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The Gifi System of Descriptive
Multivariate Analysis
George Michailidis and Jan de Leeuw

Abstract. The Gifi system of analyzing categorical data through non-
linear varieties of classical multivariate analysis techniques is reviewed.
The system is characterized by the optimal scaling of categorical vari-
ables which is implemented through alternating least squares algo-
rithms. The main technique of homogeneity analysis is presented, along
with its extensions and generalizations leading to nonmetric principal
components analysis and canonical correlation analysis. Several exam-
ples are used to illustrate the methods. A brief account of stability issues
and areas of applications of the techniques is also given.
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1. A GEOMETRIC INTRODUCTION TO
HOMOGENEITY ANALYSIS

Homogeneity analysis, also known as multiple
correspondence analysis, can be introduced in many
different ways, which is probably the reason why
it was reinvented many times over the years (for
a more detailed account on the history and the
variations of the technique see Section 2). In this
paper we motivate homogeneity analysis in graph-
ical language, since complicated multivariate data
can be made more accessible by displaying their
main regularities in pictures (e.g., scatterplots).

Consider the following fairly typical situation
that arises in practice in various fields in the phys-
ical, social and life sciences. Data on J categorical
variables have been collected for N objects or indi-
viduals, where variable j ∈ J = �1;2; : : : ; J� can
take `j possible values (categories). The use of cat-
egorical variables is not particularly restrictive,
since in every data application a continuous nu-
merical variable can be thought of as a categorical
variable with a very large number of categories.
Given such a data matrix, one can represent all the
available information by a bipartite graph, where
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the first set of N vertices corresponds to the ob-
jects and the second set of

�
j∈J `j vertices to the

categories of the J variables. Each object is con-
nected to the categories of the variables it belongs
to; thus, the set of N

�
j∈J `j edges provides infor-

mation about which categories an object belongs to,
or alternatively which objects belong to a specific
category. Thus, the N vertices corresponding to the
objects all have degree J, while the

�
j∈J `j ver-

tices corresponding to the categories have varying
degrees, equal to the number of objects in the cate-
gories. We can then draw this graph and attempt to
find interesting and useful patterns in the data. In
Figure 1 the bipartite graph of a toy example cor-
responding to a 4 × 3 contingency table with seven
objects is given. However, except for very small
data sets (both in terms of objects and variables)
such a representation is not very helpful. A better
approach would be to try to find a low-dimensional
space in which objects and categories are positioned
in such a way that as much information as possi-
ble is retained from the original data. Hence, the
goal becomes to construct a low-dimensional joint
map of objects and categories in Euclidean space
(�p). The choice of low dimensionality is because
the map can be plotted, and the choice of Euclidean
space stems from its nice properties (projections,
triangle inequality) and our familiarity with Eu-
clidean geometry. The problem of drawing graphs
that are easy to understand and present has at-
tracted a lot of attention in the computer science
literature [25]. There are different approaches to
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Fig. 1. The bipartite graph of a toy example.

drawing such maps and different ways of finding
them; a particular set of criteria defines the former
[23, 24] and the specific algorithm employed deter-
mines the latter.

Let X be the N × p matrix containing the co-
ordinates of the object vertices in �p, and let Yj,
j ∈ J, be the `j × p matrix containing the coor-
dinates of the `j category vertices of variable j.
We call X the object scores matrix and Yj’s the
category quantifications matrices. If we assign ran-
dom values to X and the Yj’s and plot the vertices
and the corresponding edges, we will typically get
a picture similar to the one shown in Figure 2
for the mammals’ dentition data set that is ana-
lyzed in Section 1.1 (the data are given in Appendix
A). It can be seen that very little is gained by
this two-dimensional representation. The picture
has too much “ink” and no interesting patterns
emerge. A more informative picture would emerge
if the edges were short, or in other words if objects
were close to the categories they fall in, and cate-
gories were close to the objects belonging in them
[24]. Hence, our goal becomes that of making a
graph plot that minimizes the total squared length
of the edges. This criterion is chosen because it
leads to an eigenvalue problem, and thus is nicely
related to many classical multivariate analytic
techniques.

[In this paper we employ the following notational
conventions. Uppercase letters are used for ma-
trices (e.g., A), and lowercase letters for vectors
(e.g., a). The �s; t�th element of a matrix is denoted
by A�s; t�, the sth row by A�s; ·� and the tth col-
umn by A�·; t�. Analogously, the sth element of a
vector is denoted by a�s�. Finally, up denotes a p-
dimensional column vector composed of only ones,
and Ip denotes the identity matrix of order p.]

The data are coded by using indicator matrices
Gj, with entriesGj�i; t� = 1 if object i belongs to cat-
egory t, and Gj�i; t� = 0 if it belongs to some other
category, i = 1; : : : ;N, t = 1; : : : ; `j. The matrix
G = �G1; : : : ;GJ� is simply the adjacency matrix
of the bipartite graph. The average squared edge

length (over all variables) is then given by

σ�XyY1; : : : ;YJ�

= J−1
J∑
j=1

SSQ�X−GjYj�

= J−1
J∑
j=1

tr�X−GjYj�′�X−GjYj�;

(1.1)

where SSQ�H� denotes the sum of squares of the el-
ements of the matrix H. We want to minimize (1.1)
simultaneously over X and the Yj’s. The loss func-
tion (1.1) is at the heart of the Gifi system [33],
and the entire system is mainly about different ver-
sions of the above minimization problem. By impos-
ing various restrictions on the category quantifica-
tions Yj, and in some cases on the coding of the
data, different types of analysis can be derived.

In order to avoid the trivial solution correspond-
ing to X = 0, and Yj = 0 for every j ∈ J, we require
in addition

X′X =NIp;(1.2)

u′NX = 0:(1.3)

The second normalization restriction basically re-
quires the graph plot to be centered around the ori-
gin. The first restriction standardizes the squared
length of the object scores (to be equal to N), and in
two or higher dimensions also requires the columns
of X to be orthogonal. Although this is computa-
tionally convenient, in many respects it is not com-
pletely satisfactory, a fact already noted by Guttman
[50]. It is worth noting that the criterion defined by
(1.1) expresses how well the categorical variables
can be reduced to one score vector (in case p = 1)
by appropriate rescaling, thus tying it to ideas from
principal components analysis.

Let us examine the solution to our minimiza-
tion problem (1.1) subject to the normalization
constraints (1.2) and (1.3). An alternating least
squares (ALS) algorithm is employed that, in addi-
tion, reveals some of the properties of the solution
discussed below (a different presentation of the so-
lution to the problem is discussed in Section 2.2).
In the first step, (1.1) is minimized with respect to
Yj for fixed X. Essentially, we are fitting the mul-
tivariate linear model X = GjYj + error, for each
j ∈ J to the data and the solution is given by

Ŷj = D−1
j G

′
jX; j ∈ J;(1.4)

where Dj = G′jGj is the `j × `j diagonal matrix
containing on its diagonal the relative frequencies
of the categories of variable j. In the second step of
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the algorithm, (1.1) is minimized with respect to X
for fixed Yj’s. The optimal X̂ is given by

X̂ = J−1
J∑
j=1

GjYj:(1.5)

In the third step of the algorithm the object scoresX
are column centered by settingW=X̂−uN�u′NX̂/N�;
and then orthonormalized by the modified Gram–
Schmidt procedure [39] X=

√
NGRAM�W�, so that

both normalization constraints (1.2) and (1.3) are
satisfied. The ALS algorithm cycles through these
three steps until it converges (this algorithm is iden-
tical to Bauer–Rutishauser simultaneous iteration,
the natural generalization of the power method for
computing some of the dominant eigenvalues along
with their corresponding eigenvectors).

Equation (1.4) expresses the so-called first cen-
troid principle [3] (a category quantification is in
the centroid of the object scores that belong to it),
while (1.5) shows that an object score is the aver-
age of the quantifications of the categories it be-
longs to. Hence, this solution accomplishes the goal
of producing a graph plot with objects close to the
categories they fall in and categories close to the
objects belonging in them. It should also be noted
that the use of indicator matrices makes the above
ALS procedure equivalent to the method of recip-
rocal averaging (which can already be found in the
works of Fisher [31] and Guttman [50]). This solu-
tion is known in the literature [33, 18, 22] as the
Homals solution (homogeneity analysis by means
of alternating least squares) and has been imple-
mented in computer software in various platforms
(program Homals in SPSS [90], and by Bond and
Michailidis in Lisp-Stat [7]).

Once the ALS algorithm has converged, by using
the fact that Ŷ′jDjŶj = Ŷ′jDj�D−1

j G
′
jX̂� = Ŷ′jG′jX̂,

we can write the loss function as

J−1
J∑
j=1

tr
(
X̂−GjŶj

)′(
X̂−GjŶj

)

= J−1
J∑
j=1

tr
(
X̂′X̂+ Ŷ′jDjŶj − 2Ŷ′jDjŶj

)

= J−1
J∑
j=1

tr
(
NIp − Ŷ′jDjŶj

)

=Np−J−1
J∑
j=1

tr
(
Ŷ′jDjŶj

)
:

(1.6)

The sum of the diagonal elements of the matrices
Ŷ′jDjŶj is called the fit of the solution. Further-
more, the discrimination measures of variable j in

dimension s are given by

η2
js ≡ Ŷ′j�·; s�DjŶj�·; s�/N;

j ∈ J; s = 1; : : : ; p:
(1.7)

The discrimination measures give the average
squared distance (weighted by the marginal fre-
quencies) of the category quantifications to the
origin of the p-dimensional space. Hence, variables
that discriminate well between categories have their
category points further apart, which in turn better
separates the objects. It can be shown that (assum-
ing there are no missing data) the discrimination
measures are equal to the squared correlation be-
tween an optimally quantified variable GjŶj�·; s� in
dimension s, and the corresponding column of ob-
ject scores X̂�·; s� (see [33], Chapter 3). Hence, the
loss function can also be expressed as

N

(
p− 1

J

J∑
j=1

p∑
s=1

η2
js

)
=N

(
p−

p∑
s=1

γs

)
;(1.8)

where the eigenvalues γs=J−1�J
j=1 η

2
js, s=1; : : : ;

p; correspond to the average of the discrimination
measures and give a measure of the fit of the
Homals solution in the sth dimension.

