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Unified

Frequentist and Bayesian Testing

of a Precise Hypothesis

J. O. Berger, B. Boukai and Y. Wang

Abstract. In this paper, we show that the conditional frequentist
method of testing a precise hypothesis can be made virtually equiva-
lent to Bayesian testing. The conditioning strategy proposed by Berger,
Brown and Wolpert in 1994, for the simple versus simple case, is gener-
alized to testing a precise null hypothesis versus a composite alternative
hypothesis. Using this strategy, both the conditional frequentist and the
Bayesian will report the same error probabilities upon rejecting or ac-
cepting. This is of considerable interest because it is often perceived that
Bayesian and frequentist testing are incompatible in this situation. That
they are compatible, when conditional frequentist testing is allowed, is
a strong indication that the “wrong” frequentist tests are currently be-
ing used for postexperimental assessment of accuracy. The new unified
testing procedure is discussed and illustrated in several common testing

situations.
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1. INTRODUCTION

The problem of testing statistical hypotheses has
been one of the focal points for disagreement be-
tween Bayesians and frequentists. The classical
frequentist approach constructs a rejection region
and reports associated error probabilities. Incorrect
rejection of the null hypothesis H, the Type I er-
ror, has probability «, and incorrect acceptance of
H,, the Type II error, has probability B. Use of this
traditional («, B)-frequentist approach in postexper-
imental inference has been criticized for reporting
error probabilities that do not reflect information
provided by the given data. Thus a common alter-
native is to use the P-value as a data-dependent
measure of the strength of evidence against the null
hypothesis H,. However, the P-value is not a true
frequentist measure and has its own shortcomings
as a measure of evidence. Edwards, Lindman and
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Savage (1963), Berger and Sellke (1987), Berger
and Delampady (1987) and Delampady and Berger
(1990) have reviewed the practicality of the P-value
and explored the dramatic conflict between the
P-value and other data-dependent measures of ev-
idence. Indeed, they demonstrate that the P-value
can be highly misleading as a measure of the
evidence provided by the data against the null hy-
pothesis. Because this point is of central importance
in motivating the need for the development here,
we digress with an illustration of the problem.

ILLUSTRATION 1. Suppose that one faces a long
series of exploratory tests of possible new drugs for
AIDS. We presume that some percentage of this se-
ries of drugs are essentially ineffective. (Below, we
will imagine this percentage to be 50%, but the same
point could be made with any given percentage.)
Each drug is tested in an independent experiment,
corresponding to a test of no treatment effect based
on normal data. For each drug, the P-value is com-
puted, and those with P-values smaller than 0.05
are deemed to be effective. (This is perhaps an un-
fair caricature of standard practice, but that is not
relevant to the point we are trying to make about
P-values.)

Suppose a doctor reads the results of the pub-
lished studies, but feels confused about the mean-
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ing of P-values. (Let us even assume here that all
studies are published, whether they obtain statis-
tical significance or not; the real situation of pub-
lication selection bias only worsens the situation.)
So, in hopes of achieving a better understanding,
the doctor asks the resident statistician to answer a
simple question: “A number of these published stud-
ies have P-values that are between 0.04 and 0.05;
of those, what fraction of the corresponding drugs
are ineffective?”

The statistician cannot provide a firm answer to
this question, but can provide useful bounds if the
doctor is willing to postulate a prior opinion that
a certain percentage of the drugs being originally
tested (say, 50%, as mentioned above) were ineffec-
tive. In particular, it is then the case that at least
23% of the drugs having P-values between 0.04 and
0.05 are ineffective, and in practice typically 50%
or more will be ineffective (see Berger and Sellke,
1987). Relating to this last number, the doctor con-
cludes: “So if I start out believing that a certain
percentage of the drugs will be ineffective, then a P-
value near 0.05 does not change my opinion much at
all; I should still think that about the same percent-
age of those with a P-value near 0.05 are ineffec-
tive.” That is an essentially correct interpretation.

We cast this discussion in a frequentist frame-
work to emphasize that this is a fundamental fact
about P-values; in situations such as that here, in-
volving testing a precise null hypothesis, a P-value
of 0.05 essentially does not provide any evidence
against the null hypothesis. Note, however, that the
situation is quite different in situations where there
is not a precise null hypothesis; then it will of-
ten be the case that only about 1 out of 20 of the
drugs with a P-value of 0.05 will be ineffective,
assuming that the initial percentage of ineffective
drugs is again 50% (cf. Casella and Berger, 1987).
In a sense, though, this only acerbates the problem,;
it implies that the interpretation of P-values will
change drastically from problem to problem, mak-
ing them highly questionable as a useful tool for
statistical communication.

To rectify these deficiencies, there have been
many attempts to modify the classical frequentist
approach by incorporating data-dependent proce-
dures which are based on conditioning. Earlier
works in this direction are summarized in Kiefer
(1977) and in Berger and Wolpert (1988). In a sem-
inal series of papers, Kiefer (1975, 1976, 1977)
and Brownie and Kiefer (1977), the conditional fre-
quentist approach was formalized. The basic idea
behind this approach is to condition on a statistic
measuring the evidential strength of the data, and
then to provide error probabilities conditional on

the observed value of this statistic. Unfortunately,
the approach never achieved substantial popular-
ity, in part because of the difficulty of choosing the
statistic upon which to condition (cf. Kiefer, 1977,
Discussion).

A prominent alternative approach to testing is
the Bayesian approach, which is based on the most
extreme form of conditioning, namely, conditioning
on the given data. There have been many attempts
(see, e.g., Good, 1992) to suggest compromises be-
tween the Bayesian and the frequentist approaches.
However, these compromises have not been adopted
by practitioners of statistical analysis, perhaps be-
cause they lacked a complete justification from
either perspective.

Recently, Berger, Brown and Wolpert (1994;
henceforth, BBW) considered the testing of simple
versus simple hypotheses and showed that the con-
ditional frequentist method can be made equivalent
to the Bayesian method. This was done by finding
a conditioning statistic which allows an agreement
between the two approaches. The surprising aspect
of this result is not that both the Bayesian and
the conditional frequentist might have the same
decision rule for rejecting or accepting the null hy-
pothesis (this is not so uncommon), but rather that
they will report the same (conditional) error prob-
abilities upon rejecting or accepting. That is, the
error probabilities reported by the conditional fre-
quentist using the proposed conditioning strategy
are the same as the posterior probabilities of the
relevant errors reported by the Bayesian.

The appeal of such a testing procedure is evident.
The proposed test and the suggested conditioning
strategy do not comprise a compromise between the
Bayesian and the frequentist approaches, but rather
indicate that there is a way of testing that is si-
multaneously frequentist and Bayesian. The advan-
tages of this “unification” include the following:

(i) Data-dependent error probabilities are uti-
lized, overcoming the chief objection to («, B)-
frequentist testing in postexperimental settings.
These are actual error probabilities and hence do
not suffer the type of misinterpretation that can
arise with P-values.

(i1) Many statisticians are comfortable with a
procedure only when it has simultaneous Bayesian
and frequentist justifications. The testing procedure
we propose, for testing a simple null hypothesis ver-
sus a composite alternative, is the first we know of
that possesses this simultaneous interpretation (for
this problem).

(iii) A severe pedagogical problem is the common
misinterpretation among practitioners of frequen-
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tist error probabilities as posterior probabilities of
hypotheses. By using a procedure for which the two
are numerically equal, this concern is obviated.

(iv) Since the approach is Bayesianly justifiable,
one can take advantage of numerous Bayesian sim-
plifications. For instance, the stopping rule (in, say,
a clinical trial) does not affect the reported error
probabilities; hence one does not need to embark
upon the difficult (and controversial) path of judging
how to “spend «” for “looks at the data.” (A full dis-
cussion of sequential aspects of the procedure would
be too lengthy. See BBW for discussion in the simple
versus simple case; we will report on the sequential
situation for composite hypotheses in a later paper.)

Most “Bayesian—frequentist agreement” articles
end up arguing that the “classical” procedures be-
ing used today are satisfactory from either view-
point. It is noteworthy that this is not the case here.
In effect, we argue that the Bayesian procedure is
correct, in part because it has a very sensible condi-
tional frequentist interpretation; but this procedure
is very different than what is typically used in prac-
tice. Hence we are proposing a serious change in
practical statistical methodology.

The general development given later may appear
to be somewhat involved technically, but the new
tests that result are often quite simple. To illus-
trate this, as well as some of the comparison issues
mentioned above, we end the Introduction with an
example.

ExamMPLE 1. Suppose that X, X,,..., X, are
n ii.d. random variables from a normal distribu-
tion having unknown mean 6 and known variance
o? [i.e., the .#/(0, 0?) distribution] and denote by
X, =Y X,/n their average; thus X, ~ .#(6, 02/n).
Based on the observed value %, of X,, we are inter-
ested in testing H: 6 = 6, versus Hy: 6 # 6,. Con-
sider the following three testing procedures, defined
in terms of the standard statistic z = /n(x,,—60y)/0:

1. The classical frequentist test,

if |2| > 2,9, Treject H, and report

error probability «,

TC:
accept H, and report

error probability B(6),

if |z| < Zq/25

where @ and B(0) are the probabilities of Type I
and Type II errors and z,/, is the usual critical
value; since B(0) depends on the unknown 6, it
is common to choose a “subjectively important”
value (or two) of 6 and report 3 at that (or those)
points.

2. The P-value test,

if |2[ > 2,9, Teject H, and report the
T P-value p=2(1—-®(|z])),
P)if 2| < 2,2, do not reject H, and

report p;

here, and in the sequel, ® denotes the standard
normal c.d.f. whose p.d.f. is denoted by ¢. Typi-
cally in such a test, « = 0.05 is chosen.

3. A new conditional test,

if B(z) <1, reject H, and report
error probability
o = B(2)/(1+ B(2)),
Ti: {if 1 < B(z) <a, make no decision,
if B(z) > a, accept H, and report

error probability

B*=1/(1+ B(2)),

where B(z) = +/1+2nexp{—2%/(2+ n~!)} and
a is a constant defined in (4.7); a good approx-
imation to a is a = log(5n) — loglog(1 + 2n). As
we will see later, o* and B* have a dual interpre-
tation as (i) (conditional) frequentist Type I and
Type II error probabilities and (ii) the posterior
probabilities of H, and H, respectively.

To see these three tests in action, suppose n = 20,
6, =0, 0> =1, and « = 0.05 for T and Tp, and
0 = 1 is deemed to be of interest for Type II error
under T'. Table 1 summarizes the conclusions from
each test for various values of z. Note that z,,, =
1.96 and a = 3.26.

The acceptance and rejection regions of all three
tests are the same, except that T} makes no deci-
sion when 1.18 < |z| < 1.96. (This agreement is a
convenient coincidence for this illustration, but will
not happen in general.) The differences between the
tests, therefore, are in the “error probabilities” that
are reported.

Compare, first, T and T';. The error probabilities
for T'¢ are fixed, while those for T'] vary with |z|. In
the rejection region, for instance, 7' always reports
a = 0.05, while T'] reports error probabilities rang-
ing from nearly 1/2 (when |z| = 1.96) to o* = 0.0026
(when |z| = 4). The variability in the reports for T';
is appealing.

Compare, next T'p and 7. An immediate advan-
tage of T is that it can “accept” H, with specified
error probability, while the P-value (or 1 — p) is in
no sense an error probability for acceptance (for dis-
cussion, see the articles mentioned at the beginning
of the Introduction). In the rejection region, p does
vary with |z|, but it is smaller than o* by a factor of
at least 10. Since we will argue that o* is a sensible
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TABLE 1
Conclusions from the classical, P-value and conditional tests when n = 20 and a = 0.05

Values of |z| T, Ty Ty
————— 0o — p=1 B*=0.135
(B(1) = 0.006)
Acceptance 1 — p=0.317 B* =0.203
region 1.18 — _
No—decision region
—— —— 196 — - - p=0.05- — a*=0.496 —
(a=0.05)
Rejection 3 — p = 0.0026 a* =0.074
region
4 — p = 0.0000 a* =0.0026

conditional error probability, this discrepancy pro-
vides further evidence that P-values can be highly
misleading (if interpreted as conditional error prob-
abilities). Indeed, in the situation of Illustration 1,
note that o* = 0.496 (for those drugs where the P-
value is 0.05), which would correctly reflect the fact
that, typically, about 50% of these drugs will still be
ineffective.

A comment is in order about the “no-decision” re-
gion in 7T'j. In practice the no-decision region is typ-
ically innocuous, corresponding to a region in which
virtually no statistician would feel that the evidence
is strong enough for a conclusive decision. The no-
decision region could be eliminated, but at the
expense of introducing some counterintuitive prop-
erties of the test. Indeed, when this is more fully
discussed in Section 2.4, it will be observed that,
in some settings, even unconditional frequentists
should probably introduce a no-decision region to
avoid paradoxical behavior.

