen, Klemi and Aine, 1990;
Rabinovitch, 1993). False aneuploidy has been ob-
served in fixed, paraffin-embedded normal tissue
(Rabinovitch, 1993; Joensuu et al., 1990).

Different methods can be used for the isolation
of cells into a cellular suspension (disassociation)
for the flow process: chemical, mechanical, enzy-
matic digestion. Usually paraffin-embedded tissue
is subject to enzymatic digestion, but here, again,
the choice of the enzyme and the protocol used has
an effect on the DNA measurements (Chassevent
et al., 1984; Hitchcock and Ensley, 1993; Hitchcock
and Scott, 1990, 1991). Different enzymes, as well
as different strengths of the same enzyme and time
exposed to the enzyme, can cause differences in
the amount of aggregation and debris present, in
the quality of the data set and in the estimate of the
S-phase fraction. In addition, choice of enzyme and
enzyme process can cause a significant difference
in the staining intensity.

The setup of the flow cytometer contributes to
the variability of the data. Alignment of the laser
beam and the cell suspension is essential. But there
are also optical factors, including the sensitivity of
the photodetectors, and the properties of the fluo-
rochromes and lasers being used, which affect the
quality of the data. There is empirical evidence
(Chance et al., 1995) that the error due to mea-
surement and noise in the system (i.e., from the
flow cytometer itself) and the error due to pro-
cess of the cells (preparation and staining) are not
independent.

Wheeless et al. (1989) report interlaboratory vari-
ation in DNA histogram variables even when the
laboratories were using the same model. The study
showed that differences in instrumentation, in-
strument setup and laboratory techniques, as well
as inconsistency of sample preparation, different
staining protocols and the timing of the analysis led
to variation in estimates of DNA histogram param-
eters. Instrument performance affects the quality of
the DNA data as measured by CV’s of the histogram
peaks (Shankey et al., 1993). Shankey goes on to
point out that linearity of the instrument (record-
ing electrical impulses which are proportional to
the intensity of the fluorescence) should be main-

tained and checked on a regular basis. With many
instruments, nonlinearity exists in the lower chan-
nels (Rabinovitch, 1993; Shankey et al., 1993).
Rabinovitch points out that this can usually be
handled by calibrating the instrument or in the
software analysis of the histogram.

Reporting of results plays a crucial role in the
determination of the prognostic value of DNA cy-
tometric measurements in cancer. Authors need to
report details of sample collection and information
indicating that the sample is representative, as well
as whether a control sample was used; sample han-
dling and preparation including fixation, disassoci-
ation technique, stain used and staining protocol;
instrumentation used; mathematical model(s) used
for histogram analysis, including the methods used
for debris and aggregation compensation as well as
the model used for assessing quality of data set, esti-
mation of S-phase and detection of aneuploidy. Addi-
tionally, information about the DNA measurements
needs to be reported, including quantification of his-
togram quality, the proportion of cells within the
peaks and the proportion of the histogram which is
due to debris and/or aggregate cells. Currently, val-
ues of S-phase estimates vary considerably between
laboratories (due to lack of standardized techniques)
and between models, hence specific cut points for de-
termination of “high S-phase” and “low S-phase” are
meaningless.

In 1984 Hiddemann and co-workers (Hiddeman
et al., 1984 a and b) issued an article “Convention
on Nomenclature for DNA cytometry” because “ter-
minology used to describe the results of flow cytom-
etry studies is often confusing and not universally
applied” ( Shankey et al., 1993). The guidelines sug-
gested in the 1984 article are often not used. Specifi-
cally the terminology used with flow cytometry stud-
ies should make it clear that the measurements are
not direct measurements of chromosomal content.
Definition of the S-phase needs to be clearly stated
as to whether it is tumor specific, total S-phase, an
average of these or S-phase of aneuploid line. In
summary, results need to be reported in a way that
facilitates comparison between laboratories and be-
tween studies.

5. CONCLUSION

This paper presents statistical and quality con-
trol problems in the analysis of flow cytometric data.
The issues are presented in the context of measur-
ing DNA content in tumor cells. Whether flow cy-
tometric measurements will prove to be a valuable
tool in clinical prognosis remains to be seen and
is probably dependent on type of disease. In order
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to determine the value of DNA histogram analysis,
reproducibility of results within and between lab-
oratories is critical. The medical literature should
also reflect that flow cytometric measures are es-
timates and as such estimated measurement (and
process) error should be cited with results. Statisti-
cally sound estimators of the overlapping distribu-
tions that make up the DNA histogram and estima-
tion of the variance of these estimators would be a
tremendous step forward.
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