Next we summarize some basic properties of the
Homals solution:

• Category quantifications and object scores are
represented in a joint space (see Figure 4 for the
mammals’ dentition data set).
• A category point is the centroid of objects belong-

ing to that category, a direct consequence of (1.4)
(see Figure 1 for two variables from the mammals’
dentition data set).
• Objects with the same response pattern (identi-

cal profiles) receive identical object scores [follows
from (1.5)] (see Figure 7). In general, the distance
between two object points is related to the “simi-
larity” between their profiles.
• A variable discriminates better to the extent that

its category points are further apart [follows from
(1.7)].
• If a category applies uniquely to only a single ob-

ject, then the object point and that category point
will coincide.
• Objects with a “unique” profile will be located

further away from the origin of the joint space,
whereas objects with a profile similar to the “aver-
age” one will be located closer to the origin (direct
consequence of the previous property).
• The category quantifications of each variable
j ∈ J have a weighted sum over categories equal
to zero. This follows from the employed normal-
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Fig. 3. Star plots of variables bottom incisors �BI� and bottom molars �BM� from the mammals’ dentition example.

ization of the object scores, since u′ljDjŶj =
u′ljDjD

−1
j G

′
jX̂ = u′ljG

′
jX̂ = u′NX̂ = 0.

• The Homals solutions are nested. This means that
if one requires a p1-dimensional Homals solution
and then a second �p2 > p1�-dimensional solu-
tion, then the first p1 dimensions of the latter
solution are identical to the p1-dimensional solu-
tion.
• The solutions for subsequent dimensions are or-

dered. This means that the first dimension has
the absolute maximum eigenvalue. The second
dimension has the maximum eigenvalue subject
to the constraint that X�·;2� is uncorrelated to
X�·;1�, and so forth.
• The object scores are uncorrelated in subsequent

dimensions [follows from (1.3)]. However, the
category quantifications need not necessarily be
uncorrelated; in fact, their correlation patterns
might be rather unpredictable.
• The solution is invariant under rotations of the

object scores in p-dimensional space and of the
category quantifications. To see this, suppose we
select a different basis for the column space of the
object scores X; that is, let X] =X×R, where R
is a rotation matrix satisfying R′R = RR′ = Ip.
We then get from (1.4) that Y]

j = D−1
j G

′
jX

] =
ŶjR.

1.1 An Illustration: Mammals’ Dentition Example

In this section we discuss the results we obtained
by applying the Homals algorithm to the mammals
dentition data set (see Figures 2–9). The complete
data together with the coding of the variables are
given in Appendix A. Dental characteristics are
used in the classification of mammals. One of the

reasons is that teeth constitute one of the most com-
mon remains (together with bones of the jaw and
the skull) of mammals, since they are highly re-
sistant to chemical and physical weathering [27].
Because of the abundance of teeth in deposits of
fossil mammals, dentition has been stressed in the
interpretation of mammalian phylogeny and rela-
tionships. Moreover, dental characteristics provide
information about the food habits of mammals and
hence to some extent about their natural habitats.
The main question is whether the technique man-
aged to produce a fairly clean picture and uncover
some interesting features of this data set.

A two-dimensional analysis gives an adequate fit,
with eigenvalues 0.73 and 0.38 for the two dimen-

Fig. 2. An arbitrary two-dimensional graph plot of the mam-
mals’ dentition data set �×= objects; ∗ = categories�.
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Fig. 4. A two-dimensional graph plot of the mammals data set
produced by Homals �×= objects; ∗ = categories�.

Fig. 5. Category quantifications of the variables in the mam-
mals’ dentition example.

Fig. 6. Category quantifications �red� and object scores �green� �omitting mammals which have dentition identical to the ones shown
on the graph�.
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Fig. 7. Category quantifications �red� and object scores �green�
�height of the object scores shows how many mammals share the
particular teeth profile�.

sions, respectively. The graph plot of this solution is
given in Figure 4. Comparing it with Figure 2, we
immediately notice that the objects and the cate-
gories have been arranged in such a way so that the
amount of ink on the graph is minimized. Moreover,
several patterns have emerged. To study those pat-
terns more closely we turn our attention to the ar-
rangement of only the category vertices on the map
(see Figure 5). It can be seen that they form four
groups. In the upper right corner we can find cat-
egories BM1, TM1, TC2, BC2, TI4, BI3, BI4, TP5
and BP5. Thus, objects located in this area of the
map are associated with these categories, that is,
the presence of canines and molars and a large num-
ber of incisors and premolars. Such a dental pat-
tern characterizes the carnivores (meat eaters) that
use their incisors for nipping, the canines to grab
and hold the prey and the molars and premolars for
grinding the food. In the upper left corner we find
categories BP1, BP2, TP1, TP2, TP3, BI2 and TI2,
while in the center the categories TC1, BC1, TM2,
BM2, BI1, TI3, BP3, BP4 and TP4. However, the lat-
ter group can be split further into subgroups. For ex-
ample, we see that categories TP4 and BP4 are close
together, thus suggesting that objects with three top
premolars, usually have three bottom premolars as
well; similarly, for the subgroup TC1, BC1, TM2 and
BM2, we have that animals with no top and bottom
canines have three or more top and bottom molars.
Finally, in the lower and slightly to the left area of
the map we find a group of objects mainly charac-
terized by the categories TI1 and BI5. At this point,
it would be interesting to include in the picture the
objects themselves (see Figure 6) along with their

Fig. 8. Discrimination measures of the variables in the mam-
mals example.

respective frequencies (see Figure 7). We see that
the objects are located in the periphery of the map,
which is a consequence of the first centroid princi-
ple. Moreover, the majority of the objects form four
separate clusters located in the upper right, upper
left, lower left and middle parts of the picture. For
example, in the lower left area we find the follow-
ing animals: elk, deer, moose, reindeer, antelope, bi-
son, mountain goat, musk-ox and mountain sheep—
that belong to the ruminants, which are particu-
larly characterized by the absence of top incisors
and the presence of a large number of bottom in-
cisors (see in Figure 6 the proximity of these mam-
mals to TI1 and BI5). Similarly, in the upper left
area we find, among others, various types of squir-
rels (ground, gray, fox) and rats (kangaroo, pack,
field mouse, black etc.), all belonging to the rodents
(or rodentia group). The lack of canines and mo-
lars indicates that the dentition of these animals is
adapted to a broadly herbivorous diet, but the vary-
ing number of incisors and premolars distinguishes
to a large degree the rodents from the ruminants. In
the upper right of the graph we find various groups
of the carnivores, such as jaguar, cougar, lynx (all
belonging to the felidae—i.e., cat—family), but also
various types of seals (fur, sea lion, grey, elephant,
etc.). Finally, in the middle upper part of the pic-
ture we find a group of various types of bats (all
insectivorous mammals). It is worth noting that the
Homals solution isolates the armadillo in the left
part of the graph, which is a consequence of the
fact that it belongs to the edentates (mammals that
basically lack teeth). Moreover, it positions the opos-
sum somewhere between the carnivores and the ru-
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Fig. 9. Optimal transformations of some of the variables in the mammals example: �left� dimension 1; �right� dimension 2.
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minants but also close to the bats, thus suggest-
ing that its dentition is adapted to its food habits
(the opossum eats almost anything, including in-
sects, small mammals, fruits, berries and cultivated
crops [27]).

Hartigan [52], using a tree-type clustering algo-
rithm, found many similar groupings (e.g., beaver
and squirrels, weasel and otters, deer and elk, var-
ious types of bats). However, it is worth noting
that his clustering algorithm classified the hairy
tail mole together with the opossum, instead of
the bats, and the pack rat with the armadillo in-
stead of the rodents (e.g., the squirrels). This is
due to the nature of the particular algorithm used,
which is quite sensitive to the order of the presen-
tation of the objects and to the selected variables
used at different levels of the tree. On the other
hand, the Homals algorithm positions the objects
by taking into consideration the similarity of the
entire tooth profile and hence manages to avoid
such misclassifications (see [52], page 171).

As mentioned above, a variable discriminates bet-
ter to the extent that its category points are further
apart in the derived map. The discrimination mea-
sures, shown in Figure 8, indicate that the variables
TC, BC, TM and BM discriminate exclusively along
the first dimension, while the remaining variables
discriminate equally well on both dimensions. Re-
examining Figure 5, we see that categories TC1,
BC1, TM2 and BM2 are to the left of the origin,
while categories TC2, BC2, TM1 and BM1 are to
the right of the origin. This implies that this set of
variables does a primary split of the objects into two
groups (carnivores and other mammals), while the
other set of variables does further splits especially
along the second dimension (to a large extent dis-
tinguishing the rodents from the ruminants). It is
also interesting to examine the plots of the original
(i.e., 1;2;3;4) versus the transformed scales given
in Figure 9. Obviously, such plots are totally un-
interesting for binary variables, and therefore are
omitted. However, for the remaining variables they
reveal nonlinear patterns in both dimensions. In
some cases, the patterns are monotone (e.g., vari-
ables TI in both dimensions, and BP in the first
dimension) suggesting an implicit ordering in the
original scale, while in others the pattern is not very
clear.

2. OTHER ASPECTS OF
HOMOGENEITY ANALYSIS

In this section we study several aspects of homo-
geneity analysis. More specifically, we provide some
alternative ways of introducing the technique and

study its connection to an eigenvalue problem. We
briefly review how to handle missing data in this
framework and more elaborate coding schemes of
the data. Finally, we discuss how homogeneity anal-
ysis is related to other techniques proposed in the
literature that deal with categorical variables.

2.1 Some Alternative Introductions to
Homogeneity Analysis

In the previous section, homogeneity analysis
was motivated and introduced in pure graphical
language. The basic premise was that complicated
multivariate data can be made more accessible
by displaying their main regularities and pat-
terns in plots. What the technique accomplished
was to scale the N objects (map them into a low-
dimensional Euclidean space) in such a way that
objects with similar profiles were close together,
while objects with different profiles were relatively
apart. However, the technique can be introduced
from a different starting point.