2. NOTATION AND THE “SIMPLE”
HYPOTHESES CASE

2.1 The Frequentist and Conditional
Frequentist Approaches

Suppose we observe the realization x of the ran-
dom variable X € 2" and wish to test the following
“simple” hypotheses:

(2.1) Hy X ~my(x) versus Hi: X ~ mq(x),

where m, and m, are two specified probability den-
sity functions (p.d.f.). We denote by

(2.2) B(x) =

the likelihood ratio of H, to H; (or equivalently the
Bayes factor in favor of H,). Let # denote the range
of B(x), as x varies over 2". We will restrict atten-
tion here to the case where # is an interval that

contains 1. Let F;, and F; be the c.d.f’s of B(X)

under H, and H,, respectively (under m, and m.,
respectively). For simplicity, we assume in the fol-
lowing that their inverses Fy! and F7! exist over
the range % of B(x). The decision to either reject
or accept H, will depend on the observed value of
B(x), where small values of B(x) correspond to re-
jection of H,.

For the traditional frequentist the classical most
powerful test of the simple hypotheses (2.4) is de-
termined by some critical value c¢ such that

if B(x) <ec,
if B(x) > ¢,

2.3) reject Hy,
accept H,.
Corresponding to the test (2.3), the frequentist re-
ports the Type I and Type II error probabilities as
a = Py(B(X) < ¢) = Fyg(c) and B = P{(B(X) >
¢) = 1 — Fi(c). For the standard equal-tailed test
with o = B, the critical value ¢ satisfies Fy(c) =
1- Fy(o).

The conditional frequentist approach allows the
reporting of data-dependent error probabilities. In
this approach, one considers some statistic S(X),
where larger values of S(X) indicate data with
greater evidentiary strength (for, or against, H)
and then reports error probabilities conditional on
S(X) = s, where s denotes the observed value of
S(X). For the test (2.3), the resulting conditional
error probabilities are given by

a(s) = Pr(Type I error |S(X) = s)
= Py(B(X) = c|S(X) = 5),

B(s) = Pr(Type 1I error |S(X) = s)
= P{(B(X) > ¢|S(X) = s).

Thus, for the conditional frequentist, the test (2.3)
of these simple hypotheses becomes

(2.4)

if B(X) <¢, reject H, and report conditional
2.5) error probability a(s),

“7if B(x) > ¢, accept H, and report conditional
error probability B(s).
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Of course, one is always free to report both a(s) and
B(s), and indeed the entire functions «(-) and B(-),
if desired.

EXAMPLE 2. Suppose X > 0 and we wish to test
Hy X ~e™ versus Hyj: X ~ 1e ™2

Then B(x) = 2¢~*/2 and its range & is the interval
(0, 2). If we choose ¢ = 1 in (2.3), the error proba-
bilities of this unconditional test are @ = 0.25 and
B =0.5.

An interesting statistic for formation of a condi-
tional test is S(X) = |B(X) — 1|. Clearly S is be-
tween 0 and 1, and larger values of S correspond to
data providing greater evidence for, or against, H,.
Furthermore, S(X) is an ancillary statistic, having
a uniform distribution on (0,1) under either hy-
pothesis. (Conditioning on ancillary statistics is, of
course, quite common.)

Computing the conditional Type I and Type II er-
rors in (2.4) is easy because {X: S(X) = s} isjust a
two-point set. Calculation then yields, as the condi-
tional frequentist test (2.5),

if B(x) <1, reject H, and report
conditional error probability
1-s B(x)
(2.6) a(s) = —5— =5
if B(x) > 1, accept H, and report

conditional error probability
B(s) = 0.5.

It is interesting that only the conditional Type I
error varies with the data.

It has been rare to find suitable ancillary statis-
tics upon which to condition, as in Example 2. (For
some other situations in which they have been
found, see BBW.) Hence we will employ a differ-
ent (and more Bayesian) strategy for determining
a suitable conditioning statistic. We return to the
issue of ancillarity in Section 5.

2.2 The Bayesian Approach

In Bayesian testing of the above hypotheses, one
usually specifies the prior probabilities, m, for H,
being true and 1 — 7, for H; being true. Then the
posterior probability (given the data) of H, being
true is

-1
(2.7) Pr(H0|x)=[1+(1_7T0)1} .

™ B(x)
To a Bayesian, B(x) in (2.2) is the Bayes factor in

favor of H,, which is often viewed as the odds of
H, to H, arising from the data; my/(1 — m) is the

prior odds. Small observed values of B(X) suggest
rejection of H,,.

When no specific prior probabilities of the hy-
potheses are available, it is intuitively appealing to
choose 7y = 1/2 in (2.7). We will use this default
choice in the remainder of the paper (although gen-
eralizations to other 7, are possible, following the
approach in BBW). With this default prior probabil-
ity, the posterior probability in (2.7) becomes

R _ __B(x)

and the posterior probability that H, is true is
. . . 1

(2.9 B*(B(x)) =Pr(H,|x) = 17 B(x) Blx)’

The standard Bayesian test for this situation can
then be written as
if B(x) <1, reject H, and report the

posterior probability

a*(B(x)),
accept H, and report the

posterior probability

B*(B(x)).

(This is, indeed, the optimal Bayesian test if “0-1"

loss is used; again, other losses could be considered,
following the lines of BBW.)

if B(x) > 1,

2.3 The Modified Bayesian Test

The formal similarities between the conditional
frequentist test (2.5) and the test T; are quite pro-
nounced. In fact, BBW have shown that a modifi-
cation of T; can be given a meaningful conditional
frequentist interpretation, when testing simple ver-
sus simple hypotheses. They modified the test T, to
include a no-decision region and suggested a con-
ditioning strategy under which the conditional fre-
quentist test will agree with this modified Bayesian
test.

For any b € 4, let (b) = Fy (1 — F,(b)) with
~1(b) = FTY(1 — Fy(b)) and define

r=1 and a= (1), if (1) > 1,

(2.10)
r=y¢y7}1) and a=1 ify(l)<1.

Consider the test of H, versus H; given by

if B(x) <r, reject H, and report the
conditional error
probability o*(B(x)),

T;: {if r < B(x) <a, make no decision,

if B(x) > a, accept H, and report
the conditional error

probability B*(B(x)).
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The “surprise” observed in BBW (see also Wolpert,
1995) is that T is also a conditional frequentist test,
arising from use of the conditioning statistic

(2.11)  S(X) =min{B(X), y 1(B(X))},

over the domain 2™ = {X: 0 < S(X) < r}. (The
complement of 27* is the no-decision region.) Thus,
the conditional frequentist who uses the acceptance
and rejection regions in T, along with the condi-
tioning statistic in (2.11), will report conditional er-
ror probabilities upon accepting or rejecting which
are in complete agreement with the Bayesian poste-
rior probabilities. That is, a(s) = ¢*(B) and B(s) =
B*(B). [Using (2.11), it can be seen that, in terms of
s, a(s) =s/(1+s) and B(s) = 1/(1+ ¢(s)).]

The main justification for using (2.11) as the con-
ditioning statistic is that it results in all the desir-
able consequences discussed in the Introduction. In
general it is not an ancillary statistic (except un-
der the “symmetry” condition discussed in BBW).
We delay further discussion until Section 5.

ExaMPLE 2 (Continued). Simple computation
yields ¢(b) = 2,/1—5b/2, so (1) = +/2 > 1. Hence
r =1 and a = v/2, so that the no-decision region is
the interval (1,+/2). The reported error probabili-
ties, upon rejection or acceptance, are again given
by (2.8) and (2.9).

2.4 The No-Decision Region and Alternate Tests

The no-decision region in the new testing proce-
dure can be a source of criticism. Note that, with-
out the no-decision region, T7 would be the optimal
Bayes test T; for a Bayesian (who assumes equal
prior probabilities of the hypotheses as well as “0-1”
loss). In a sense, the no-decision region is the “price”
that must be paid in order to have the reported
Bayesian error probabilities also be conditional fre-
quentist error probabilities. Thus, the “size” of the
no-decision region is a particularly important fea-
ture to study.

We will see considerable numerical evidence that
the no-decision region is typically rather small,
containing only moderate B(x) that would rarely
be considered to be strong evidence. Furthermore,
when the data consists of n i.i.d. observations from
mg or mq, the probability content of the no-decision
region decays exponentially fast to zero (under ei-
ther hypothesis). To be more precise, from a large
deviation result, it follows immediately that, for the
test T{ and under certain conditions (cf. Chernoff,
1972, Section 9.1, pages 42—-48),

nl

P;(“no-decision region”) ~ e " — 0,

for: =0, 1, as n — oo, where
_ : ¢ 1-¢
I= log()lslg"l/mo(ac)m1 (x)dx.

It should also be clear, from (2.10), that the no-
decision region disappears whenever Fy(1) = 1 —
F1(1), in which case r = a = 1. This can happen in
cases with likelihood ratio symmetry (for definition
and discussion see BBW).

The no-decision region in Tj could be eliminated.
An alternative test without such a region, which
was proposed in BBW, is

if B(x) <e¢, reject Hy and report the
conditional error
probability a*(B(x)),

accept H, and report the
conditional error

probability B*(B(x));

here the “critical value” c is the solution to Fy(c) =
1- F(c) (i.e., the critical value for the classical test
with equal error probabilities).

The reason we prefer T; to T; is that, from a
Bayesian perspective, it is not sensible to accept or
reject when the odds favor the opposite action (at
least if the hypotheses have equal prior probabili-
ties and the losses of incorrect actions are equal, as
we are assuming). Suppose, for instance, that ¢ = 5.
Then T35 would “reject H,” when B(x) = 4, even
though B(x) = 4 would typically be interpreted
(by a Bayesian) as 4-to-1 evidence in favor of H,,.
For a Bayesian, the inclusion of the no-decision re-
gion prevents this counterintuitive behavior from
occurring.

Even for a classical frequentist, the inclusion of a
no-decision region helps alleviate some paradoxical
behavior of the unconditional test. To see this, con-
sider two traditional (unconditional) statisticians, A
and B, who intend, based on the same observation
x on X, to construct a size-a most powerful test [as
given in (2.3)] for testing between two simple hy-
potheses, X ~ my(x) or X ~ m;(x). Further, sup-
pose that both statisticians are indifferent to the
choice of the p.d.f. for the null hypothesis (this situ-
ation is not that considered in the rest of the paper,
in which H; is composite; we include this discus-
sion here only to indicate that no-decision regions
are not unnatural in related contexts):

T Vit By > e,

e Statistician A chooses the hypotheses to be
HY: X ~my(x) versus H#: X ~ mq(x),
and constructs the size « most powerful test as
if B(x) < ¢y,
if B(x) > ¢y,

reject H{,
accept HY,
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where the critical value ¢, is determined by the
equation Fy(cy) = a.
e Statistician B chooses the hypotheses to be

HE: X ~mq(x) versus HE: X ~ mgy(x),
and constructs the size a most powerful test as
if B(x) > ¢y,
if B(x) < ¢y,

reject HZ,
accept HZ,

where, in this case, the critical value c; is de-
termined by the equation 1 — F{(c;) = «. Here,
as in (2.2), B(x) = my(x)/mq(x).

The difficulty arises whenever ¢, # c;, in which
case the set

{x: min(cy, ¢;) < B(x) < max(cgy, ¢1)}

is not empty. This set is the set of disagreement be-
tween the two statisticians, where they will reach
different conclusions. This is troubling if their ini-
tial feelings about the two hypotheses were sym-
metric, in terms of (say) loss and believability, and
if they felt required to use (say) a specified Type I
error a.

This conflict can easily be resolved, however, if
one is willing to modify the classical test in (2.3) to
incorporate the possibility of no-decision. With this
in mind, let ry = min(cy, ¢;) and e, = max(cy, ¢;);
then the modification of the classical test (2.3) for
the simple hypotheses (2.1), which includes a no-
decision region, is

if B(x) < r, reject Hy,
if ry < B(x) <ay, make no decision,
if B(x) > ay, accept H,.

Another way of saying this is that, if it is desired
to treat my and m; symmetrically, with error prob-
abilities of Type I and Type II both to equal a spec-
ified «a, then introduction of a no-decision region is
necessary.

ExAMPLE 2 (Continued). With a predetermined
and desired probability « of the Type I error, simple
calculations yield ¢, = 2,/a and ¢; = 2(1 — a). The
disagreement region between statisticians A and B
disappears only with « = 0.3819, at which point
co = ¢; = 1.2360. This, of course, would also be the
“critical value” used in the alternative test T;. With
a = 0.25, the disagreement region between the two
statisticians is (ry, ag) = (1, 1.5), somewhat larger
than the no-decision region (1, +/2) obtained in Tj.
Observe that, as « decreases, the disagreement re-
gion increases in size. For instance, with « = 0.05,
this region is (0.4472, 1.9).

3. TESTING A COMPOSITE HYPOTHESIS

The test T can also be used in the composite hy-
pothesis case. Suppose we observe the realization
x of the random variable X € 2 from a density
f(x]6), with 6 being an unknown element of the
parameter space 0. In the sequel, we let P,(-) de-
note conditional probability given 6 € ©®. Consider
the problem of testing simple versus composite hy-
potheses as given by

3.1 Hy,:6=0, versus H;:6¢e 0,

where 0, ¢ ©®; C 0. Often we will take ®; to be
0, ={0 € 0: 6+ 0,}. As in Section 2.2, we assume
the default prior probability =, = 1/2 for the sim-
ple hypothesis H,: 6 = 6,, while assigning to 0;
the prior density g(0)/2, where g is a proper p.d.f.
over 0.

For this case, the Bayes factor in favor of H is ex-
actly as given in (2.2), that is, B(x) = my(x)/m(x),
but now with my(x) = f(x|6,) and

(3.2) my(x) = fo £(x|0)g(6) do.

Note that m; and m, are the marginal densities
of X conditional on H; and H, being true, re-
spectively. [For a frequentist, g might be thought
of as a weight function which allows computation
of an average likelihood for H,, namely, m(x) in
(3.2).] For a Bayesian, the test of (3.1) can thus
be reduced to the equivalent test of the simple hy-
potheses Hy: X ~ my(x) versus H;: X ~ mq(x).
Hence, modulo the no-decision region, the modified
Bayesian test, Tj, is the natural Bayesian test of
the hypotheses in (3.1).

For the conditional frequentist who wishes to test
H,: 0 = 0, against H;: 6 € O, the conditional error
probabilities arising from (2.4) and from use of the
conditioning statistic S in (2.11) would be

(3.3) a(s) = P, (rejecting Hy|S(X) = s)
and
(3.4) B(0]|s) = Py(accepting Hy|S(X) = s).

One should observe that, since H; in (3.1) is a com-
posite hypothesis, the conditional probability of type
IT error is a function of 6, analogous to one mi-
nus the power function in classical statistics. In the
following theorem, we show that T still defines a
type of valid conditional frequentist test for this
situation.

THEOREM 1. For the test T7 of the hypotheses

(3.1) and the conditioning statistic given in (2.11),
a(s) = a*(B) [defined by (2.8)] and

(3.5) E¢"P[B(6]s)] = B*(B),
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where g(0|s) denotes the posterior p.d.f. of 0 condi-
tional on H, being true and on the observed value

of S(X).

The equality of a(s) and o*(B) in the above the-
orem was, in a sense, our primary goal: the con-
ditional Type I error probability and the posterior
probability of H, are equal. Since Type I error is
(rightly or wrongly) perceived to be of primary in-
terest in classical statistics, the agreement of the
two reports for the suggested procedure is, perhaps,
crucial to its acceptance.

The situation for Type II error is more compli-
cated because the frequentist probability of Type II
error necessarily depends on the unknown 6, while
B*(B), the posterior probability of H;, is necessar-
ily a fixed number. The relationship in (3.5) between
B*(B) and the conditional frequentist Type II error
probability B(6|s) is, however, quite natural: g*(B)
can be interpreted as the average of the conditional
Type II error probabilities, with the average be-
ing with respect to the posterior distribution of 6
given s. To many, this averaging is a considerable
improvement over the common classical practice of
simply picking a plausible value of 6 and report-
ing the power at that value. Averaging is also typ-
ically viewed as sensible when there are nuisance
parameters.

Of course, there is nothing to prevent a frequen-
tist from reporting the entire function B(6|s) [or the
conditional power function, 1 — B(6|s)]. Indeed one
might argue that this is beneficial if the prior distri-
bution has been chosen in a “default” fashion (cf. Jef-
freys, 1961), since alternative “averages” of B(8|s)
might be desired. In practice, however, the simplic-
ity of just reporting B*(B) will probably be hard to
resist.

There is one oddity here from a Bayesian per-
spective. It is that g*(B) is not the average Type
IT error with respect to the posterior distribution of
0 given H, and the data, but is instead the aver-
age Type II error with respect to the posterior dis-
tribution given H; and given S = s. In any case,
conditioning on S is, in a sense, the most condi-
tioning that is allowed for a frequentist and, from
the Bayesian perspective, the final answer, g*(B),
is fine.

4. SOME APPLICATIONS

We present several applications to standard test-
ing problems. To simplify the notation, we let, in
this section, o*(x) = o*(B(x)) = B(x)/(1 + B(x))
and B*(x) = B*(B(x)) = 1/(1 + B(x)).

ExAMPLE 3 (Two-sided normal testing). We con-
sider the same basic setup of Example 1: based on
X, ~ 4(6,a%/n), o® known, we wish to test

(4.1 Hy 0=10, versus H;i:0# 6,,

for some specified value of 6,. A natural choice of
the conditional prior (given H, is true) for 6 over
the set ®; = {6 # 6,} is a conjugate prior. Hence we
assume that g in (8.2) is the .#'(u, ko?) p.d.f. Here
w and %k are assumed to be known. The parameter
w is the conditional prior mean of 6, given H; is
true. This allows, under H,, a measurable shift of
the conditional prior p.d.f. of 6 away from H,. Let
A = (8 — n)/vko. When A = 0, the prior p.d.f. is
symmetric about 6. This choice of A is often consid-
ered as the default choice for applications and was
used in Example 1. Also in Example 1, the default
choice of £ = 2 was made; the resulting .#/(0, 202)
prior is similar to the Cauchy(0, o2) default prior
recommended by Jeffreys (1961).

As before, we let z denote the standard test statis-
tic z = /n(x, — 0y)/0. It is easy to verify that the
(conditional) marginal p.d.f’s of z corresponding to
H, and H,, respectively, are

42)  my(z) = d(2) =

1 . { 22}
X —_—
N2 P 2

and
B 1 —(z + VknA)?
(4.3) my(z)= N NEwT exp{ 21+ kn) }

Combining (4.2) and (4.3) in (2.2), it follows imme-
diately that the Bayes factor in favor of H is
__fn

2(1+ kn)

(=) 3]

It can be shown that, in the present case, (1) > 1,
so that » = 1 and a = (1) = Fy}(1 — Fy(1)) in
(2.10). Hence the no-decision region in T7 is of the
form (1, a). Accordingly, letting CEP denote condi-
tional error probability, the testing procedure Tj is

if B(z) < 1,

B(z) = V1+kn exp{
(4.4)

reject H, and report
the CEP

N B(2)

= Be 1

if 1 < B(z) < a, make no decision,

if B(z) > a,

(4.5) Ti:
accept H, and report
the CEP
1
B(2) =

B(z)+1




UNIFIED FREQUENTIST-BAYESIAN TESTING 141

In this case, no explicit expression for the critical
value a is available, but a¢ can be found using the
following set of equations. For any b > 0, let z;f be
the two solutions of the equation B(z) = b; it follows
from (4.4) that

A 1+ kn 1+ kn
+ 2
(4.6) z; = = :I:\/ . <log< b2 > + A )

Using (4.6), the value of a is determined by the
equation

4.7 O(—zf) + D(z;) = P(A) — P(A),
where zZ is given by (4.6) and

AVI F kn £ /log(1 + kn) + A2
Vkn '
It is clear that @ = a(kn, A) depends on A and (with
a known k) on the sample size n. In Table 2 we
present values of a for several choices of A and
kn. Note also that, for the suggested default choice
k=2 and A = 0, a closed form approximation to a
(accurate to within 1%) was given in Example 1.

Aq

ILLUSTRATION 2. Fisher and Van Belle (1993)
provide the birth weights in grams of n = 15 cases
of SIDS (Sudden Infant Death Syndrome) born in
King County in 1977:

2,013 3,827 3,090 3,260 4,309

3,374 3,544 2,835 3,487 3,289

3,714 2,240 2,041 3,629 3,345.
TABLE 2

Values of a(kn, A), for the normal two-sided test

kn  |A]=0 1 2 3 4 5
1 1317 1655 1777 1793  1.780  1.802
2 1530 1987 2301 2344 2359  2.367
3 1.691 2202 2710 2768 2798  2.808
4 1822 2369 3.036 3.137  3.165  3.178
5 1932 2506 3.306 3449 3483  3.500
6 2028 2621 3536 3.727  3.767  3.786
7 2113 2722 3735 3978  4.023  4.045
8 2189 2812 3910 4208 4259  4.282

9 2.258 2.893 4.066  4.420 4.478 4.503
10 2.321 2.966 4206  4.617 4.683 4.710
15 2.576 3.266  4.744  5.442 5.559 5.593
20 2.768 3.471 5121  6.085 6.272 6.314
25 2.922 3.642 5407  6.608 6.882 6.936
30 3.051 3.783 5.637  7.046 7.421 7.490
40 3.260 4.010 5990  7.749 8.343 8.455
50 3.425 4.188  6.257  8.293 9.116 9.287
60 3.563 4336 6470  8.732 9.781 10.026
70 3.681 4.462  6.647  9.096 10.362 10.694
80 3.784 4571  6.798  9.404 10.878 11.305
90 3.876 4.668 6929 9.671 11.338 11.868

100 3.958 4.756  7.045  9.903 11.754 12.390

With the assumption of normality and a supposed
known standard deviation of o = 800 g, we consider
the test of H: § = 3,300 versus Hy: 6 # 3,300. Here
3,300 g is the overall average birth weight in King
County in 1977 (which can effectively be considered
to be known), so that H, would correspond to the
(plausible) hypothesis that SIDS is not related to
birth weight. We apply the test (4.5) with A = 0
and the default choice of £ = 2. From Table 2, we
find a(30, 0) = 3.051, and simple calculations yield
z = 0.485 and B(z) = 4.968, so that B(z) > a. Thus,
according to T7, we accept H, and report the CEP
B* =0.201.

One can, alternatively, write the test T} in terms

of the standard statistic z as follows:
ifz<zyorz>z/, reject H,and report
the CEP a*(2),
ifz] <z<z, or
zf <z <2], make no decision,
ifz; <z<z, accept H, and report

the CEP B*(z).

Figure 1 illustrates the effect of the shift param-
eter A on the no-decision region corresponding to
the test T]. Note the symmetry of the regions when
A = 0 and that the size of the no-decision region
decreases as A increases.

EXAMPLE 4 (One-sided normal testing). We con-
tinue with the same basic setup of Example 3, but
now we wish to test the hypotheses

H,:0=0, versus Hj: 6> 6,.

NN

~
5

FIG. 1. The no-decision region of T} as a function of A and with
kn = 10, for the normal two-sided test of Example 3.
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The choice of conditional prior (given H; is true) for
0 over the set @, = {0 < 0y} is

(0= 2 (9 - 00> e
= — ) > 0.
Vko \ VEko °
With this prior p.d.f., the marginal p.d.f (3.2) (given

H, is true) of z becomes

2 ¢< z )@( knz >
V1i+kn \/(1+kn) V1+kn
Note that, in this case, m(z) remains unchanged.

Hence the corresponding Bayes factor can be writ-
ten as

my(z) =

B(Z)=mexp{ —knz? }((D( knz ))f

2 2(1+ kn) V1+kn

Again, it can be verified that the no-decision region
is of the form (1, a), where a can be determined
numerically by the following set of equations:

B(z;)=1, B(z,)=a,

z1/vV1+kn
1-d(z,) =2 / D(knz)d(2)dz.

Thus the test T (as presented in terms of the stan-
dard test statistic 2z) is

if z> 2z, reject H, and report the
CEP o*(2),

make no decision,

accept H, and report the

CEP B*(2).

* . ]
T7: {ifz, <z < 2y,
if z < 2z,,

Table 3 presents values of a, z, and z; for selected
choices of kn. Note that the no-decision region is
somewhat smaller than for the two-sided test.

ExaMPLE 5 (Multisample testing). Consider p
independent samples X;=(X;;, Xi9,..., X;y), i =
1,...,p, of n iid. random variables from the
A (w;, 0?) distribution, with unknown o%. We are
interested in testing

(48) HOZMIZMQ:...:I_LPZO

against the standard alternative H;: not all u; are
equal to 0. Note that, when p = 1, this is the stan-
dard two-sided test with unknown o2.

We will use a hierarchical prior defined as fol-
lows. Let the u;,i = 1,..., p, be iid. with a
first-stage .#(0, é0%) prior distribution, to be de-
noted by m;(u;|0?, £). Let the second-stage prior
be my(0?, £) = o2g(&)do? dé; thus o? is given the
usual noninformative prior and ¢ > 0 is given the

TABLE 3
Values of a, z, and z; for the normal one-sided test

kn a 2,4 2
1 1.271 0.183 0.560
2 1.448 0.262 0.731
3 1.580 0.320 0.841
4 1.858 0.367 0.923
5 1.774 0.406 0.987
6 1.851 0.440 1.040
7 1.918 0.469 1.085
8 1.979 0.495 1.124
9 2.034 0.519 1.159

10 2.084 0.541 1.190
15 2.285 0.627 1.308
20 2.436 0.690 1.390
25 2.558 0.740 1.454
30 2.659 0.781 1.505
35 2.747 0.817 1.548
40 2.825 0.847 1.584
50 2.956 0.898 1.645
60 3.066 0.940 1.693
70 3.161 0.976 1.734
80 3.244 1.006 1.768
90 3.318 1.033 1.799
100 3.385 1.057 1.825

proper prior p.d.f. g (to be defined later). Straight-
forward computation yields, as the Bayes factor of
HO to Hl’

B(y)=(n—1+y)P/?

(4.9) 0 (1 + ng)r=1/2 4
‘ |:/0 [(n — 1)(1+n§)+y]pn/2g(§)d§} ,
where
— p = \2
(4.10) _ (n=Dnyf (%)

Yis X (xy — %;)?