Another possibility for introducing homogeneity
analysis is through linearization of the regressions.
Consider a column of the object scores X�·; s� as N
data values on the x-axis. Let the category quan-
tifications in the same sth dimension of these N
data points correspond to the y-axis values. The re-
gression line of x on y has slope equal to 1. The
reason is that the category quantifications y are
averages of x-values within that category (follows
from (1.4)). Remarkably enough, the regression of y
on x is also perfectly linear with slope given by the
eigenvalue γs. This is because the object scores x are
proportional to the averages of the category quan-
tifications applying to an object (follows from (1.5)).
Therefore, the Homals solution could be defined on
the basis of this property; it is the solution where ob-
ject scores are proportional to category means and
where category quantifications are proportional to
object means.

A third possible interpretation of the Homals so-
lution is in terms of a principal components analysis
of the quantified data matrix. It can be shown [22]
that the sum of squared correlations between the
optimal quantified variables GjY�·; s� and the vec-
tor X�·; s� is maximized.

2.2 Homogeneity Analysis as an Eigenvalue and
a Singular Value Decomposition Problem

One of the reasons why squared edge length is
appealing as a criterion is that it makes the result-
ing minimization problem an eigenvalue problem.
To see this, substitute the optimal Ŷj = D−1

j G
′
jX
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for given X in the loss function (1.1), to get

σ�Xy ?� = J−1
J∑
j=1

tr
(
X−GjD−1

j G
′
jX

)′

·
(
X−GjD−1

j G
′
jX

)

= J−1
J∑
j=1

tr
(
X′X−X′GjD−1

j G
′
jX

)
;

(2.1)

where the star has replaced the argument over
which the loss function is minimized. Let Pj =
GjD

−1
j G

′
j denote the orthogonal projector on the

subspace spanned by the columns of the indicator
matrix Gj. Let P? = J−1�J

j=1Pj be the average of
the J projectors. Equation (2.1) can be rewritten as

σ�Xy ?� = J−1
J∑
j=1

tr
(
X−PjX

)′(
X−PjX

)

= J−1
J∑
j=1

tr
(
X′X−X′PjX

)
:

(2.2)

This together with the normalization constraints
(1.2) and (1.3) gives that minimizing (2.2) is equiv-
alent to maximizing tr�X′L P?L X�, where L =
In−uNu′N/u′NuN is a centering operator that leaves
L X in deviations from its column means. The opti-
mal X corresponds to the largest p eigenvectors of
the matrix L P?L . We can then write the minimum
loss as follows:

σ�?y ?� =N
(
p−

p∑
s=1

λs

)
;(2.3)

where λs, s = 1; : : : ; p, are the largest p eigenvalues
of P?. Therefore, the minimum loss of homogeneity
analysis is a function of the p largest eigenvalues of
the average projector P?. Another derivation starts
by combining the J indicator matrices Gj into a su-
perindicator matrix G = �G1� · · · �GJ� (the symbol �
stands for concatenating matrices horizontally, so
that �A1�A2� = �A1A2�, provided that they have the
same number of rows) and the marginal frequencies
into D = ⊕J

j=1Dj. (The symbol
⊕

stands for di-
rect sum. This operation is defined for two matrices
A1 and A2 as

A1
⊕
A2 =

[
A1 0

0 A2

]

and similarly for any number of matrices.) The so-
lution for the optimal X can then be obtained (see
[33]) by the singular value decomposition of

J−1/2L GD−1/2 = U3V;(2.4)

where the left-hand side is the superindicator ma-
trix in deviations from column means and weighted

by the marginal frequencies. The optimal X corre-
sponds to the first p columns of the matrix U (the
first p left-singular vectors). Notice that the com-
plete eigenvalue and singular value solutions have
q = �J

j=1 `j − J dimensions. The advantage of em-
ploying the ALS algorithm is that it only computes
the first p � q dimensions of the solution, thus in-
creasing the computational efficiency and decreas-
ing the computer memory requirements.

2.3 Missing Data

The present loss function makes the treatment
of missing data a fairly easy exercise. Missing data
can occur for a variety of reasons: blank responses,
coding errors and so on. Let Mj, j ∈ J, denote the
N×N binary diagonal matrix with entriesMj�ii� =
1 if observation i is present for variable j and 0
otherwise. Define M∗ =

�J
j=1Mj. Notice that since

Gj is an incomplete indicator matrix (has rows with
just zeros), we have that MjGj = Gj, j ∈ J. The
loss function then becomes

σ�XyY1; : : : ;YJ�

=J−1
J∑
j=1

tr
(
X−GjYj

)′
Mj

(
X−GjYj

)
;

(2.5)

subject to the normalization restrictions X′M∗X =
JNIp and u′NM∗X = 0. The Ŷj’s are given by
(1.4), whereas the object scores are given by
X̂ = M−1

∗
�J
j=1GjYj. In the presence of missing

data, it is no longer the case that u′ljDjYj = 0 (the
category quantifications are not centered), because
in the weighted summation with respect to the row
scores of X, some of the scores are skipped. This op-
tion is known in the literature [33] as missing data
passive or missing data deleted, because it leaves
the indicator matrix Gj incomplete. There are two
other possibilities: (i) missing data single category
and (ii) missing data multiple categories. In the first
case, all missing observations for a particular vari-
able are treated as a new category, thus augmenting
the indicator matrix of the variable with an addi-
tional column. In the second case, every missing
observation for a particular variable is treated as a
new category, so that the number of columns added
to the indicator matrix of the variable corresponds
the number of missing observations. The missing
data passive option essentially ignores the miss-
ing observations, while the other two options make
specific strong assumptions regarding the pattern
of the missing data.

2.4 Alternative Coding Schemes

The coding scheme considered so far is the so-
called crisp coding of the indicator matrix. The main
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advantages it presents are as follows: it is simple
and computationally efficient (due to the sparse-
ness of the indicator matrix); it allows for nonlinear
transformation of the variables; it is very robust
even when coding noisy data; and the number of
parameters (categories) per variable is generally
small. Its disadvantages are that in many data an-
alytic situations the determination of the categories
is arbitrary and that when coding interval data
there is uncertainty about the allocation of values
near the category boundaries. Many alternatives
have been suggested in the literature (for a thor-
ough account see [102]), but the most commonly
used alternative coding scheme is called fuzzy cod-
ing, a generalization of the strict logical coding of
the indicator matrix. Instead of having a single 1 in-
dicating a specific category, with zeros everywhere
else, a whole set of nonnegative values adding up
to 1 can be assigned to each object. In some cases
these values can even be considered probabilities
that the object lies in the respective categories.
The main advantage of this scheme is that when a
value lies near the boundary between categories, it
may be allocated to both categories in appropriate
amounts. The main disadvantage of any more gen-
eral coding scheme is the computational burden it
introduces to the ALS procedure.

2.5 Comparison to Other Techniques

In this section we attempt to relate homogene-
ity analysis to other widely used multivariate tech-
niques, such as correspondence analysis, multidi-
mensional scaling and so on.

2.5.1 Relationship to correspondence analysis. A
special case of homogeneity analysis is the analy-
sis of a crosstable that represents the association
of two categorical variables. In this case the rows
and columns of the table correspond to the cate-
gories of the two variables. Fisher’s [31] eye color
and hair color data set represents a prototypical ex-
ample. Fisher described his objective as finding sys-
tems of row scores and column scores that maximize
the correlation coefficient of the two variables, and
also provided other interpretations of these scores
in terms of analysis of variance, discriminant anal-
ysis and canonical correlation analysis. However, if
one switches from a one-dimensional solution to a
higher-dimensional solution, it is then possible to
regard the systems of row and column scores as
coordinates in a certain space and an elegant ge-
ometric interpretation of the solution can be given.
The French approach to correspondence analysis is
mainly characterized by the emphasis on geometry

[3, 10, 48, 71]. In the French literature the analy-
sis of a crosstable is called correspondence analysis
(“analyse des correspondences”) and the analysis of
a collection of indicator matrices, which is equiva-
lent to homogeneity analysis, is called multiple cor-
respondence analysis (“analyse des correspondences
multiple”).

LetF be an I×J contingency table, whose entries
fij give the frequencies with which row category i
occurs together with column category j. Let r = FuJ
denote the vector of row marginals, c = F′uI the
vector of column marginals and n = u′c = u′r the to-
tal number of observations. Finally, let Dr = diag�r�
be the diagonal matrix containing on its diagonal
the elements of the vector r, and let Dc = diag�c�
be the diagonal matrix containing the elements of
the vector c. The χ2-distances between rows i and
i′ of table F are given by

δ2�i; i′� = n
J∑
j=1

�fij/ri − fi′j/ri′�2
cj

:(2.6)

Formula (2.6) shows that δ2�i; i′� is a measure
for the difference between the rows i and i′. It
also shows that since the entries of the table are
corrected for the row marginals, proportional rows
yield zero distances. In addition, remaining squared
differences between entries are weighted heavily
if the corresponding column marginals are small,
while these differences do not contribute much to
the χ2-distances if the column marginals are large.
Finally, due to the role of the column marginals,
the distances between the rows change when new
observations are added to the crosstable. In a sim-
ilar manner, χ2-distances can be defined between
columns of the crosstable.

The objective of correspondence analysis is to ap-
proximate the χ2-distances by Euclidean distances
in some low-dimensional space. In order to derive
the coordinates X of the row categories of table F
in the new Euclidean space, we consider the sin-
gular value decomposition of the matrix of the ob-
served frequencies minus the expected frequencies
corrected for row and column marginals

D−1/2
r �F−E�D−1/2

c = U3V′;(2.7)

where E = rc′/n. The optimal scores X are then
given (after normalization) by

X = n1/2D−1/2
r U;(2.8)

so that X′DrX = nI and u′IDrX = 0. It is worth
noting that this solution places the origin of the
space in the weighted centroid (since u′IDrX = 0)
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and represents the row scores in weighted principal
axes positions (since X′DrX = nI).

Consider now the superindicator matrix G =
�G1� · · · �GJ� of J indicator matrices Gj. Define now
the matrices Dr and Dc as follows: let Dr = JIN,
Dc = D ≡

⊕J

j=1Dj (see Section 2.2) and n = NJ.
Correspondence analysis of the superindicator ma-
trix G corresponds to performing a singular value
decomposition of the matrix

J−1/2
(
G− J

JN
GuNu

′
N

)
D−1/2

= J−1/2L GD−1/2 = U3V;
(2.9)

which is identical to (2.4). This result shows that
homogeneity analysis could also be viewed as ap-
proximating the χ2-distances between the rows of
the superindicator matrix. This special situation is
due to the fact that the row marginals of the su-
perindicator matrix are all equal to J. Subsequently
the characteristic row weights in correspondence
analysis are eliminated, and hence we deal with an
unweighted origin (u′X = 0) and unweighted princi-
pal axes (X′X =NIp). Obviously this does not hold
in the presence of missing values that are coded
as zeros, thus rendering unequal row marginals.
Finally, it is worth noting that the special rela-
tionship between homogeneity and correspondence
analysis holds only in case rows of the superindi-
cator matrix G are analyzed, despite the fact that
correspondence analysis is a symmetric technique
in terms of the treatment of rows and columns.
The problem arises, when considering column dif-
ferences of the superindicator matrix, from the fact
that the unequal column marginals enter into the
picture.

2.5.2 Relationship to multidimensional scaling.
In multidimensional scaling (MDS) the objective is
to approximate given measures of association 1 =
�δij�, often called dissimilarities or proximities, be-
tween a set of objects by distances D�X� = �δij�X��
between a set of points in some low-dimensional
space. In multivariate analysis the object of the
analysis is a multivariate data matrix Z and the
distance approach chooses the association between
the rows of the data matrix as the prime target
of the analysis. This implies that each row of Z is
regarded as a profile and the dissimilarities 1�Z�
are derived among the profiles. It is easy then to
see that any multivariate analytic technique can
be regarded as an MDS method by correctly speci-
fying the kind of dissimilarity measure involved in
it. In MDS, since the dissimilarities are approxi-
mated in a low-dimensional space, a loss function

is used to measure the difference between 1 and
the low-dimensional D�X�. In practice, squared
dissimilarities 12 are used, because of the additiv-
ity implied by Pythagoras’ theorem. A typical loss
function in MDS is given by

σ�X� = tr L
(
12 −D2�X�

)′

·L
(
12 −D2�X�

)
L ;

(2.10)

which shows that squared dissimilarities are ap-
proximated by squared distances. A moment of re-
flection shows that if we consider as squared dissim-
ilarity measures the χ2-distances of the rows of the
superindicator matrix G (see previous subsection),
then homogeneity analysis can be regarded as an
MDS technique. The primary difference between ho-
mogeneity analysis and a general MDS technique is
that the homogeneity analysis solution is obtained
at the expense of stronger normalization conditions
and a metric interpretation of the data (i.e., the ab-
solute magnitude of the dissimilarities is taken into
account by the technique, as opposed to a nonmetric
MDS analysis where only the order of the dissimi-
larities matters).

2.5.3 Relationship to cluster analysis. As we have
seen in the previous subsection homogeneity anal-
ysis provides us with an approximation of the χ2-
distances of the rows of the superindicator matrix
G by low-dimensional Euclidean distances. The χ2-
distances are a measure of the dissimilarities be-
tween objects, based on the classification given in
the data. The data indicate which categories are
shared by objects, and also how many objects be-
long to each category. These two pieces of informa-
tion are contained in G and in D (the matrix of uni-
variate marginals for all variables). In homogeneity
analysis, classification follows from interpreting the
configuration of object points in the p-dimensional
space. To put it differently, we are looking to iden-
tify clouds (clusters) of object scores and character-
ize them. In that sense, homogeneity analysis re-
sembles a cluster technique.

Van Buuren and Heiser [95] have developed a
technique called Groupals that simultaneously allo-
cates the object points to only one of K groups and
optimally scales the variables. Hence, the cluster-
ing and transformation problems are treated simul-
taneously. An alternating least squares algorithm
is proposed to solve this problem. Groupals can be
regarded as a forced classification method with op-
timal scaling features. A problem that often arises
in practice is that the algorithm converges to local
minima.
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2.5.4 Relationship to discriminant analysis and
analysis of variance. Homogeneity analysis can be
stated in discriminant analysis and analysis of vari-
ance terms. Suppose for the time being that the ma-
trix of object scores X is known. Each categorical
variable j ∈ J defines a partitioning of these object
scores. This means that we can decompose the to-
tal variance T of X in a between B and a within
(group) W component. We now wish to scale the ob-
jects (find the optimal X) in such a way that W will
be as small as possible, while keeping T equal to a
constant (e.g., the identity matrix).

This leads to a trivial solution: all objects in the
first category of the variable get the same score, all
objects in the second category get another score and
so on. The location of the points X is arbitrary but
they satisfy W = 0 and B = T = I. However, in
the presence of more than one variable, a trivial so-
lution for one is not a trivial solution for another
variable. Hence, we have to seek a compromise so-
lution to the problem. For given X let us define T∗,
B∗ and W∗, which are averages over all J variables.
Clearly for all variables the total variance of X is
the same. The objective becomes to find a configu-
ration X so that W∗ becomes minimum, subject to
the constraint T∗ = T = I. This is another way of
defining homogeneity analysis.

In homogeneity analysis terminology we have the
total variance given by T ≡ X′X = NIp, the vari-
ance between categories of X given by X′PjX for
variable j (with Pj = GjD−1

j G
′
j), and the variance

within categories of X given by X′�IN − Pj�X for
variable j. Thus, homogeneity analysis maximizes
the average between categories variance, while
keeping the total variance fixed. Consequently, the
main difference between discriminant analysis and
homogeneity analysis is that in the former we have
a single categorical variable and X must be of the
form UV, with U known and weights V unknown.
In homogeneity analysis the number of variables J
is greater than one and X is completely unknown
(or U = I).

2.6 Other Approaches to Analyzing
Categorical Data

As we have seen, homogeneity analysis is primar-
ily a data descriptive technique of (primarily) cate-
gorical data, and its origins can be traced back to the
work of Hirschfeld [57], Fisher [31] and especially
Guttman [50], although some ideas go further back
to Pearson (see the discussion in [17]). The main
objective is to scale (assign real values to) the cat-
egories so that a particular criterion is optimized,
for example, the edge length loss function (1.1). The

technique has been rediscovered many times and
is also known as (multiple) correspondence anal-
ysis [3], dual scaling [79, 81], quantification the-
ory [55] and also simultaneous linear regression,
centroid scaling, optimal scoring and biplot, each
name emphasizing some particular aspect of the
technique. For example, the French group around
Benzécri paid particular attention to contingency
tables and emphasized the geometrical aspects of
the technique, while Nishisato’s derivation stems
from analysis of variance considerations (see Sec-
tion 2.5.3), and Guttman was trying to apply prin-
cipal component analysis to categorical data. How-
ever, in spite of the fact that the various approaches
have a common starting point, most of them have
passed the stage of basic formulation and moved
toward their own unique advancement. Hence, we
have Nishisato’s efforts to apply dual scaling tech-
niques to a wider variety of data such as multi-
way data matrices, paired comparisons, rank or-
der, successive categories and sorting [80]. On the
other hand, a lot of work has been done by the
French group on extending and generalizing cor-
respondence analysis beyond simply examining the
interaction of row and column variables, by assum-
ing stronger underlying mechanisms that generated
the data [28–30, 101]. The Gifi group by consider-
ing generalizations of the loss function (1.1), and
by placing restrictions on the category quantifica-
tions, attempts to incorporate other popular multi-
variate techniques into the system, while retaining
the focus on the graphical representations of the
data and the exploratory nature of the techniques
(for more details see Sections 3 and 4). Thus, we see
the various groups and approaches branching out,
diverging from their starting point and exploring
new directions. However, a common point that all
of them retain is that the methods and techniques
are usually not introduced by way of an estimation
problem based on a model involving parameters and
error terms. Rather, one directly poses an optimiza-
tion problem for some type of loss function, while
statistical inference takes a back seat [9]. Never-
theless, there have been many attempts to trans-
form correspondence analysis of contingency tables
into a model-based approach appropriate for formal
inference. In this line of research we have asso-
ciation models and correlation models [15, 34, 35,
41–45] and their extensions to handle ordinal data
[36, 83, 87]. On another line we have the develop-
ment of latent structure models for analyzing a sin-
gle or a set of multidimensional contingency tables
[13, 14, 40, 51, 69]. Finally, it is worth mentioning
that the ideas of optimal scaling of the variables
can be found in the ACE methodology [8], in the
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ALSOS system [106] and in recent developments in
discriminant analysis [53, 54].

3. NONLINEAR PRINCIPAL
COMPONENT ANALYSIS

In the Gifi system nonlinear PCA is derived as
homogeneity analysis with restrictions [22]. The
starting point for this derivation is the loss func-
tion given in (1.1). However, rank-1 restrictions of
the form

Yj = qjβ′j; j ∈ J;(3.1)

are imposed on the multiple category quantifica-
tions, with qj being an `j-column vector of single
category quantifications for variable j, and βj a
p-column vector of weights (component loadings).
Thus, each quantification matrix Yj is restricted to
be of rank-1, which implies that the quantifications
in p-dimensional space become proportional to each
other. The introduction of the rank-1 restrictions al-
lows the existence of multidimensional solutions for
object scores with a single quantification (optimal
scaling) for the categories of the variables, and also
makes it possible to incorporate the measurement
level of the variables (ordinal, numerical) into the
analysis. This is impossible in the multiple quantifi-
cation framework (homogeneity analysis) presented
in Section 1. First, consider a multiple treatment
of numerical variables. In this case, the quantifica-
tion of the categories must be the same as the stan-
dardized a priori quantification. This implies that
multiple numerical quantifications contain incom-
patible requirements. Second, consider a multiple
treatment of ordinal variables. This is not contradic-
tory in itself; however, the different quantifications
must have the same order as the prior quantifica-
tions, thus resulting in being highly intercorrelated.
It follows that such an option does not have much
to offer.