To proceed with a conditional frequentist inter-
pretation of the Bayes test, we need to reformulate
the test slightly. The difficulties are that (i) H is, it-
self, composite and (ii) improper prior distributions
were used. The most direct solution is initially to
suppose that we will base the test on the statistic y
in (4.10). We have seen a Bayesian justification for
doing so, namely, that the Bayes factor in (4.9) de-
pends only on y; and y is the standard classical test
statistic for the problem at hand, arising from, say,
the likelihood ratio test.

Write the density of y as f(y|04,...,0,), where
0, = n;/o. Then the test can be rewritten as a test
of Hy: 6; = 0y = --- = 6, = 0, which is a simple
hypothesis. Furthermore, under H,, the hierar-
chical prior defined earlier becomes: the m;(6;|¢)
are .#(0, ¢), independently for i = 1,..., p, while
¢ still has proper prior g(¢). The implied prior
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m(6y,...,0,) is thus proper, and Theorem 1 can be
applied. Note that, here,

my(y) = m(y|0)

and
mi(y) = [ m(y16)g(¢)de,
0
where
m(y1§) = [ (301, 6,)
(411) ~7T(01,...,0p)d01,...,d0p
yP271(1 4 ng)Pn-1/2

~ (= DL+ né) + y]p2

with

_ I(np/2)(n — 1)Pr=D/2
I'(p/2)T(p(n—1)/2)
The test Tj, from Section 3, can thus be written
as

if B(y)<1, reject H, and report
the CEP a*(y),

if 1 < B(y) <a, make no decision,

if B(y)>a, accept H, and report

the CEP g*(y).

Here, using (4.9) and (4.11), a (as well as y; and y,)
can be found by numerically solving the following
system of equations:

B(y1) =1, B(y.,) =g

[ mody=[" [ m(s1e)g6) dedy.

Ya

(4.12) T;:

(4.13)

In terms of the statistic y in (4.10), this test has the
form

reject H, and report the
CEP a*(y),
make no decision,

if y > yq,

T {ify, <y <y
if y <y, accept H, and report the

CEP B*(y).

As an illustration, consider the case with p = 1;
this is equivalent to the normal two-sided test with
unknown o2. Note that, in this case, y = ¢2, where ¢
denotes the standard ¢-test statistic. In comparison,
the classical a-level two-sided test of (4.8) (with p =
1) can be given in terms of the statistic (4.10) as

if y > ti /2> reject Hy and report error
probability «,
ify<i¢ 12> accept H, and report the

probability of Type II error;

here ¢,/ is the (a/2)-level critical value from the
t(n—1)-distribution.

The default prior g(¢) that we recommend for this
testing problem is

_ L s {_1}
g(f)—mf exp 2E |

This prior yields, for p = 1, the analysis recom-
mended by Jeffreys (1961), since it can be shown
that 7(u|o?) (formed by integrating over &) is then
Cauchy(0, 02). In Table 4, we present the value of
to.025 along with the values of a, ,/y; and /y, as
were determined numerically for selected choices of
n under the prior (4.14).

(4.14)

ILLUSTRATION 2 (Continued). Now assume that
o is unknown. This corresponds to the case of p =1
in the null hypothesis (4.8) above. The calculated
value of the test statistic (4.10) is y = 0.343. For
the default prior (4.14), we find from Table 4 that
VYo = 1.123. Thus again, we accept H, and report
CEP B* = 0.186 [computed from (4.9)].

For general p, the choice of g(£) in (4.14) results
in 7(u|o?) being the p-variate ¢-distribution with
location 0 and scale matrix ¢?I and one degree of
freedom. Note that the introduction of ¢ allows B(y)

TABLE 4
Values of a and critical points for the normal two-sided test with
unknown o

n a VYa NATY £0.025]
2 1.302 1.342 1.983 12.706
3 1.732 1.035 1.881 4.303
4 1.962 0.993 1.863 3.182
5 2.123 0.991 1.864 2.776
6 2.250 1.001 1.872 2.571
7 2.356 1.015 1.883 2.447
8 2.447 1.030 1.894 2.365
9 2.528 1.045 1.905 2.306

10 2.600 1.060 1.917 2.262

11 2.665 1.074 1.928 2.228

12 2.725 1.087 1.939 2.201

13 2.781 1.100 1.949 2.179

14 2.832 1.112 1.959 2.160

15 2.880 1.123 1.968 2.145

20 3.083 1.174 2.011 2.093

25 3.242 1.215 2.046 2.064

30 3.374 1.250 2.076 2.046

35 3.486 1.280 2.102 2.032

40 3.583 1.306 2.126 2.023

45 3.669 1.329 2.147 2.015

50 3.746 1.351 2.165 2.010

55 3.815 1.370 2.183 2.005

60 3.879 1.387 2.199 2.001

65 3.937 1.404 2.213 1.998

70 3.991 1.419 2.227 1.995

80 4.087 1.447 2.252 1.990

90 4,172 1.471 2.273 1.987

100 4.247 1.493 2.293 1.984
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in (4.9) to be computed by one-dimensional integra-
tion, regardless of p.

The choice of g(¢) in (4.14) is not the only “de-
fault” choice that is reasonable. In particular, this
choice of g implies that A = Y7, ,u,? /a? has a prior
density which is roughly proportional to A(P~1/2 for
small A. Sometimes, however, (4.8) is more naturally
thought of as testing H,: A = 0 versus H,: A > 0, in
which case a prior density for A which is positive at
zero may be more intuitively appealing. A choice of
g that achieves this goal is g(¢) = (1/2)(1 + £)73/2.
The resulting prior has the same tail behavior for
large )\ as the earlier choice, but is positive at zero.

ExaMPLE 6 (ANOVA). We continue with the
same basic setup as in Example 5, but now we are
interested in testing, with p > 1, the composite
hypothesis

(4.15) Hy: pqy =pg=---=p, (equalto,say, u)

against the alternative Hy: not all u; are equal.
We assume a similar hierarchical prior structure
for this testing problem: choose as the first-stage
prior, 7, (u;|0?, ), the 4 (u, é0?) distribution for
the ii.d. uq, ug, ..., 1p; choose, for the second-stage
prior, the usual noninformative prior for (u, c?),
that is, my(u, 0?) = (1/0?) du do?, which (indepen-
dently) ¢ is given the proper p.d.f. g(¢).

It can be shown that the Bayes test and the clas-
sical test are based on the usual F statistic

y= p(n—nyl (% — x)*
(p = D)X Xy — %)%

and that the test can be reformulated, as in Exam-
ple 5, with 6, = (u; — n)/o and m(y|§) given by

m(y|§)

(4.16) y(P=3/2(1 4 pg)p(n-1)/2

~ (- DA+ ) + (p— Dy

with
o T(p = 12 p(n — DI D2(p — 1)(r-2
a I'((p—1)/2)T(p(n —1)/2)

The corresponding Bayes factor has a form similar
to that of Example 5, namely,

B(y) = (p(n — 1)+ (p — 1)y)~ 7=
- (1+ ng)Pr-1/2
417 [/0 (p(n—1)(1+né)+(p—1)y)wn-b/2

- g(&)dfr.

TABLE 5
Values of a for the ANOVA test

n p=2 p=4 p=6 p=8 p=10
2 1.654 1.742 1.847 1.934 2.007
3 1.995 2.135 2.237 2.320 2.388
4 2.133 2.372 2.474 2.552 2.616
5 2.267 2.545 2.645 2.719 2.778
6 2.377 2.683 2.779 2.848 2.903
7 2.471 2.797 2.889 2.953 3.004
8 2.553 2.895 2.983 3.043 3.090
9 2.626 2.981 3.065 3.120 3.163

10 2.692 3.058 3.137 3.188 3.227

20 3.155 3.568 3.607 3.622 3.634

30 3.439 3.874 3.885 3.876 3.868

40 3.648 4.098 4.088 4.061 4.038

50 3.814 4.276 4.250 4.208 4.174

60 3.952 4.425 4.386 4.332 4.288

70 4.070 4.552 4.503 4.439 4.387

80 4.173 4.665 4.606 4.534 4.475

90 4.265 4.765 4.699 4.620 4.554

100 4.347 4.856 4.784 4.698 4.627

Now, for any specified prior g(¢), the test Tj of hy-
potheses (4.15) follows exactly as in Example 5. The
values of a, y; and y, are determined numerically,
using (4.16) and (4.17) in (4.13). In Table 5 we pro-
vide the values of a for selected choices of n and p
under the prior (4.14) for g(¢).

ILLUSTRATION 3 (Pappas and Mitchell, 1985). An
experiment was conducted to determine whether
mechanical stress can retard the growth of soybean
plants. Young plants were randomly allocated to
two groups of 13 plants each. Plants in one group
were mechanically agitated by shaking for 20 min-
utes twice daily. At the end of the experiment, the
total stem length (in centimeters) of each plant
was measured. The raw observations, in increasing
order, are as follows:

control: 25.2 29.5 30.1 30.1 30.2 30.2 30.3
30.6 31.1 31.2 314 335 34.3

stress: 24.7 25.7 26.5 27.0 27.1 27.2 273
27.7 28.7 28.9 29.7 30.0 30.6.

For these data (n = 13 and p = 2) we obtain the
following:

%, =30.59, %,=27.78 and x =29.19;

Y(x1;—%)?=26.65 and Y (xy; — &y)* = 21.56;
Jj=1 j=1

y= p(n—n ¥l (% — %)’

T - DY &P T
i=1 4 j=1\""1j i
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The value of the Bayes factor, B(y) in (4.17), is
B(y) = 0.001. Using T7, we should reject H, and
report CEP o* = 0.001.

5. CONCLUDING REMARKS
Testing a Precise Hypothesis

In this paper, discussion was restricted to testing
of simple hypotheses or testing of a composite alter-
native hypothesis and a precise (i.e., lower dimen-
sional) null hypothesis. The decision whether or not
to formulate an inference problem as one of testing
a precise null hypothesis centers on assessing the
plausibility of such an hypothesis. Sometimes this
is easy, as in testing for the presence of extrasen-
sory perception, or testing that a proposed law of
physics holds. Often it is less clear. In medical test-
ing scenarios, for instance, it is often argued that
any treatment will have some effect, even if only
a very small effect, and so exact equality of effects
(between, say, a treatment and a placebo) will never
occur. While perhaps true, it will still often be rea-
sonable to formulate the test as testing the precise
hypothesis of, say, zero treatment difference, since
such a test can be shown to be a very good approxi-
mation to the optimal test unless the sample size is
very large (cf. Berger and Delampady, 1987). This is
an important issue, because whether one formulates
a test as a test of a precise hypothesis or as, say, a
one-sided test can make a huge difference in the
Bayesian posterior probabilities (or conditional fre-
quentist error probabilities), in contrast to classical
unconditional testing, where the error probabilities
only vary by a factor of 2. Since this issue is so im-
portant in Bayesian or conditional testing, we will
belabor the point with an additional illustration.

ILLUSTRATION 4. Suppose one is comparing a
standard chemotherapy treatment for cancer with
a new radiation treatment. There is little rea-
son to suspect that the two treatments could have
the same effect, so that the correct test would be
a one-sided test comparing the two treatments.
If, instead, the second treatment has been the
same chemotherapy treatment, but now with (say)
steroids added, then equality of treatments would
have been a real possibility, since the steroids might
have no substantial additional effect on the cancer.
Hence one should now test the precise hypothesis
of no treatment difference, using the Bayesian or
conditional frequentist test. (We do not mean to im-
ply that one need only carry out the relevant test
here; rather we are saying that the relevant test
is important to do as part of the overall analysis.)

Note that the null hypotheses in Illustrations 2 and
3 are both plausible hypotheses.

A final comment on this issue is that precise
hypothesis testing should not be done by form-
ing a traditional confidence interval (frequentist
or Bayesian) and simply checking whether or not
the precise hypothesis is compatible with the con-
fidence interval. A confidence interval is usually of
considerable importance in determining where the
unknown parameter (say) is likely to be, given that
the alternative hypothesis is true, but it is not use-
ful in determining whether or not a precise null
hypothesis is true. For discussion of this point, see
Berger and Delampady (1987).

Choice of the Conditioning Statistic

The first point to stress is the unreasonable na-
ture of the unconditional test (when used for post-
experimental assessment of accuracy) and the even
more unreasonable nature of the P-value (when
incorrectly viewed as an error probability). In a
postexperimental sense, the unconditional test is
arguably the worst possible frequentist test; for
instance, in testing of simple hypotheses, it can
be formally established, under many reasonable
formulations of postexperimental accuracy, that
unconditional frequentist tests are worse than
any conditional frequentist tests having the same
rejection region. (These results will be reported
elsewhere, as will partial generalizations to the
type of hypotheses considered in this paper.) Fur-
thermore, it is in some sense true that the more
one can condition the better (see also Kiefer, 1977,
Discussion and Rejoinder); in this regard, note that
the tests we proposed have the maximal degree of
conditioning that is possible. Unfortunately, among
those tests with a maximal degree of condition-
ing, there does not appear to be any single optimal
choice. (In testing simple hypotheses the situation
can be different; see Brown, 1978.) Hence there
will be a degree of arbitrariness to the choice of
the conditioning statistic, which many may find
to be unappealing. It is thus important to keep
in mind that the only frequentist alternative to
this arbitrariness is to use the unconditional test,
which is (often) the uniquely worst test from a
postexperimental perspective.