To minimize (1.1) under restriction (3.1), we start
by computing the Ŷj’s as in (1.4). We then partition
the Gifi loss function as follows:

J∑
j=1

tr
(
X−Gj�Ŷj + �Yj − Ŷj��

)′

·
(
X−Gj�Ŷj + �Yj − Ŷj��

)

=
J∑
j=1

tr
(
X−GjŶj

)′(
X−GjŶj

)

+
J∑
j=1

tr
(
Yj − Ŷj

)′
Dj

(
Yj − Ŷj

)
:

(3.2)

We impose the rank-1 restrictions on the Yj’s and it
remains to minimize

J∑
j=1

tr
(
qjβ

′
j − Ŷj

)′
Dj

(
qjβ

′
j − Ŷj

)
;(3.3)

with respect to qj and βj. We do this by going to
another ALS loop (alternate over qj and βj), which
gives, for fixed qj’s,

β̂j =
(
Ŷ′jDjqj

)
/
(
q′jDjqj

)
; j ∈ J;(3.4)

and, for fixed βj’s,

q̂j = Ŷjβj/
(
β′jβj

)
; j ∈ J:(3.5)

At this point we need to take into consideration the
restrictions imposed by the measurement level of
the variables. This means that we have to project
the estimated vector q̂j on some cone Cj. In the
case of ordinal data the relevant cone Cj is the
cone of monotone transformations given by Cj =
�qj�qj�1� ≤ qj�2� ≤ · · ·qj�lj��. The projection to
this cone is solved by a weighted monotone regres-
sion in the metric Dj (the weights) (see [16] and ref-
erences therein). In the case of numerical data the
corresponding cone is a ray given by Cj = �qj�qj =
γj + δjsj�, where sj is a given vector; for exam-
ple, the original variable quantifications. The pro-
jection to this cone amounts to a linear regression
problem. However, it can be seen that there is no
freedom for choosing qj different than sj, and so
q̂j becomes irrelevant. Finally, in the case of nom-
inal data the cone is the �lj space and the projec-
tion is done by simply setting qj = q̂j. We then set
Ŷj = q̂jβ̂′j and proceed to compute the object scores.
This solution that takes into consideration the mea-
surement level of the variables is referred in the
literature [33, 22] as the Princals solution (prin-
cipal component analysis by means of alternating
least squares). It can be shown that if all variables
are treated as single numerical, the Princals solu-
tion corresponds to an ordinary principal component
analysis on the sj variables appropriately standard-
ized (e.g., u′ljDjsj = 0 and s′jDjsj = 1) [22] (see also
[33], Chapter 4). Hence, we have a technique that is
invariant under all nonlinear transformations of the
variables, and in the special case in which we allow
for linear transformations only we get back to or-
dinary principal components analysis. The Princals
model allows the data analyst to treat each vari-
able differently; some may be treated as multiple
nominal and some others as single nominal, ordinal
or numerical. Moreover, with some additional effort
(for details see [76]) one can also incorporate into
the analysis categorical variables of mixed measure-
ment level, that is, variables with some categories
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measured on an ordinal scale (e.g., Likert scale) and
some on a nominal scale (e.g., categories in survey
questionnaires corresponding to the answer “not ap-
plicable/don’t know”). In that sense, Princals gener-
alizes the Homals model.

Therefore, the complete Princals algorithm is
given by the following steps:

0. Initialize X, so that u′NX = 0 and X′X =NIp.
1. Estimate the multiple category quantifications

by Ŷj = D−1
j G

′
jX; j ∈ J.

2. Estimate the component loadings by β̂j =
�Ŷ′jDjqj�/�q′jDjq

′
j�; j ∈ J.

3. Estimate the single category quantifications by
q̂j = Ŷjβj/�β′jβj�; j ∈ J.

4. Account for the measurement level of the jth
variable by performing a monotone or linear re-
gression.

5. Update the multiple category quantifications by
setting Ŷj = q̂jβ̂′j; j ∈ J.

6. Estimate the object scores by X̂=J−1�J
j=1GjYj.

7. Column center and orthonormalize the matrix of
the object scores.

8. Check the convergence criterion.

In principle, to obtain the minimum of (3.3) over
all monotone or linear transformations of the qj’s,
steps 2–5 should be repeated until convergence is
reached. However, since the value of the loss func-
tion will be smaller after a single iteration of the
inner ALS loop, a single pass through steps 2–5
is used in practice. The above algorithm is imple-
mented in the Princals program in SPSS [90].

Remark 3.1. On the single options. The most com-
mon options in treating variables in Princals are
single ordinal and single numerical. The single nom-
inal treatment of a variable makes little sense. A
nominal treatment of a variable implies that the
data analyst has no a priori idea of how categories
should be quantified. If that is the case, then there
is no reason in requiring the same quantification on
p dimensions. If the data analyst has some prior
knowledge, she will be better off by employing one
of the other two single options.

We proceed to define the notions of multiple and
single loss. The Gifi loss function can be partitioned
into two parts, as follows:

J∑
j=1

tr
(
X−GjŶj

)′(
X−GjŶj

)

+
J∑
j=1

tr
(
q̂jβ̂

′
j − Ŷj

)′
Dj

(
q̂jβ̂

′
j − Ŷj

)
:

(3.6)

Using (1.8), the first term in (3.6) can be also written
as N�p − �J

j=1
�p
s=1 η

2
js�, which is called the mul-

tiple loss. The discrimination measure η2
js is called

the multiple fit of variable j in dimension s. Im-
posing the normalization restriction q′jDjqj = N,
and using the fact that Ŷ′jDjqjβ

′
j = Nβjβ′j (from

(3.4)), the second part of (3.6) can be written
as

J∑
j=1

tr
(
Ŷ′jDjŶj −Nβjβ′j

)

=N
( J∑
j=1

p∑
s=1

�η2
js − β2

js�
)
;

(3.7)

which is called the single loss, since it corresponds
to the additional loss incurred by imposing the rank-
1 restriction (3.1). The quantities β2

js, s = 1; : : : ; p,
are called single fit and correspond to squared com-
ponent loadings (see [33], Chapter 4).

From (3.6) it can be seen that if a variable is
treated as multiple nominal, it does not contribute
anything to the single loss component. Further-
more, two components are incorporated into the
single loss part: first, the rank-1 restriction, that
is, the fact that single category quantifications
must lie on a straight line in the joint space; sec-
ond, the measurement level restriction, that is, the
fact that single quantifications may have to be re-
arranged to be either in the right order (ordinal
variables) or equally spaced (numerical variables).
For the mammals’ dentition data set the latter
would imply that the plots containing the trans-
formed scales (see Figure 9) would only show
straight lines with the categories arranged in an
increasing or decreasing order for ordinal variables
and additionally being equally spaced for numeri-
cal variables. Of course, one can immediately see
that for binary variables these distinctions are of no
essence.

Remark 3.2. Nonlinear principal components
analysis and eigenvalue problems. In Section 2.2
we showed that homogeneity analysis under the
loss function (1.1) corresponds to an eigenvalue
problem, and an ALS algorithm was primarily
used for computational efficiency purposes. For the
problem at hand an ALS procedure becomes a ne-
cessity, because except for the special case where
all the variables are treated as single numeri-
cal, the problem does not admit an eigenvalue (or
a singular value) decomposition. The latter fact
also implies that in some cases the ALS algorithm
might converge to a local minimum (see [33], Chap-
ter 4).
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Remark 3.3. Missing data. In the presence of
missing data (3.2) becomes

J∑
j=1

tr
(
X−GjYj

)′
Mj

(
X−GjYj

)

=
J∑
j=1

tr
(
X−Gj�Ŷj + �Yj − Ŷj��

)′

·Mj

(
X−Gj�Ŷj + �Yj − Ŷj��

)

=
J∑
j=1

tr
(
X−GjŶj

)′
Mj

(
X−GjŶj

)

+
J∑
j=1

tr
(
Yj − Ŷj

)′
Dj

(
Yj − Ŷj

)
:

(3.8)

This shows that missing data do not affect the in-
ner ALS iteration loop where the single category
quantifications and the component loadings are es-
timated.

3.1 An Example: Crime Rates of U.S. Cities

The data in this example give crime rates per
100,000 people in seven areas—murder, rape,
robbery, assault, burglary, larceny, motor vehicle
theft—for 1994 for each of the largest 72 cities in
the United States. The data and their categorical
coding are given in Appendix B. In principal, we
could have used homogeneity analysis to analyze
and summarize the patterns in this data. However,
we would like to incorporate into the analysis the
underlying monotone structure in the data (higher
crime rates are worse for a city) and thus have
treated all the variables as ordinal in a nonlin-
ear principal components analysis. In Figure 10
the component loadings of the seven variables of
a two-dimensional solution are shown. In case the
loadings are of (almost) unit length, then the angle
between any two of them reflects the value of the
correlation coefficient between the two correspond-
ing quantified variables. It can be seen that the
first dimension (component) is a measure of overall
crime rate, since all variables exhibit high loadings
on it. On the other hand, the second component has
high positive loadings on rape and larceny and neg-
ative ones on murder, robbery and auto theft. Thus,
the second component will distinguish cities with
large numbers of incidents involving larceny and
rape from cities with high rates of auto thefts, mur-
ders and robberies. Moreover, it can be seen that
murder, robbery and auto theft are highly corre-
lated, as are larceny and rape. The assault variable
is also correlated, although to a lesser degree, with
the first set of three variables and also with bur-

Fig. 10. Component loadings of the seven crime variables.

glary. It is interesting to note that not all aspects
of violent crimes are highly correlated (i.e., mur-
der, rape, robbery and assault) and the same holds
for property crimes (burglary, larceny and auto
thefts).

In Figure 11 some of the variable transformations
are shown. It can be seen that some variables such
as murder and robbery (not shown here) receive lin-
ear transformations, while some others (e.g., assault
and larceny) distinctly nonlinear ones. It can be seen
that the middle categories for some of the variables
(e.g., assault and larceny) receive small and approx-
imately equal weights in the optimal solution, thus
indicating that they do not contribute much in the
direction of maximum variability. Finally, in Figure
12 the variable quantifications along with the ob-
ject scores are depicted. Notice that all the quan-
tifications lie on straight lines passing through the
origin, a result of the imposed rank-1 restriction
(3.1). On the right of the graph we find the cities
with high crime rates on all seven areas (Tampa,
Atlanta, Saint Louis, Miami), and on the left cities
with few crime incidents (Virginia Beach, Honolulu,
San Jose, El Paso, Raleigh, Mesa, Anaheim). In the
lower part of the graph and somewhat to the left
there is a cluster of cities that have few rapes and
larcenies, but are somewhere in the middle with re-
spect to the other crime areas (New York, Philadel-
phia, Los Angeles, Long Beach, Houston, San Fran-
cisco, Jersey City) and in the lower right cities with
many murder, robbery and auto theft incidents (De-
troit, Newark, Washington, DC, Oakland, New Or-
leans, Chicago, Fresno). On the other hand, cities
in the upper right part of the graph are character-
ized by large numbers of rapes, larcenies and bur-
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Fig. 11. Optimal transformations of some of the crime variables.

glaries (Oklahoma City, Minneapolis, Baton Rouge,
Kansas City, Birmingham), while cities in the center
are somewhere in the middle with respect to crime
(e.g., Denver, Dallas, Las Vegas, Phoenix, Boston,
Cleveland and Seattle to name a few). Finally, in the
upper left we find a cluster of cities that have some-
what higher numbers of larceny and rape incidents,
but few other types of crime incidents (Colorado
Springs, Lexington, Anchorage, San Antonio, Akron,
Aurora). It should be mentioned that the nature of
the original data (numerical variables) makes it pos-
sible to run an ordinary principal components analy-
sis (equivalent to treating all the variables as single
numerical in the present framework), and many of
the patterns discussed above would be present. The
use of nonlinear transformations sharpened some of
the findings and reduced the effect of some outlier
observations.

4. EXTENSION TO MULTIPLE SETS
OF VARIABLES

Hotelling’s [61] prime goal was to generalize mul-
tiple regression to a procedure in which the criterion
set contained more than one variable. He proposed
a replacement of a set of criterion variables by a
new composite criterion that could be predicted op-
timally by the set of predictor variables. His objec-
tive, formulated asymmetrically, was to maximize
the proportion of variance in the composite crite-
rion that was attributable to the predictor set. In a
subsequent paper Hotelling [62] retained the idea of
partitioning the variables into sets, but formulated
a more symmetric account of the technique. More
specifically, he wanted to study the relationship be-
tween two sets of variables after having removed
linear dependencies of the variables within each of
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Fig. 12. Variable quantifications �yellow points, not labeled� and U.S. cities: �solid lines� projections of the transformed variables; the
placement of the variable labels indicates the high crime rate direction �e.g.; for the assault variable category 1 is on the left side of the
graph, while category 6 is on the right side�.

these two sets. Hence, any variable may contribute
to the analysis in as much as it provides indepen-
dent information with respect to the other variables
within its own set and to the extent that it is lin-
early dependent with the variables in the other set.
The relationship between the two sets was chan-
neled through a maximum correlation, labeled the
canonical correlation, between a linear combination
(called canonical variables) of the variables in the
first set and a linear combination of the variables in
the second one. If the data analyst is interested in
more than a single solution, a second pair of canon-
ical variables orthogonal to the first one is to be
found, exhibiting the second largest correlation, and
the procedure is repeated until a p-dimensional so-
lution is determined. Hotelling’s procedure is known
in the literature as canonical correlation analysis
[37].

Starting with Steel [91], various attempts have
been made and approaches suggested to generalize
Hotelling’s procedure to K sets of variables. In a
K-problem there exist K�K− 1�/2 canonical corre-
lations between the K canonical variables that can
be collected in a K ×K correlation matrix R. The
generalizations deal with different criteria that can
be formulated as functions of the matrix R. The
most common ones are as follows:

1. Minimize the determinant of R, or equivalently
minimize the product of the eigenvalues of R,
proposed by Steel [91].

2. Maximize the sum of the correlations in R, pro-
posed by Horst [59, 60].

3. Maximize the variance of the first principal com-
ponent of the set of canonical variables, which
turns out to be equivalent to maximizing the
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largest eigenvalue of R, also proposed by Horst
[59, 60].

4. Maximize the sum of squares of the eigenvalues
of R, proposed by Kettenring [66].

5. Minimize the smallest eigenvalue of R, also pro-
posed by Kettenring [66].

6. Maximize the sum of squares of the correla-
tions between each canonical variable and an
unknown coordinate vector x, proposed by Car-
roll [12] and discussed by Kettenring [66], who
showed that it is equivalent to maximizing the
largest eigenvalue of R. The introduction of the
comparison vector x brings this criterion close
to formulations of homogeneity analysis pre-
sented above. This criterion is also discussed in
the works of Saporta [86], de Leeuw [18] and
van der Burg, de Leeuw and Verdegaal [100]. In
van de Geer [96] it is shown that this criterion
concentrates on correlations between sets and
ignores the possible within-sets structure.

In the Gifi system the last criterion is consid-
ered; therefore, a generalization of the familiar
loss function (1.1) is employed. The index set J
of the J variables is partitioned into K subsets
J�1�; : : : ; J�k�; : : : ; J�K�. The Gifi loss function is
given by

σ
(
XyY1; : : : ;YJ

)

=K−1
K∑
k=1

SSQ
(
X−

∑

j∈J�k�
GjYj

)
;

(4.1)

subject to the constraintsX′X =NIp and u′NX = 0,
where SSQ stands for sum of squares. Equation
(4.1) implies that all variables within each set J�k�,
k = 1; : : : ;K, are treated as additive (ignoring in-
teractions between variables within the same set).
However, the optimal transformations of a variable
j within a set J�k� still depend on the optimal
transformations of the remaining variables of set
J�k�. This calls for a correction for the contribution
of the other variables and is reflected in the follow-
ing ALS algorithm.

Step 1. For given X the optimal Yj is given by

Ŷj = D−1
j G

′
j

(
X−Vkj

)
; j ∈ J;(4.2)

where Vkj =
�
j∈J�k�GjYj − GjYj, k = 1; : : : ;K,

j ∈ J.

Step 2. For given Yj’s, the optimal X is given
by

X̂ =K−1
K∑
k=1

∑

j∈J�k�
GjYj:(4.3)

Step 3. The object scores are column centered
and orthonormalized in order to satisfy the normal-
ization constraints.

Equations (4.2) and (4.3) illustrate the centroid
principle, which is at the heart of the Gifi system.
Category quantifications are centroids of the ob-
ject scores corrected for the influence of the other
variables in the set, and object scores are averages
of quantified variables. In the presence of rank-1
restrictions for the category quantifications (i.e.,
Yj = qjβ

′
j; j ∈ J) an inner ALS iteration loop

must be employed for estimating the single cate-
gory quantifications qj and the component loadings
βj (see Section 3). The restricted minimization
problem given by (4.1) is known in the literature
as the Overals problem, the ALS algorithm as the
Overals algorithm and the computer program that
implements the algorithm as the Overals program
[90, 103]. The reason for these particular names
is that if we consider a single variable per set,
(4.1) reduces to (1.1), the ordinary loss function for
homogeneity analysis. Therefore, Homals and Prin-
cals are special cases of Overals. Moreover, if there
are only two sets of variables we enter the realm
of canonical correlation analysis. In fact, with two
sets of variables and all variables treated as single
numerical, Overals becomes equivalent to ordinary
canonical correlation analysis. Finally, if there are
two sets of variables, the first containing many sin-
gle numerical variables, and the second a single
categorical variable, Overals can be used to perform
canonical discriminant analysis.

Remark 4.1. Overals as an eigenvalue problem.
Following steps analogous to those considered in
Section 2.2, it can be shown that the minimum of
the loss function is given by

σ�?; ?� =NK
(
p−

p∑
s=1

λs

)
;(4.4)

where λs, s = 1; : : : ; p are the eigenvalues of the
matrix L P?L , with P? = K−1�K

k=1Pk and Pk =�
j∈J�k�GjD

−1
j G

′
j. Therefore, the minimum loss is a

function of the p largest eigenvalues of the aver-
age projector of the K subspaces spanned by the
columns of the matrices

�
j∈J�k�Gj.

4.1 An Example: School Climate

The data for this large example (23,248 students)
come from the National Education Longitudinal
Study of 1988 (NELS:88). A description of the 11
variables used, their coding and their univariate
marginals are given in Appendix C. We provide
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next some motivation on the issues related to this
particular data set. Recently, there has been a lot
of interest among researchers and policy makers on
the importance of the school learning environment
and the influence of individual and peer behavior
on student performance. For example goal 6 of the
National Education Goals Panel [78] states that by
the year 2000 “every school in America will be free
of drugs and violence and will offer a disciplined
environment conducive to learning.” Because in
many situations learning is constrained in an atmo-
sphere of fear and disorderliness, student behavior
influences school atmosphere and the climate for
learning (whether it takes the form of violence and
risk-taking activities such as bringing weapons to
school or using alcohol and drugs) or a low commit-
ment to academic effort (such as poor attendance,
lack of discipline or study habits) [11]. These stu-
dent behaviors also play a key role in determining
student success in school and beyond (see [64] and
references therein), as well as the way students,
teachers and administrators act, relate to one an-
other and form their expectations and to a certain
extent beliefs and values [1, 82]. Thus, this particu-
lar set of variables from NELS:88 addresses issues
directly related to the school culture and climate,
as seen from the students’ point of view.

The variables were divided into three sets J�1� =
�A−C�;J�2� = �D− I�;J�3� = �J;K� and treated
as single ordinal, since lower values indicate that
the students perceive the particular problem as
more serious in their school. The first set char-
acterizes attendance patterns of students, the
second set deals with issues that affect the over-
all school environment and the third deals with
attitudes of students toward their teachers. The
eigenvalues (measure of fit of the solution) for the
two-dimensional solution are 0.65 and 0.36, respec-
tively, and the multiple correlations of the three
sets with each mean canonical variable (dimension)
are 0.67, 0.86 and 0.75 for the first dimension and
0.45, 0.69 and 0.58 for the second one. The mul-
tiple correlations are a measure of the amount of
variance of the canonical variable explained by the
particular set. It can be seen that the second set
does the best job, followed by the third and the first
set in both dimensions.

The component loadings of the variables are
shown in Figure 13. The loadings of all variables
are pretty high on the first dimension (canonical
variable), with the exception of variable B (student
absenteeism). On the other hand, variables E (rob-
bery), H (drugs), I (weapons) and J (physical abuse
of teachers) load positively on the second canonical
variable, while variables A (tardiness), D (physical

Fig. 13. Component loadings of the variables in the school cli-
mate example.

conflicts), F (vandalism), G (alcohol) and K (verbal
abuse of teachers) load negatively on the second
canonical variable. It is interesting to observe that
the robbery, drugs and weapons variables are fairly
highly correlated, while the variables on physical
and verbal abuse of the teachers are uncorrelated.
In general, the first canonical variable can be in-
terpreted as an overall measure of school climate,
while the second one distinguishes between stu-
dents (and consequently schools) that experience
a rough and potentially dangerous school environ-
ment, with those that experience a simply rough
environment. Finally, it is worth noting that from
the first set only the tardiness variable discrimi-
nates along the second dimension, a fact reflected
on the low multiple correlation coefficient of the
first set of variables and the second canonical
variable.