Conditioning on ancillary statistics is familiar
but, as mentioned earlier, suitable ancillary statis-
tics rarely exist for testing. Furthermore, it is far
from clear that conditioning on ancillary statistics
is always best. Consider Example 2, for instance.
Conditioning on the ancillary statistic led to a
conditional Type II error probability that was ac-
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tually constant over the acceptance region, even
though the likelihood ratio (or Bayes factor) varied
by a factor of 2 over that region! In contrast, our
recommended conditioning statistic led to condi-
tional Type II error probabilities that varied quite
sensibly over the acceptance region.

It is sometimes argued that conditioning on
nonancillary statistics will “lose information” but
nothing loses as much information as use of un-
conditional testing in postexperimental inference
(effectively replacing the data by the indicator on
its being in the acceptance or rejection region); and
since our conditioning leads to Bayesian posterior
probabilities as the conclusion, Bayesians at least
should agree that no information is being lost. Fi-
nally, it is crucial to remember all of the advantages
(mentioned in the Introduction) that accrue from
using a conditioning statistic that results in error
probabilities with a Bayesian interpretation.

Choice of the Prior on the Alternative Hypothesis

This is the stickiest issue: each choice of prior
distribution on the parameter space of the alterna-
tive hypothesis will lead to a different conditioning
statistic, and hence to a different conditional fre-
quentist test. In one sense this is wonderful, in that
it says that both Bayesians and frequentists have
the same problem: whether one chooses to phrase
the problem in terms of choice of the prior distribu-
tion or choice of the conditioning statistic is simply
a matter of taste. (Of course it can be argued that
choice of the prior is much more intuitively accessi-
ble than is choice of the conditioning statistic.) But
that does not settle the question of what to do.

A subjective Bayesian has a ready answer: “Elicit
your subjective prior distribution on the parame-
ter space of the alternative hypothesis, and use the
Bayes test; if you wish to use a conditional fre-
quentist test, use that with the corresponding condi-
tioning statistic.” (Actually, of course, the subjective
Bayesian would also insist that the prior probabili-
ties of the hypotheses be elicited and utilized. That
would require the modifications discussed in BBW.)

We have no disagreement with this answer, ex-
cept that we also want to provide a default test,
for those who are unable or unwilling to elicit a
prior distribution. What we have done in Section 4,
therefore, is to define what we consider to be at-
tractive default Bayesian tests (following Jeffreys,
1961) and provide their conditional frequentist ana-
logues. This, in fact, defines a new joint Bayesian—
frequentist research agenda for testing: develop at-
tractive default Bayesian tests for all situations, and
then translate them into their conditional frequen-
tist analogues. (For the development of general de-

fault Bayesian procedures, two interesting recent
approaches are described in Berger and Pericchi,
1996, and O’Hagan, 1995.)

We have frequently heard the comment that non-
Bayesians will not accept these conditional frequen-
tist procedures because their development utilizes
a prior distribution. It seems absurd, however, to
reject a procedure that is arguably highly attrac-
tive from a pure frequentist perspective, simply be-
cause a Bayesian tool was used in its derivation. We
suspect, therefore, that what is really intended by
such comments is to suggest that the appearance of
statistical objectivity is often considered to be im-
portant and that there is concern that a procedure
that uses a prior distribution will not be perceived
to be objective. While not passing judgement here
on the possibility or desirability of “objectivity,” we
would argue that the proposed default conditional
tests have every bit as much claim to objectivity
as any other frequentist procedure. They are spe-
cific procedures that can be used without subjective
input, and have frequentist properties that can be
evaluated on their own merits.

Generalizations

We have not considered situations involving com-
posite null hypotheses, except those that can be
reduced to simple hypotheses by some type of in-
variance reduction (e.g., the ANOVA example). In
principle, composite null hypotheses can be treated
in the same fashion as composite alternative hy-
potheses; that is, be reduced to simple hypotheses
by Bayesian averaging. This will be a far more
controversial step for frequentists, however, since
classically the treatment of null hypotheses and
alternatives has been very asymmetric. For in-
stance, many frequentists will welcome the notion
of “average” power that arises from the conditional
frequentist tests that we consider, but will perhaps
be wary of any notion of “average” Type I error.

As discussed in BBW, the general framework ap-
plies equally well to sequential experiments. One
can develop conditional frequentist tests that essen-
tially agree with Bayesian tests, and hence which
essentially ignore the stopping rule. This is poten-
tially revolutionary for, say, clinical trials. It appears
necessary, however, to “fine tune” the new sequen-
tial tests, so as to obtain a satisfactory trade-off
between the size of the no-decision region and the
expected sample size of the experiment. This work
will be reported elsewhere.

Other Approaches and Comparison

A number of other approaches to data-dependent
inference for testing have been recently proposed.
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These include the developments in Bernardo (1980),
Hwang et al. (1992), Chatterjee and Chattopadhyay
(1993), Schaafsma and van der Meulen (1993),
Evans (1994) and Robert and Caron (1995). While
being interesting and worthy of study, these al-
ternative approaches all have one or more of the
following disadvantages: (i) requiring new eviden-
tial concepts that would require extensive study
and experience to understand properly; (ii) possess-
ing significantly non-Bayesian or nonfrequentist
properties, which would prevent members of either
paradigm from accepting the approach; and (iii)
being difficult to implement in all but relatively
simple situations.

In contrast, the approach we advocate possesses
none of these disadvantages. It does not really in-
volve new concepts, since conditional frequentist
error probabilities are quite familiar to many statis-
ticians; likewise the interpretation of Bayesian
posterior probabilities is familiar. One might ar-
gue that it is difficult to develop and understand
the recommended conditioning statistic, but this
understanding is really only necessary for those de-
veloping the methodology. Most practitioners would
need only to know the actual test procedure and
that the reported error probabilities can either be
interpreted as posterior probabilities (with, say, de-
fault priors) or as frequentist error probabilities
conditioned on a reasonable statistic reflecting the
strength of evidence in the data. Note, in particular,
that the actual conditioning statistic, for a default
conditional test that becomes standard, need not be
presented in an applied statistical report, any more
than one now needs to present all the background
properties of the standard unconditional test that
is chosen. This is assuming, of course, that a de-
fault conditioning statistic is being used, rather
than one tailored to subjective prior beliefs; in the
latter case, reporting the conditioning statistic (or,
better, the prior) would seem only fair.

Likewise, the testing paradigm we propose should
be acceptable to both frequentists and Bayesians.
Although the proposed tests are mainly traditional
Bayesian tests, it is perhaps the Bayesians who will
most object to this paradigm; while there are com-
pelling reasons for frequentists to shift to the condi-
tional frequentist paradigm, there are no compelling
reasons for Bayesians to alter their approach. For
instance, many Bayesians would see little reason to
introduce formally a no-decision region.

Some Bayesians might be attracted by the long-
run frequentist properties of the new tests, in that
frequentist properties do not depend on the prior
distribution. This would seem to imply some type
of robustness of the methodology with respect to

the prior. The situation is unclear, however, be-
cause it could be claimed that it is “robustness for
the wrong question.” We would, at least, expect
Bayesians to agree that these new tests are consid-
erably better than the classical unconditional tests,
and, most important, the answers obtained in prac-
tice by “pure” Bayesians and by non-Bayesians who
adopt this new paradigm will now typically be quite
similar.

Finally, implementation of the new paradigm is
relatively easy, in many cases easier than imple-
mentation of classical unconditional testing. This
is because Bayesian testing is often much easier to
implement than unconditional frequentist testing,
and the new tests are essentially based on Bayesian
tests. The only significant adaptation that is needed
is computation of the no-decision region, which is
usually a computation of only modest numerical
difficulty.

APPENDIX

PROOF OF THEOREM 1. We will only prove the
second assertion since the proof of the first asser-
tion is provided in BBW. We assume that (1) > 1
in (2.10). The case (1) < 1 follows similarly and
therefore is omitted.

Let f7 denote the p.d.f. of B(X) under m;,i =0, 1,
and let F; and f} be the conditional c.d.f. and p.d.f.
(respectively) of B(X) given 6 € O, [under P,(-)].
Notice that, since g is a proper p.d.f. over 04, the
following relation holds:

mq(x)dx
swesy ™)

b
ORI NHOLES)
= f(x6)g(6) d6 dx
{B(x)=<b} /O,
=[ f(x|6)g(6) dx do
0, /{B(x)<b}
b
= [ [ Fixe®)dydo
0, /0

- / F,(b)g(0)do.
C

Hence, for all b > 0, we have

(A1) Fi) = || fib)a(6)do.
Moreover, it is easy to verify (see BBW) that
(A.2) fo(b) =bfi(b) Vb>0
and that
: d —f1(6)
(A.3) b= (b)) = .
PO= "= Ty
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Now, it follows from (2.10) and (2.11) that, for all
0 € ©, the expression for conditional Type II error
in (3.4) is

B(0]s) = Po(B(X) > ¢(1)|S(X) = 5)

@) _ W)Y (5)]

[£F5(s) + Fa((sNIY ()
It is also straightforward to verify that, given H, is
true, the posterior p.d.f. of 6 conditional on S(X) =
s is

[F5(s) + Fa(d(s)[¥'(s)18(6)

(A.5) g(0]s) = mi(s)

with
mi(s) =f® [£5(s) + Fo(d ()Y (s)]1g(0) do

= [£1(s) + 1N ()],
where the last equality follows from relation (A.1).
By combining (A.4) and (A.5) in (3.4) we obtain that

E«(B(0ls)] = [ B(Bls)g(0ls) do

_ Fi ()4’ (s)|
[£1(s) + FA( NI ()]
Finally, using relations (A.2) and (A.3) in (A.6), it
follows that

E&C[B(0]s)] =

(A.6)

ot
[T+ ()]
1 *
= m = B*(B),

using the fact that B(x) = #(s) on the set {B(x) >
¥(1) and S(x) =s}. O
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Comment

Dennis V. Lindley

1. INTRODUCTION

My comments embrace the present paper by
Berger, Boukai and Wang (hereinafter referred to
as BB'W’) and the earlier paper by Berger, Brown
and Wolpert (1994, referred to as BBW). That pa-
per dealt with two simple hypotheses but a general
prior; the current paper extends the ideas to a
composite alternative but restricts the prior. The
essential ideas are contained in the simple case,
the composite case being reduced to the simple one
by a weighted average over the alternatives; but, in
order to appreciate what I consider to be a defect,
it is necessary to consider the role of the prior. The
discussion will therefore center on BBW. When that
paper appeared in the Annals, I prepared a paper
pointing out deficiencies in it and sent copies to the
Editor and to each of the authors. The Editor de-
clined to publish it on the grounds that “It has not
been customary for the Annals to publish commen-
taries on a previously published article.” Even more
surprisingly, not one of the three authors attempted
to rebut the charges made in my paper. I am there-
fore most grateful to Paul Switzer for giving me
the opportunity to respond to what I consider to be
mischievous ideas.

2. SUMMARY

It is convenient to summarize some features of
the papers in order more easily to appreciate the
objections. A central problem faced by frequentist
statisticians is deciding on an appropriate sample
space, which usually involves restricting the “obvi-
ous” space in some way. (Bayesians restrict it com-
pletely, namely, to the single point observed, adopt-
ing the likelihood principle.) BBW’s key idea is a
most ingenious restriction, and we can all agree that
the mathematics is beautiful. It is easy to see that
the equation

(1) Fo(c)=1-pFy(c)

has a unique solution ¢, and that, for any ¢ > c,
there exists a unique s < ¢ satisfying

(2) Fo(t) =1 - pFy(s)

Dennis V. Lindley is Professor of Statistics, Retired,
University College London, and currently resides in
Minehead, Somerset, United Kingdom.

and vice-versa. Here p is the prior odds in favor of
H,. In BBW', p = 1. Equation (1) appears as the
second displayed equation in BBW. Equations (1)
and (2), with p = 1, occur at the beginning of Sec-
tion 2.3 in BB'W’. Equation (2) establishes a 1-1
correspondence between ¢ and s, with the unique
identity value ¢t = s = ¢. BBW partitions X into
sets

(3) X, ={x: B(x) = s or B(x)=t}.

The authors’s decision rule is to say d; if B(x) < ¢,
to say d if B(x) > ¢ and to quote error probabilities

_ B(x)
p(dl}HO and X,) = [(B(x) 7]
and
p
p(d0|H1 and XS) = A[B(x)—i-p]’

equal to the Bayesian, posterior probabilities. This
procedure is subsequently modified to introduce
a no-decision element. Notice that the Bayesian
would, in a decision situation, choose ¢ = ¢p, where
¢ = ¢,/¢, and ¢; is the loss for an incorrect deci-
sion when H; is true. I have six objections to the
procedures in these two papers.

3. FALLACY OF THE
TRANSPOSED CONDITIONAL

The fallacy consists of confusing p(A|B) with
p(BJA), for two events A and B. It is often called
the prosecutor’s fallacy because of its use by the
prosecution in legal cases. If B = G’, the event that
the defendant is not guilty, and A = E, the evi-
dence, for example from DNA testing; then p(E|G’)
is often, and correctly, very small, say 1075. The
prosecution then commits the fallacy and argues
that p(G'|E) is 1079, so that the defendant is guilty
“beyond reasonable doubt.” Yet if the DNA evidence
is the only evidence against the defendant, reason-
ably the prior odds on guilt are also very small, say
107%. Since p(E|G) = 1 by Locard’s principle, the
Bayes factor is 10%, and by Bayes’s theorem, the
posterior odds are 1. The posterior probability of
innocence, p(G’'|E) is only 1/2, quite different from
1079 as the prosecutor claimed.