By examining the category points plot (see Figure
14) we expect to find the students attending schools
where the overall climate is perceived to be poor in
the right part of the picture and, in particular, in the
lower right, those that believe the climate at their
school is good in the lower left, those going to schools
with some sort of problems somewhere in the middle
and those going to schools with problems described
by variables A, D, F, G and K in the upper middle
part of the picture. In Figure 15 the object scores
are plotted, together with their frequencies and the
category points (positioned along the red lines). The
object point with the very large spike on the left end
of the graph corresponds to the profile consisting of
only 4’s; that is, these students (approximately 11%
of the sample) indicated that none of the areas cov-
ered by the 11 variables is a problem in their school.
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Fig. 15. Object scores of the school climate data set and their respective frequencies: �green points� frequencies less than or equal to 5y
�red lines� location of the category points on the map.

On the other hand, the big spike on the right end of
the picture corresponds to the other extreme profile
of only 1’s; hence, close to 2% of the students attend
pretty rough schools. It can also be seen that approx-
imately 40% of the object scores are concentrated
on the lower left part, indicating that these areas

Fig. 14. Category points of the school climate data set �variable
label points toward the highest, i.e., “not a problem,” category�.

can be characterized as at most a minor problem in
the respective schools. Overall, the solution reveals
that very few students mixed “not a problem” re-
sponses with “serious problem” ones; such students
can be found in the center-lower part of Figure 13.
On the other hand, the majority of the students used
“neighbor” responses (e.g., “not a problem” and “mi-
nor problem” or “moderate” and “serious” problem),
thus resulting in the observed clustering of students
attending problem-free schools in the lower left of
the graph, those attending somewhat rough schools
in the upper left and finally those attending really
rough schools in the lower right of the graph. The
object scores can be subsequently used as input in
other types of analysis; for example, in regression
analysis they can be related to outcome variables
such as test scores and used to examine relevant
hypotheses.

5. STABILITY ISSUES

The techniques presented so far aim at the un-
covering and representation of the structure of
categorical multivariate data. However, there has
been no reference to any probabilistic mechanism
that generated the data under consideration. The
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main focus of these techniques is on providing
a low-dimensional representation of the original
high-dimensional space (where presumably the
dependencies and interdependencies in the data
are much easier to describe and characterize). As
Kendall points out “many of the practical situa-
tions which confront us are not probabilistic in the
ordinary sense : : : . It is a mistake to try and force
the treatment of such data into a classical statisti-
cal mould, even though some subjective judgment
in treatment and interpretation may be involved in
the analysis” (see [65], page 4). Nevertheless, one
may always pose the question of whether the pat-
terns in the various plots are real or mere “chance”
effects. Thus, the goal in this section is to give a
brief overview of the question of stability of the rep-
resentation. The concept of stability is central in
the Gifi system and is used in the following sense:
data analysis results are stable when small and/or
unimportant changes of input lead to small and
unimportant changes in the results (output) (see
[33], page 36). By reversing this definition, we get
that in the Gifi system a result can be character-
ized as unstable in those instances where small
and unimportant changes in the input result in
significant changes in the output. In our analysis,
we consider as input the data set at hand (ob-
jects and variables), the coding of the variables,
the dimensionality of the solution, the measure-
ment level of the variables, the type of technique
employed (Homals, Princals), and as output cate-
gory quantifications, object scores, discrimination
measures, eigenvalues, component loadings and so
on. It should be noted that, while in other types of
data analysis the output usually consists of a small
number of point estimates and their standard er-
rors (e.g., regression analysis), for the techniques
under consideration there exists a whole series of
outputs.

The most important forms of stability relevant to
the techniques previously presented are the follow-
ing:

(a) Replication stability—if a new data set is sam-
pled and we apply the same technique to this
new set, then the results do not change dramat-
ically.

(b) Stability under data selection—variations in the
data are considered (omitting either objects from
the data set or variables from subsequent anal-
ysis) and the stability of the analysis is consid-
ered.

(c) Stability under model selection—small changes
in the model result in small changes in the re-
sults obtained.

(d) Numerical stability—rounding errors and com-
putation with limited precision do not greatly
influence the results given by the techniques.

(e) Analytic and algebraic stability—refers to the
derivation of analytical results for the output
(e.g., error bounds on the parameters of interest)
by considering “perturbations” of the input.

(f) Stability under selection of technique—applica-
tion of a number of different techniques to the
same data set, aiming at answering the same
question, results in approximately the same in-
formation.

In this section, we focus primarily on stability under
data selection. However, we also look briefly into an-
alytic and algebraic stability. It should be noted that
issues of numerical stability have been addressed
during the presentation of the various models (e.g.,
normalization issues, etc.).

The distinction between internal and external sta-
bility may provide a better understanding of the
concept of stability [48] as used in the Gifi system.
External stability refers to the conventional notions
of statistical significance and confidence. In the con-
ventional statistical framework, the aim of the anal-
ysis is to get a picture of the empirical world and
the question is to what extent the results do indeed
reflect the real population values. In other words,
the results of any of our models are externally sta-
ble in case any other sample from the same popu-
lation produces roughly the same results (output).
Consequently, the confidence regions of the output
parameters are relatively small. Internal stability
deals with the specific data set at hand. The mod-
els produce a simple representation of the data and
reveal associations between the variables. An inter-
nally stable solution implies that the derived results
give a good summary of that specific data set. We
are not interested in population values, because we
might not know either the population from which
the data set was drawn or the sampling mechanism;
in the latter case, we might be dealing with a sam-
ple of convenience. Possible sources of instability in
a particular data set are outlying objects or cate-
gories that have a large influence on the results.
Internal stability can be thought of as a form of ro-
bustness.

Both external and internal stability play a role
in the practice of data analysis. It is often the case
that a data analyst wants to get insight into the
structure of the population, particularly whenever
the data set has been collected by a well-defined
sampling mechanism. In such cases, external sta-
bility of the results allows the practitioner to draw
firmer conclusions about the structure of the un-
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derlying population. On the other hand, when a
data analyst is only interested in the structure of
the specific data set, internal stability ensures the
invariance of the sample solution. The notions of
external and internal stability are directly linked
with the notions of descriptive and inferential use
of the models introduced in the previous sections.
The main distinction between these two notions is
whether the models are (i) exclusively used to re-
duce the complexity of the data and uncover their
basic structure or (ii) used to draw conclusions and
generalize them from the sample to the population
(see the debate between de Leeuw [20] and Mole-
naar [77] and references therein; see also Leamer
[70] for some provocative thoughts on the subject
from the Bayesian viewpoint). When dealing with
external stability a “new” sample should be drawn
and the technique applied to it. The word “new” may
mean (i) a truly new sample from the population, (ii)
a fictitious “new” sample, common in classical sta-
tistical analysis of stability [22], or (iii) a “new” per-
turbed sample created by resampling with replace-
ment from the sample at hand. In case of a fictitious
“new” sample, the data analyst attempts to assess
stability of the technique by examining what would
have happened if a truly “new” sample was drawn
from the underlying population. When dealing with
internal stability, only the third possibility is avail-
able.

In the remainder of this section we will address
stability issues related to merging categories, omit-
ting a variable from the analysis, permutation tests
and the bootstrap. The first two topics have been
briefly addressed in [33], the third one in [21], while
the last one has been examined in [19], [33], [73],
[74] and [98].

5.1 Merging Categories

Merging categories can be formalized algebrai-
cally by introducing indicator matrices GCj

, j ∈ J,
of dimension `j × kj, with kj ≤ `j, to replace Gj
by GjGCj

. In the case kj = `j, we get that GCj
≡

I`j and nothing changes. The orthogonal projector
on the subspace spanned by the columns of GjGCj

becomes P̃j = GjGCj
�G′CjDjGCj

�+G′CjG
′
j, j ∈ J,

where A+ denotes the Moore–Penrose (generalized)
inverse of matrix A. By using perturbation results
for eigenvalue problems (see, e.g., [63]), it can be
shown that merging two categories with approxi-
mately the same quantifications hardly changes the
eigenvalues (and hence the overall fit of the solu-
tion) when the number of variables is not too small.
On the other hand, eliminating a very low frequency
category (by merging it with some other category)

improves, in general, the graphical representation
of the solution.

5.2 Eliminating a Variable in
Homogeneity Analysis

It can be shown that the importance of a vari-
able for a dimension s can be expressed as η2

js − γs,
s = 1; : : : ; p, that is, the discrimination measure
of that variable minus the average of the discrim-
ination measures of all variables on dimension s
(the eigenvalue). The latter implies that if a vari-
able with a relatively small discrimination measure
is eliminated from the analysis, the overall fit of
the solution (eigenvalue) will not be affected much.
Results for eigenvectors (object scores) are less com-
plete, and it seems that a general pattern is hard to
establish.

5.3 Permutation Methods

Although we emphasized the exploratory nature
of the techniques described in this paper, neverthe-
less we would like to determine whether the struc-
ture observed in the data is “too pronounced to be
easily explained away as some kind of fluke,” to
paraphrase Freedman and Lane [32]. Permutation
tests can help to study the concept of “no structure
at all.” The idea behind using such tests is that they
represent a nice way of formalizing the notion of
no structure. The random variation is introduced
conditionally on the observed data, which implies
that we do not have to assume a particular model
that generated the data, thus making them useful in
nonstochastic settings as well [32]. Each new data
set is generated by permuting the values the objects
are assigned for each variable, resulting in destroy-
ing the original profiles of the objects. Then, the
technique of interest is applied to the newly gener-
ated data and the eigenvalues of the solution com-
puted. For small data sets in terms of both objects
and variables (e.g., J = 2) it is possible to derive
the permutation distribution of the eigenvalues by
complete enumeration of the possible cases. How-
ever, for all other cases one has to resort to Monte
Carlo methods [21].

We present next the results of such a test for the
mammals’ dentition example. The two panels of Fig-
ure 16 give the frequency distribution of the first
and second eigenvalues of the homogeneity analysis
solution for the mammals dentition example over
1000 replications. It can immediately be seen that
the observed eigenvalues of 0.73 and 0.38 in the
original data are way to the right, thus suggest-
ing that the informal null hypothesis of absence of
structure is false and hence the patterns in the data
(e.g., various groupings of the mammals) are real.
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Fig. 16. Histograms of the permutation distribution of the eigenvalues of the homogeneity analysis solution of the mammals’ dentition
example.