The new test encourages the fallacy because it
quotes an error p[B(x) = s|H, and X,] equal to
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p[Hy|B(x) = s] for s < c. The latter is equal to
the Bayesian’s p(H,|x) since B(x) is sufficient. In-
deed, it is equal to p[H|B(x) = s and X,] since
X, provides no further information beyond that
provided by B(x), and the fallacy is complete,
transposing B(x) = s and H, given X,. Of course,
frequentists commit a modified form of the fallacy
every time they quote an error rate or a P-value,
confusing a probability about some aspect of the
data, given the null hypothesis, with the probabil-
ity of the hypothesis, given the data. So perhaps
they will not be concerned with this aspect of the
test, although it does provide a grosser form of
the fallacy, directly confusing p(A|B) with p(B|A).
Notice that BBW arrange that these two probabil-
ities are equal, unlike the legal case, where they
can be very different. This equality can only hap-
pen if p(A) = p(B). In this case, if p(Hy|X,) =
p(B(x) = s|X,), a condition that is not apparently
reasonable.

4. ANCILLARITY

There is some sense in conditioning on an ancil-
lary partition or statistic because the likelihood is
unaffected, but there seems to be little reason to
condition on one that is not ancillary because then
the statistic contains information (here about H,
and H,) which is discarded by the conditioning. It
is therefore of interest to investigate when the par-
tition by X, equation (3), is ancillary. It is not dif-
ficult to show that the condition for ancillarity is
that

(4) s+p=1+§.

In particular, this must hold for the identity point
s = t which occurs at ¢. Hence ¢ = 1, the other solu-
tion to the quadratic being negative, is the condition
for ancillarity. When p = 1, this gives the symmetry
condition in BBW. When p # 1, the corresponding
condition is not a natural one. Suppose p < 1, then
from (4), s has a minimum value of 1—p (as ¢ — o0).
Consequently, ancillarity demands that not all val-
ues of s, the Bayes factor, are achievable. Similarly,
if p > 1, t has a maximum of p/(p—1). In particular,
ancillarity is not achievable for all p.

5. MINIMAX

The decision rule of their test has d(d,) if B(x) <
(>)c. When p = 1, this is minimax. To see this, note
that

a(c) = P(dl‘Ho) = p(B(x) < C‘Ho) = Fy(c)

and

B(c) = p(do|H,) = p(B(x) > ¢|H;) = 1— Fy(c),

so that, from (1) with p = 1, a(c) = B(c) which,
when £ = 1, is the minimax solution. Yet the mini-
max procedure is incoherent. This was first demon-
strated in 1955 by Savage and Lindley: details are
in Lindley (1972). Minimax procedures also violate
the principle of the irrelevant alternative. That is,
if d, is preferred to d;, then the introduction of a
third possibility d, can result in d; being preferred
to dy, which is arguably ridiculous.

If p # 1, (1) may be written [1—a(c)] = p[1—B(c)].
The same procedure can also result from taking the
smaller of the two weighted powers, ¢4[1 — a(c)]
and ¢;[1 — B(c)], with ¢,/¢;, = p, thus making them
equal; and then maximizing the common value. This
procedure is often called maximin and has the same
defects as minimax.

6. NO DECISION

In order to avoid what they see as an unpleasant
feature of their test, namely, the conflict between it
and the Bayesian approach, BBW introduce a region
of values of the Bayes factor within which no deci-
sion is taken. The choice “no decision” is effectively
a third decision d, that is available, in addition to
d, and d;. With a choice among three, the Bayesian
would not proceed in the way that BBW suggest.
The Bayesian would introduce m;, the loss in se-
lecting the new dy, when H; obtains (i = 0, 1), in
addition to ¢;, the loss for an incorrect, positive de-
cision when H, is true. Presumably, m; < ¢;, other-
wise there is no point in d,. Having observed X = x,
the expected losses (not risks) are

4Hp (Hl‘x)a top (H0|x)

and
moyp (H0|x) + mqp (H1|x),

for dy, d; and d,, respectively. So d, will be selected
iff
mop (Hy|x) + myp (H,|x)
is less than both
t,p(Hi|lx) and  £yp(Hy|x).

Recalling that Bayes’s theorem says

p(Ho|x)/p(H1|x) = B(x)/p,
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and doing some rearranging of these inequalities,
dy will be selected iff

mip B(x) < (41 — m1)P.
(o — mg) my

This interval will be nonempty if

my
%o + ‘ <1,
in which case ¢,p/¢, = {p, the former critical value,
will lie within it, as is easily verified by manipulat-
ing inequalities. The introduction by BBW of a “no-
decision” interval of B(x) does not reconcile their
procedure with that of a Bayesian.

7. LOSSES AND BELIEFS

BBW point out that the choices of ¢ and p are
“just viewed as formalism; their interpretation in
terms of losses and priors is not necessary.” In that
case, how are they to be selected? Consider first
the situation with inference, involving only p. For
a Bayesian, p is the prior odds on H; and, for a
subjectivist, would be determined by the practical
meaning of the two hypotheses. In the case of the
law with H; guilt and H innocence, p would be
about N~1, where N is the population of the coun-
try within which the crime was committed. What
considerations are available without such extrane-
ous factors? Frequentists often select « = 0.05, or
some other small number, leaving  to look after it-
self. Are we to do something similar here and take
p = 1? If so, why?

There is further difficulty once decisions are in-
cluded and ¢ has to be given a value. For a Bayesian,
the analysis does not depend on both ¢; and prior
probabilities r;; only their product matters for
decision-making. This is clearly seen when only two
decisions are present, since the critical value is £p.
With the possibility of no decision, the reader can
easily verify that the Bayesian procedure depends
only on ¢;7; and m;m;. In the Bayesian paradigm,
losses and beliefs are inevitably intertwined. The
general problem of the separation of losses and
probabilities has been discussed by Rubin (1987).
He concludes, I think correctly, that the separa-
tion is not possible. Yet BBW presents a procedure
in which they are. p determines the association
of one part of the partition, s, with the other, ¢,
through (2). Yet ¢p determines one end of the inter-
val of no decision. Thus ¢ and p could be changed,
keeping their product fixed, with the new deci-
sion procedure altering but the Bayesian procedure
remaining unaffected.

8. INFERENCE AND DECISION

This point is general and applies beyond the im-
mediate topic of these papers. For a Bayesian, in-
ference is the procedure in which probabilities of
the unknowns of interest, given the data, are calcu-
lated. Decision making additionally introduces a de-
cision space, a utility, or loss, function, and chooses
the decision of maximum expected utility, the expec-
tation being calculated using the probabilities sup-
plied by the inference. This distinction is usual in
science and technology. “Pure” science makes infer-
ential judgments. Technology applies scientific con-
cepts to make decisions. Descriptions like that of
the Bayesian test T; at the end of Section 2.2 of
BB'W’ are unnecessary hybrids. An inferential test
provides the posterior probability of H, (and within
H, if that is composite). Losses and decisions do
not enter. When the latter do, some action is con-
templated and “reject” and “accept” become accept-
able language. The hybrid form perhaps stems from
Neyman’s view of inductive behavior.

9. DISCUSSION

I agree with BBW that the problem of testing one
simple hypothesis against another simple hypothe-
sis is important, despite the fact that it rarely occurs
in practice. If you cannot solve the simple, how can
you understand the complicated (composite)? And
BBW make it clear that there are real problems,
even in the simple case, that need to be resolved be-
fore we can deal with inference in situations that
arise in practice. The Bayesian has an additional
reason for considering the simple case because, as
BBW point out, the coherent method turns compos-
ite against composite into simple against simple by
introducing probabilities within each composite hy-
pothesis and taking expectations.

The new procedure is a real advance in our ap-
preciation of the problem but it is arguable that
it is defective. It encourages the prosecutor’s fal-
lacy in a strong form. It conditions on a statistic
that is typically not ancillary. Because of its min-
imax, or maximin, nature, it is incoherent. In an
attempt to match the procedure with Bayesian, co-
herent methods, it ignores the change in the co-
herent method necessitated by the inclusion of a
third decision. Unlike Bayesian procedures, it sep-
arates losses and probabilities. Finally, it fails to
make the useful distinction between inference and
decision. I argue that their procedures are unsatis-
factory and that a unified frequentist and Bayesian
method is unsound. The fact is that the frequen-
tist and Bayesian positions are different, both philo-
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sophically and operationally. This should be recog-
nized and attempts to reconcile them resisted.
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Comment

Thomas A. Louis

1. INTRODUCTION

Berger, Boukai and Wang (BBW) engage in in-
novative gyrations to produce hypothesis tests
that attempt to satisfy both Bayesians and fre-
quentists. Unfortunately, as with many but by no
means all Bayes—frequentist compromises, their
approach hovers between the sides of a deep and
wide chasm. Recent computing developments which
enable application of the Bayesian formalism to a
wide range of complicated and important problems
have partially filled the chasm, but I encourage
those planning to use the BBW procedure to wear
a parachute.

2. CONDITIONING AND THE NDR

BBW create a conditioning statistic designed to
line up frequentist and Bayesian statements, but
doing so requires a no-decision region (NDR) to
avoid “illogical” frequentist conditional statements.
The conditioning statistic S(X) [= min{B(X),
¥~ 1(B(X))}], with B(X) the Bayes factor in favor
of the null [formula (2.11)] ensures that outside the
NDR conditional error probabilities match those
produced by full conditioning. Construction of S to
mimic Bayes posterior probabilities is a neat trick.
Note that B(X) and S(X) depend on default priors
and losses, tuning parameters that are best made
available to the analyst.

Although S(X) is a function of B(X), frequentists
and Bayesians will dislike that the procedure fails
to condition on ancillary statistics. Specifically, the
distributions of B(X) under H, and H; (F; and F;
in the text) do not so condition. Thus, (-) does not
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and the NDR cannot. For example, consider a basic
scenario in which a sample size (V) is chosen by a
random, ancillary process and then N Gaussian ob-
servations are generated. The BBW procedure will
not condition on the event {N = n}. All reason-
able statisticians (and other scientists!) will insist
on such conditioning.

The BBW procedure is “Bayes” outside of the NDR
and so failure to condition on ancillaries is restricted
to lack of such conditioning in defining the NDR.
Practical impact depends on the probability of a
sample falling in the NDR. In Section 2.4, BBW at-
tempt to reduce our unease by showing that if data
are iid, under either the null or alternative hypoth-
esis the probability of the NDR decreases exponen-
tially with sample size. Unfortunately, the theorem
is only modestly palliative. Under a composite al-
ternative one has two modeling choices. Either the
data are exchangeable with distribution m or, if one
conditions on a value of 6, the data are iid but do
not follow m ;. The theorem needs to be generalized
for these situations.

More important, in designed studies sample size
is linked to inferential goals. An increase in sample
size is associated with some combination reducing
error probabilities and detecting more subtle effects
(e.g., in Example 3 with A = 0, detecting alterna-
tives with smaller k). In situations where sample
size is linked to error reduction or detection of more
proximal alternatives, pr(NDR) will decrease slowly
at best and may remain constant. The NDR will
“persist in probability.” To see this for a specific case,
note that (4.6) and (4.7) depend on “n” and “k” via
“nk”. For A =0, “k” is proportional to the square of
the effect to be detected.

Although the BBW approach produces hypothe-
sis tests with some preposterior properties accept-
able to both Bayesians and frequentists, the NDR
causes a priori and a posteriori problems for ev-
eryone. BBW defend their NDR as performing the
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useful service of preventing the analyst from mak-
ing a decision when evidence is weak. Although a
designed study should be powered to achieve infer-
ential goals, I admit that in practice this ideal is
seldom attained and many studies deliver insuffi-
cient evidence. What is the analyst to do? For either
simple versus simple or simple versus composite
testing, Bayesians will report the posterior distribu-
tion and the posterior consequences of various de-
cisions, possibly coupled with a sensitivity analysis
for variations in the prior. Frequentists will “fail to
reject” the null hypothesis, but will not “accept” it.
If the alternative is composite, experienced analysts
will report credible sets or confidence intervals. For
Bayesians, these are conditional on observed data
and on the null hypothesis being false. More gen-
erally, intelligent analysts will communicate some
form of strength of evidence.

The NDR causes big trouble for frequentists who
want to produce confidence intervals by inverting
hypothesis tests. Should the interval be the 6’s for
which the test “fails to reject” or should it be the
complement of the region composed of 6’s for which
the test “fails to accept” With an NDR, the two ap-
proaches produce different regions.

Also in Section 2.4, in an additional attempt
to mollify potential users, BBW show that un-
der likelihood symmetry the NDR disappears. The
temptation to eliminate the NDR by insisting on
likelihood symmetry should be resisted. In the
BBW procedure, the NDR is required to avoid prob-
abilities conditional on S that are illogical in that
they “go the wrong way.” The illogic may signal that
the Bayes factor (B(X)) is illogical. Neither intro-
ducing the NDR nor requiring likelihood symmetry
is an effective, general solution to this problem,
because there is a scientific message in such situa-
tions. For example, in simple versus simple testing,
one investigator may choose m, as the null dis-
tribution and another may choose m;. This choice
says something about their priors and losses. Tradi-
tionally, the null hypothesis is the straw hypothesis
with a relatively large loss for inappropriate rejec-
tion. If two people have different priors or losses,
their inferences should not be forced to agree.
These disagreements are a fact of scientific life
and should not be suppressed. I would rather be a
Bayesian.

3. BAYES AND FREQUENTIST CRITERIA

The foregoing leads to the central question: what
do intelligent Bayesians and intelligent frequentists
want from a testing procedure? Frequentists require

the following:

e preposterior Type I error = «;

e complete conditioning on ancillaries;

e maximal power for some alternative or in some
other sense.

In addition, frequentists may “welcome the notion
of average power” and might even like “average type
I error” so long as the usual preposterior properties
are in place. With these in place, some conditional
statements are fine, but why not have them be com-
pletely Bayes?

Bayesians will want the following:

e complete conditioning on observeds;
e good posterior properties;
e good preposterior properties.

“Good” is relative to a prior or class of priors.

4. A PROPOSAL

Many authors have promoted the Bayesian for-
malism as a procedure-generator irrespective of
one’s philosophical approach. This aphilosophic
approach views the prior as providing tuning
parameters, producing what Fisher (1996) calls
“stylized Bayes.” Carlin and Louis (1996) document
the many advantages of using the Bayesian for-
malism in developing procedures with excellent
frequentist properties. Rubin (1984) points out that
preposterior evaluations are “Bayesianly justifiable
and relevant frequency calculations.”

Against this background, I see no need to de-
velop a hybrid test with partial and usually inap-
propriate conditioning. I prefer to use the Bayesian
formalism to produce a test with acceptable fre-
quentist (preposterior) properties. The prior can be
used to tune the procedure (for pure frequentists)
or to reflect personal opinion (for pure, subjective
Bayesians) or to capture prior empirical evidence
(for objective Bayesians). Frequentists can ignore
all posterior statements, communicate all of them
or operate in a middle ground, depending on their
degree of purity. We know what Bayesians will do.

For a specific case, consider BBW’s Example 3
with 6, = 0 and A = 0. Allow a general prior proba-
bility 7 on H, and a general value of k. Assume we
want a formal Bayes test that rejects H, when the
posterior probability of it is less than «, that is,

1_
Bx)<— " % |
11—«
This Bayes test rejects H, when
1+

Z% > d(u,c) = ” u[log(l +u)—2c],
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where

l-7 «
¢ =log 1 a)

Note that lim,,_, . d(u, ¢) = oo, and
1 if c=0
lir%d(u, c)= { o neTT

oo, ife<O.

For this test to have frequentist size «, d(u, ¢)
must equal z,5. To accomplish this we can adjust u
(i.e., for a fixed n, adjust k) and ¢ (by adjusting ).
Although there may not be a solution for = = 0.5,
in general there will be multiple combinations of %
and 7 that produce a desired frequentist cut-point.
A specific pair can be picked to maximize frequentist
power for some parameter value in the alternative
hypothesis space, to maximize the average power or
to incorporate Bayesian considerations.

The foregoing procedure has standard frequentist,
preposterior properties. The data analyst can report
the posterior probability of H, or not, depending on
how “Bayesian” he or she wants to be. The procedure
conditions on ancillaries and avoids the NDR with
its associated embarrassments. Is this not better
than the BBW approach? Bayesians give up noth-
ing. Frequentists who like the BBW procedure are
bound to prefer this one.

5. CONCLUSION

Much of my critique relates to the role of hy-
pothesis testing in scientific inference. A scientist
requires information on strength of evidence even
if hypothesis testing decisions are to be made. This
information is a natural output of the Bayesian for-
malism; classical standard errors and confidence
intervals also do a reasonable job. The BBW ap-
proach will do a good job only some of the time.
Although the conditional error probabilities are at-
tractive, failure of the BBW procedure to condition
on ancillaries and the possibility of a sample falling
into its NDR will block its use. To evaluate this
prediction, I ask BBW to let us know if they would
use their procedure in real-life settings such as pro-
viding court testimony as an expert witness or in

serving on a data and safety monitoring board for a
clinical trial.

Although BBW advertize their procedure as au-
tomatic, it does depend on default settings for prior
parameters. If hiding these settings from the user
is necessary to recruit frequentists, the same strat-
egy can be employed for a fully Bayesian proce-
dure. However, I do not approve of this strategy. It
is deceptive and eliminates an opportunity to tune
the procedure. Fortunately, Bayes procedures are
now computable for complicated, relevant statisti-
cal models. These procedures can be tuned using
priors and loss functions to have desired preposte-
rior properties, whether Bayes or frequentist. The
user can decide on what level of Bayesian reporting
to include in a statistical summary.

As a scientist who must convince a broad group
of stake holders (a broad group of priors and loss
functions), I will want a procedure with good fre-
quentist properties and I will report these. As one
who is allowed to tune the procedure, I will want to
report posterior summaries such as pr[H, | data],
possibly accompanied by a sensitivity analysis. I
strongly prefer this method of integrating Bayesian
and frequentist approaches, but this preference in
no way diminishes my respect for BBW’s creativity
and their ability to stimulate discussion of funda-
mental issues in statistical science.
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Comment

David Hinkley

Berger, Boukai and Wang have presented an in-
teresting method for constructing genuinely useful
additions to our statistical toolkit. Their proposal
has the further merit that it should be the source
of much fruitful argument among frequentist and
Bayesian statisticians, both theoreticians and users
of statistics.

Conventional significance tests have the short-
coming that they do not directly answer the natural
question “Given these data, what is the probabil-
ity that the null hypothesis is true?” Partly for
this reason, and partly because hypothesis test-
ing is often less relevant than estimation of effects,
widespread use of significance tests is subject to
intense criticism in some quarters. One example
of this is the recent provocative article by Nester
(1996). Such criticism is not limited to individuals:
one newsletter that I read in 1996 reported that
“...the APA [American Psychological Association]
Board of Scientific Affairs at its November meeting
approved in principle the creation of a Task Force
to make recommendations about possibly discon-
tinuing the use of statistical significance testing.”
Some of the history behind this is summarized in
the interesting article by Cohen (1994). How would
such a task force react to the present paper, one
wonders?

What a significance test does is convert a test
statistic [which measures discrepancy between data
and null hypothesis (NH)] from its special scale to
a p-value on the standard scale of probability.
The smaller the p-value, the stronger the evidence
against NH. Unfortunately, p-values are not gen-
erally comparable from one experiment to another,
unless the information contents of the experiments
are the same. That is, there is no universal in-
ferential scale according to which p-values can be
judged. This point has been noted by several dis-
tinguished frequentist theoreticians and underlies
the advocacy of conditioning on ancillary statistics.
However, no general frequentist methodology has
been developed to deal with the problem.

David Hinkley is Professor, Department of Statistics
and Applied Probability, University of California at
Santa Barbara, Santa Barbara, California (e-mail:
hinkley@pstat.ucsb.edu).

This is of no great consequence for one-sided hy-
potheses about parameters, at least for likelihood-
based tests, where p-values are moderately robust
approximations to posterior probabilities. The diffi-
culty can be avoided if tests are replaced by con-
fidence interval summaries for parameters, as is
usually more helpful scientifically. Moreover, if the
analysis is likelihood-based, then confidence inter-
vals will often be approximately posterior proba-
bility intervals, under quasiobjective prior distribu-
tions such as the “reference priors” developed by
Bernardo, Berger and others.

So for a wide range of problems the question of
interest can be answered with an appropriate as-
sessment of uncertainty, which is approximately the
same whether or not the tools used are Bayesian.
This leaves the thorny problem that Berger and his
coauthors address, that of the precise or sharp hy-
pothesis. Some would argue that such hypotheses
can never be exactly true (Nester, 1996), but they
are often sufficiently representative to be of genuine
interest. Such hypotheses also arise, at least implic-
itly, in the context of selection of a predictive model
among a hierarchy of models—where use of conven-
tional significance tests tends to produce poor re-
sults, compared to Bayes-like methods such as BIC
(Ripley, 1996).

The authors aim to go further than the conven-
tional significance test, and provide a sensible error
rate to go with a decision for or against the null
hypothesis. Given that their objective is to draw
a decisive conclusion if possible, the option of “no
decision” may be viewed as a sensible inclusion in
the methodology. As noted earlier, the usual p-value
cannot be interpreted fully without reference to the
amount of relevant information available, so the au-
thors’s conditional error rate is a positive step for-
ward. One might wish that the conditioning statistic
had a more familiar feel to it, however.

One difficulty that I foresee is dealing with prob-
lems where the alternative hypothesis is quite
vague, such as goodness-of-fit problems. Presum-
ably the methodology is restricted to likelihood
analysis, possibly with some appropriate extension
to cover nonparametric problems? Many of the con-
ventional goodness-of-fit tests are intermediate and
informal steps in data modelling, and there is not
one specific alternative hypothesis. An example is
the simulation envelope test for a normal Q-@
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plot; see, for example, Atkinson (1985, Section 4.2)
or Davison and Hinkley (1997, Section 4.2.4). Nev-
ertheless it would be interesting to know what the
authors would do in such situations. Would they, for
example, try to set up a broad range (possibly un-
limited) of alternative hypotheses, and how would
this affect their methodology? As another exam-
ple, suppose that we have a long binary sequence
and want to test the null hypothesis of homo-
geneity and independence: how would the authors
approach this?

Rejoinder

J. O. Berger, B. Boukai and Y. Wang

We thank the discussants for their stimulating
comments and for providing a variety of perspec-
tives on the issues. In our Rejoinder, we will group
responses by subject, rather than by discussant.
Since Professor Lindley was also discussing Berger,
Brown and Wolpert (1994), some specific addi-
tional comments from Lawrence Brown and Robert
Wolpert are included below. Finally, as we agree
with essentially everything that Professor Hink-
ley wrote, our comments will tend to focus on the
discussions of Professors Lindley and Louis.

UNIFICATION OF STATISTICS

Professor Lindley feels that “...frequentist and
Bayesian positions are different, both philosophi-
cally and operationally. This should be recognized
and attempts to reconcile them resisted.” While
indeed they are philosophically and operationally
different, we would argue that they should not be
yielding fundamentally different answers in prac-
tice. Not only is it unfortunate from the perspective
of the field to have one group of statisticians saying
answer A is correct while the other asserts answer
B, both based on the same evidence and beliefs, but
this can be tragic for the applications; either the
drug is effective or it is not. Furthermore, we would
argue that such basic disagreement is typically the
result of use of an overly limited or inadequate
version of either frequentist or Bayesian method-
ology. Hence efforts at “unification” have the very
real effect of improving statistical practice, as well
as enhancing the image or our profession and its
impact.
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Testing of a precise hypothesis has been one of
the areas in which fundamental disagreement in
practical conclusions has been the rule. The point of
the article is to observe that this need not be so, and
that classical statisticians should, by frequentist
reasoning, reach essentially the same conclusions
as do Bayesians. There is no need to embrace
the Bayesian philosophy for our profession to reach
essential agreement concerning what to do with
these testing problems.

We often treat statistical paradigms other than
“our own” by attempting to limit their options and
then showing that this limited version is inade-
quate. If one limits frequentism to unconditional
(preexperimental) evaluations or to limited forms
of conditioning (e.g., conditioning only on ancil-
lary statistics), then it is easy to show that the
paradigm is inadequate. Frequentists must be al-
lowed the option of reporting general conditional
(postexperimental) evidence.

Professor Louis proposes a different “unifica-
tion” of Bayesian and frequentist statistics, based
on allowing multiple types of reports and upon
possibly matching the unconditional frequentist
answer with Bayesian posterior answers. Consid-
ering this latter aspect first, let us look at actual
numbers. Suppose that, in the situation of Exam-
ple 3 (testing a normal mean), a frequentist wants
to use @ = 0.05. Then, if n = 20 and the reason-
able prior variance multiplier 2 = 2 is chosen,
solving Louis’s equation for the prior probabil-
ity of H, yields = = 0.051. So a Bayesian can
report the same number (a posterior probability
of 0.05) as the unconditional frequentist’s «, but
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only by a priori being virtually convinced that H,
is true at the desired level! It would obviously
be very questionable for the Bayesian to simply
make the unconditional frequentist conclusion of
significant evidence against the null hypothesis, es-
sentially “hiding” the fact that the a priori odds
were stacked 19 to 1 against H,. Unconditional
and conditional numbers are simply very different
entities, and attempting to “match” them makes
little sense. (In contrast, attempting to “match”
conditional frequentist and conditional Bayesian
numbers is, at least, plausible.) Perhaps Louis
meant for the statistician in this situation to report
that “if the prior probability of H, were 0.051, then,
after observing z = 1.96, the posterior probability
of H, would be 0.05, that is, equal to «.” But this
would be a very convoluted way of communicating
the same information as that provided by the con-
ditional error probability in Table 1. Of course, one
might also want to consider alternative values of
the prior variance multiplier %; indeed Bayesians
would urge that this be done, with subjectively cho-
sen ranges of k being considered. However, this
additional complication is unlikely to appeal to
frequentists, especially as the message does not
change much. For instance, even the rather bizarre
choice £ = 0.142 yields = = 0.10, and it can be
shown that this is the largest obtainable value of 7
(when a = 0.5 and n = 20).

The basic fact here is that, when z = 1.96 in the
situation of Example 1 (or Example 3), the data is
roughly equally supportive of H, and H;, and all
statisticians must find a way to report this. Such
a report occurs naturally from the Bayesian per-
spective and our paper shows that frequentists can
also report this fact if they adopt the conditional
frequentist perspective. There is, of course, nothing
wrong with @ = 0.05 as a preexperimental measure
of the quality of the experiment but, postexperimen-
tally, it is simply not a scientifically tenable report
from either a Bayesian or a (conditional) frequentist
perspective; we thus strongly disagree with Louis’s
statement that “Frequentists can ignore all poste-
rior statements, communicate them all or operate
in a middle ground, depending on their degree of
purity,” or at least we would strongly disagree if the
phrase “posterior statements” was replaced by “con-
ditional or postexperimental statements.” In this re-
gard, Louis also makes the curious statement con-
cerning frequentists that “...so long as the usual
preposterior properties are in place...some condi-
tional statements are fine, but why not have them
be completely Bayes?” Obviously the unconditional
properties of any statistical procedure can be calcu-
lated and reported, but doing so “on the side” does

not make one a frequentist. When z = 1.96, one can
report both @ = 0.05 and that the posterior probabil-
ity of H is 0.496 but, if one’s scientific conclusion
is based on the posterior probability, the mere re-
porting of @ does not make one a frequentist. (Of
course, we have shown that 0.496 is also a long-
run conditional frequentist error rate, and hence
can be used by a frequentist.) We are not suggesting
that a good statistician is wrong to mix frequentist
and Bayesian statements; we are simply saying that
one cannot arbitrarily label such mixed inferences
as “frequentist,” and then say that the problem is
solved.

As an aside, it is worth mentioning that uncon-
ditional frequentists might argue that, for a fixed
a, observations near the rejection boundary are un-
likely to occur, and hence the postexperimental dif-
ficulty mentioned above is rare. This ignores two
practical realities. The first is the ubiquitous use of
P-values, instead of fixed « levels; P-values virtu-
ally always greatly overstate the evidence in test-
ing of precise hypotheses. The second reality is that
optional stopping is all too often used, but not re-
ported, so that we “happen to see” data near the
rejection boundary far more often than we actually
should.

THE NO-DECISION REGION

Professors Lindley and Louis express concerns in-
volving the no-decision region. Lindley points out
that a Bayesian would treat “no decision” as a third
possible action and would ideally introduce associ-
ated losses to deal appropriately with the three deci-
sions. This is certainly true, and it is indeed unlikely
that the ensuing procedure would exactly match
the new procedure. However, inferential Bayesians
(as opposed to decision-theoretic Bayesians) would
probably not find our no-decision region objection-
able, in that it seems to coincide in practice with
data which is evidentially quite weak. In regards
to Lindley’s point here, Lawrence Brown adds the
following comment: “I think of the no-decision re-
gion as an ‘embarassing decision’ region. It is a
region where the conditional frequentist differs in
conclusion from the Bayesian, and where it may be
argued that the conditional frequentist reasoning
somewhat breaks down. I am inclined to agree with
Lindley that viewing this as a third decision region
can, formally, lead to trouble. Fortunately, this does
not occur very often.”

Professor Louis’s concern with the rate at which
the probability, under a composite alternative, of the
no-decision region approaches zero is appreciated.
(Our comment in the paper was misleading in this
regard since, as Louis observes, we do not really
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have i.i.d. observations from m;.) Indeed, the rate
will typically not be exponential for the composite
alternative situation; for instance, we recently es-
tablished that the rate is actually O(n='/2logn) for
the situation of Example 3. (General results con-
cerning rates for the composite alternative case are
being pursued by one of us.)

Professor Louis goes on to question whether the
no-decision region is really “small” in practice.
Perhaps the most crucial point here is that the
no-decision region virtually never intersects the
rejection region (for the testing of a precise null
hypothesis). Hence all we are discussing is the size
of the no-decision region when considering whether
to formally accept a null hypothesis or to say “no de-
cision.” Since the new testing procedure is arguably
already better than classical practice in allowing
for quantified acceptance of the null hypothesis, the
concerns of Louis in this regard would seem to be
obviated.

CONDITIONING AND ANCILLARITY

All discussants mention, with varying degrees of
emphasis, that the lack of ancillarity of the con-
ditioning statistic that we use will be a cause for
concern among classical statisticians. As empha-
sized by Kiefer (1977), however, there is no reason,
within frequentist theory, to restrict conditioning
to ancillary statistics. Indeed, another interpreta-
tion of our paper is that it clarifies a situation in
which frequentists apparently need to proceed be-
yond conditioning on ancillary statistics in order
to achieve sensible answers. (This is why we so
heavily stressed in the paper the unsuitability of
the unconditional classical approaches to testing
of precise hypotheses.) The commonly stated intu-
itive reasoning behind restricting conditioning to
ancillary statistics, and our view as to why this
reasoning is faulty, was discussed in Section 5 of
the paper. We repeat only the comment that it is
puzzling to see Bayesians object to the condition-
ing in the paper, since we show the result to be
essentially equivalent to full Bayesian condition-
ing. Arguments aside, however, we quite agree with
Professor Hinkley’s “One might wish that the con-
ditioning statistic had a more familiar feel to it.”
All we can say is that familiarity increases with
use and, sometime down the road, it will likely
feel completely natural to condition on this type of
statistic.

In regards to conditioning, Professor Louis raises
the interesting point that the new procedure is not
guaranteed to condition on, say, an ancillary stop-
ping time. While true, the situation is roughly that
a mole hill is left behind after a mountain has been

removed. The “mountain” that obstructs classical
statistics in this regard is the fact that uncondi-
tional testing is highly dependent on the stopping
rule used, leading, for instance, to extremely com-
plicated procedures in sequential testing. With the
new procedure, as discussed in Berger, Brown and
Wolpert (1994), the only dependence on the stop-
ping rule (and the only possible dependence on an
“ancillary” stopping time), arises in determination
of the no-decision region. However, the no-decision
region is rarely an issue in applications, as men-
tioned above, so that any stopping rules (and not
just those that are ancillary) become irrelevant in
applications. This is of enormous practical benefit.
Note that we are not objecting to the principle that
one should condition on an ancillary stopping time;
we are simply arguing that formal principles are of-
ten violated in minor ways to achieve major ends.

On the issue of conditioning, Robert Wolpert adds:
“While the argument for conditioning is perhaps
strongest when the conditioning statistic is ancil-
lary, we should be willing to discard the modicum of
information contained in a ‘nearly ancillary’ statis-
tic in exchange for freedom from the dangers of mis-
interpretation and dependence on the stopping rule
that plague the classical test.”

BAYESIAN CONCERNS

Professors Lindley and Louis implicitly suggest
that there is not much here for Bayesian practice.
Louis even provocatively asks if we would use these
procedures in actual practice. Bayesians may well
prefer to continue using their existing methodology,
and we have no quarrel with that. However, in prac-
tice, we frequently encounter situations in which a
full Bayesian analysis is not tenable, for a variety
of reasons, and we are certainly delighted then to
have available a method which yields essentially the
same answers but can be justified from a frequen-
tist perspective. Second, at least some Bayesians do
take comfort in knowing that their procedures have
a frequentist interpretation. Finally, echoing Profes-
sor Hinkley, those who seek to understand the de-
bates on foundations of statistics (and this includes
many Bayesians) will need to adapt to the possibil-
ities inherent in conditional frequentist analysis.

Professor Lindley takes us to task for encourag-
ing the confusion between P(A | B) and P(B | A).
Indeed, he has a point. Previously, one of us taught
elementary testing by discussing both the classical
a-level and the posterior probability of the null hy-
pothesis, and was successful in communicating the
difference between P(A | B) and P(B | A) because
these numbers (and the resulting conclusions) were
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so different. However, with the new procedure, these
two probabilities will be equal, so that testing of a
precise null hypothesis will no longer serve as a good
pedagogical example of the “prosecutor’s fallacy.” In
a related vein, a Bayesian might dislike the new
procedure because it eliminates one of the biggest
contrasts between Bayesian and classical methods,
and hence eliminates one of the most powerful ra-
tionales for the Bayesian position. Our guess, how-
ever, is that non-Bayesians who take the time to
truly understand the issues here will end up with
considerably increased sympathy for the Bayesian
position.

Robert Wolpert’s view of this issue is: “The inten-
tion behind the development was precisely to find a
statistical testing procedure which yields the same
error probabilities for frequentists who condition on
the hypothesis or Bayesians who condition on the
data. We do not confuse the two types of error prob-
abilities, but sought a test which is safe to use even
for those who do confuse them, especially the large
proportion of nonstatisticians who routinely misin-
terpret P-values as posterior probabilities.”

Professor Lindley’s comments concerning mini-
maxity are rather curious. First of all, we did not
actually recommend using the minimax rule here,
since that would involve making unreasonable
conclusions for certain data (corresponding to the
no-decision region). Also, general criticisms about
minimax procedures should not be used to indict
specific minimax procedures. After all, there are
numerous Bayes rules with respect to proper priors
which also happen to be minimax, and we doubt if
Lindley would insist that any such proper priors be
barred from consideration by a subjectivist! That
said, we agree with Lindley’s underlying point,
which is that the procedure we recommend can
probably be shown to be formally incoherent. Of
course, most Bayesians (as well as non-Bayesians)
typically operate in practice in ways that are for-
mally incoherent; the key question is whether the
incoherence is significant or minor, and our judge-
ment is that any incoherence found here would be
of the minor variety.

LOSSES AND PRIORS

Professor Lindley, in discussion more related to
Berger, Brown and Wolpert (1994), makes several
observations concerning the fact that the new test-
ing procedure can be modified to allow for varying
prior probabilities of the hypotheses and varying
losses for incorrect decisions. He first asks how prior
probabilities and losses are to be chosen, if not in
subjectivist fashion? We would agree that subjec-

tivism is needed for their choice, but note that we
are primarily advocating the new testing method
for use in “default” or “inferential” fashion; hence
our restriction in this paper to (essentially) the as-
sumption of equal prior probabilities of hypotheses
and equal losses in incorrect decisions. Lindley also
notes that the new testing method does not depend
only on the product of prior and loss, as Bayesian
procedures should. Again, however, this “slight inco-
herency” only manifests itself in the no-decision re-
gion, not in reported expected losses. Lindley later
argues for keeping inference distinct from decision,
which is what we are trying to do in the present pa-
per. We would not rule out, however, the possibility
of successful development of conditional frequentist
decision theory along the lines suggested by Berger,
Brown and Wolpert (1994).

Professor Louis notes that, in classical testing,
the choice of hypotheses is usually based on priors
and losses of the experimenter, and hence contains
a message. This is certainly true, but is it desir-
able? We do not feel that “hiding” losses and priors
through such choices is a desirable feature of clas-
sical statistics. We suspect that Louis would agree
with this; indeed he lauds the Bayesian approach
as allowing for explicit study of sensitivity to pri-
ors and losses, and we would agree that this is a
big advantage. Likewise, Louis suggests that the de-
fault priors and losses used in the new procedures
be made available to the analyst; we would certainly
not disagree.

GENERALIZATIONS

Professor Hinkley concludes by asking about
extensions to situations where the alternative is
vague or nonparametric. To see that one must re-
main very cautious about unconditional methods in
such situations, see Delampady and Berger (1990).
However, admittedly, extending the conditional fre-
quentist approach to such problems may be quite
challenging. Indeed, exploratory analysis, when
alternatives are vague, may well remain mostly an
art.

Professor Louis raises the interesting question
of how a frequentist should produce a confidence
set for 6 after rejecting H,. We first note that
this is a problem common to all frequentist anal-
ysis: the conclusion from one part of the analysis
can formally affect the conclusion from another.
In practice, this issue is usually ignored, with the
“standard” confidence set being reported upon re-
jection of H,. When the “standard” confidence set
is satisfactory conditionally (in the sense of ap-
proximately corresponding to posterior probability
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intervals, as Professor Hinkley notes), we do not
view the situation as one of great concern. Inci-
dentally, we much prefer constructing frequentist
confidence sets by using “probability matching”
posterior probability intervals, rather than by in-
verting tests. The optimality properties inherited
through the “inverting” process are not very com-
pelling; indeed, the resulting confidence sets can
have very poor conditional behavior.

CONCLUDING REMARK

There is a certain irony to this discussion: al-
though the disagreements expressed herein might

seem rather severe, we suspect that the testing
methods the discussants and ourselves would ac-
tually prefer to use in practice are similar, with
heavy emphasis on Bayesian analysis with sensitiv-
ity studies. Indeed, our view of the discussions from
this perspective is that they were quite wonderful,
providing very good advice as to how (philosophy
aside) statistical testing should be done. However,
especially for non-Bayesians or Bayesians operat-
ing in non-Bayesian environments, we agree with
Professor Hinkley that the new conditional test-
ing methods are “genuinely useful additions to our
statistical toolkit.”