5.4 Replication Stability and the Bootstrap

The previous subsections have provided some an-
alytic and/or computational results on the stabil-
ity of the eigenvalues of the Homals solution. How-
ever, very little is known (and analytic results seem
very hard to get) for category quantifications, objects
scores, component loadings and so on. On the other
hand, recent advances in resampling techniques—
particularly the bootstrap [26]—offer an interesting
and useful alternative to study stability issues for
other parameters of interest.

We develop the method in a general context (for
a more comprehensive account see also [98]). Sup-
pose we have J categorical variables. Each variable
takes values in a set Sj (the range of the variable
[33]) of cardinality `j (number of categories of vari-
able j). Define S = S1 × · · ·SJ to be the profile
space, which has cardinality ` = �J

j=1 `j. That is,
the space S = ��s1; : : : ; sj�, sj ∈ Sj; j ∈ J� con-
tains the J-tuples of profiles. Let S be an `×�J

j=1 `j
binary matrix, whose elements S�h; t� are equal to
1 if the hth profile contains category t, and 0 other-
wise; that is, S maps the space of profiles S to its
individual components. Let also GS be an N× ` in-
dicator matrix with elements GS�t; h� = 1 if the
tth object (individual etc.) has the hth profile in
S, and GS�t; h� = 0 otherwise. The superindica-
tor matrix G = �G1� · · · �GJ� can now be written as
G = GSS. Hence, there is a one-to-one correspon-
dence between the ordinary indicator matrices Gj
and the space of profiles S .

Let P be a probability distribution on S . Since
the space S is finite, P corresponds to a vector
of proportions p = �ph� with

�`
h=1ph = 1. In the

present framework, it is not difficult to see that
each observed superindicator matrix G corresponds
to a realization of the random variable π that has
a multinomial distribution with parameters �N;p�.
The output (category quantifications, discrimination
measures, object scores, component loadings etc.) of
the techniques introduced in the previous sections
can be thought of as functions φ�π�.

From a specific data set of size N we can draw
NN sets also of size N, with replacement. In our
case, each subset corresponds to a matrix GS. The
basic idea behind bootstrapping techniques is that
we might as well have observed any matrix GS of
dimension N × ` consisting of the same rows, but
in different frequencies, than the one we observed
in our original sample. So, we could have observed
a superindicator matrix Gm, associated with a vec-
tor of proportions pm, which is a perturbed version
of π. The output of our techniques would then nat-
urally be a function φ�pm�. Suppose that we have
a sequence of pm’s and thus of functions φ�pm�.
Then, under some regularity conditions on the φ�·�
(Hadamard or Fréchet differentiability [89]) it can
be shown that φ�pm� is a consistent estimator of
φ�π� and that P∗�φ�pm� ≤ z�pm� is a consistent
estimator of P�φ�p� ≤ z�p� [72, 88], where P∗ de-
notes the conditional probability given pm. The pre-
vious discussion indicates that the appropriate way
to bootstrap in homogeneity analysis is to sample
objects with replacement, or in other words, sample
rows of the data matrix.

Remark 5.1. Bias correction and construction of
confidence regions. Two of the main issues in the
theory of the bootstrap are (i) how to produce unbi-
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ased bootstrap estimates and (ii) how to construct
confidence regions with the correct coverage prob-
ability α [26]. The main problem in the present
context is that by construction the parameters of
the techniques (eigenvalues, category quantifica-
tions etc.) are multidimensional, and moreover the
dimensions are correlated with each other. Regard-
ing bias correction two possible solutions proposed
by Markus [73] are (i) to adjust each bootstrap
point by φ̂∗cb = φ̂

∗
b − 2�φ̂∗ − φ̂� and (ii) to adjust by

φ̂∗cb = 2φ̂−φ̂∗b, where φ̂∗b corresponds to the bth boot-
strap point, φ̂ to the sample estimate and φ̂∗ to the
mean of the B bootstrap points. The first one defines
bias as a shift of the estimate with respect to the
population value; the second, as a reflection with
respect to the original sample value. Regarding the
problem of constructing confidence regions, several
approaches have been suggested in the literature.
Weinberg, Carroll and Cohen [104] constructed el-
lipses based on the bootstrap variance–covariance
matrix. They assumed that the sampling distribu-
tion is normal and the construction of confidence
regions is based on F-values. A similar approach
can be found in Takane and Shibayama [92]. Heiser
and Meulman [56] suggested constructing ellipses
by performing a singular value decomposition of
the matrix of bootstrap points that are in devia-
tions from their means. This procedure results in a
spherical representation that determines the circle
covering the �1−α�×100% points with the shortest
distance to the centroid. Subsequently, the circle
is transformed into an ellipse. This construction
avoids any link to the normal distribution. Markus
[73] uses the convex hull of the scatter of the boot-
strap points to construct the confidence regions.
She then discards the α×100% of the outer vertices
of the hull, and the resulting hull is considered to
be the desired confidence region (this algorithm is
discussed in [46]; see also [47]). This method resem-
bles the percentile method for estimating bootstrap
confidence intervals [26].

5.5 Results of Previous Studies

There have been several studies that have used
bootstrap methods to assess the stability of nonlin-
ear multivariate techniques—homogeneity analysis,
correspondence analysis, canonical correlation anal-
ysis [33, 98, 74]. The most comprehensive one is the
monograph by Markus [73]. In this section we will
attempt to summarize briefly the results of these
studies:

1. The most important finding from a computa-
tional point of view is that to obtain valid results

a large number of bootstrap replications is re-
quired (over 1000).

2. The bootstrap confidence regions give on average
the right coverage probabilities. However, for cat-
egories with low marginal frequencies the cov-
erage probabilities might be underestimated or
overestimated.

3. Bias correction is beneficial to the coverage prob-
abilities of eigenvalues but rather harmful to
that of category quantifications, discrimination
measures and component loadings. It seems that
the translation method is the most appropriate
for bias correction.

4. Marginal frequencies of about 8 seem to be the
absolute minimum to ensure valid confidence re-
gions. In light of this finding, merging categories
appears to be not only beneficial overall, but nec-
essary in many situations.

5. Both ellipses and peeled convex hulls produce
valid confidence regions. However, this result
heavily depends on a number of parameters,
such as sample size, number of bootstrap repli-
cations, category marginal frequencies. In the
case of small sample sizes, the behavior of confi-
dence regions becomes erratic.

6. There are no results regarding the stability of
patterns for ordinal and/or numerical variables
(ordering of categories), and also in the presence
of missing data.

In Figure 17 we present the bias corrected boot-
strap means, along with ±2 standard error bands,
of some of the optimal transformations of the cate-
gory quantifications of the mammals’ dentition data
set, based on 1000 bootstrap replications. The boot-
strapped means and standard errors (in parenthe-
ses) of the eigenvalues in dimensions 1 and 2 are
0.738 (0.035) and 0.386 (0.027), respectively.

It can be seen that the fit of the solution in both di-
mensions is particularly stable, thus indicating that
the patterns observed in the data set are real, thus
confirming the results of the random permutation
method. Regarding the category quantifications we
see that the first dimension exhibits a far more sta-
ble behavior than the second. However, for the vari-
ables that discriminate along the second dimension
(TI, BI) the results are satisfactory. Moreover, we
see that categories with low marginal frequencies
(e.g., BI1) exhibit more variation than categories
with larger frequencies, thus confirming the results
of previous studies.

6. CONCLUDING REMARKS

In this paper a brief account of some varieties
of multivariate analysis techniques for categorical
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Fig. 17. Bias corrected bootstrap means of the optimal transformations �solid lines� and respective error bands �broken lines� of some
of the variables of the mammals’ dentition example.

data, known as the Gifi system, is given. The cen-
tral themes of the system are the notion of optimal
scaling of categorical data and its implementation
through alternating least squares algorithms. The
starting point of the system is homogeneity anal-
ysis, a particular form of optimal scaling. The use
of various types of restrictions allows homogeneity
analysis to be molded into other types of nonlin-
ear multivariate techniques. These techniques have
been extensively used in data analytic situations.
In the Gifi book [33] all of Chapter 13 is devoted to
applications covering the fields of education, sociol-
ogy and psychology. Also, in their books Greenacre
[48] and Benzécri [4] give a wide variety of appli-
cations of multiple correspondence analysis in the
fields of genetics, social psychology, clinical research,

education, criminology, linguistics, ecology, paleon-
tology and meteorology. Other applications of the
techniques include marketing [58], zoology [97], en-
vironmental studies [94], medicine [98] and food sci-
ence [99]. However, the Gifi system has evolved be-
yond homogeneity analysis and its generalizations;
hence, new techniques have been developed for path
models [33], time series models [93], linear dynam-
ical systems [5] and so on. In closing, it should be
mentioned that the Gifi system is part of a still quite
active research program.

APPENDIX A: DENTITION OF MAMMALS

The data (Table A1) for this example are taken
from Hartigan [52]. Mammals’ teeth are divided into
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Table A1
Mammals’ dentition data

Mammal Mammal

Opossum 45224422 Fox 44225512
Hairy tail mole 44225522 Bear 44225512
Common mole 43214422 Civet cat 44225511
Star nose mole 44225522 Raccoon 44225521
Brown bat 34224422 Marten 44225511
Silver hair bat 34223422 Fisher 44225511
Pigmy bat 34223322 Weasel 44224411
House bat 34222322 Mink 44224411
Red bat 24223322 Ferrer 44224411
Hoary bat 24223322 Wolverine 44225511
Lump nose bat 34223422 Badger 44224411
Armadillo 11111122 Skunk 44224411
Pika 32113322 River otter 44225411
Snowshoe rabbit 32114322 Sea otter 43224411
Beaver 22113222 Jaguar 44224311
Marmot 22113222 Ocelot 44224311
Groundhog 22113222 Cougar 44224311
Prairie dog 22113222 Lynx 44224311
Ground squirrel 22113222 Fur seal 43225511
Chipmunk 22113222 Sea lion 43225511
Gray squirrel 22112222 Walrus 21224411
Fox squirrel 22112222 Grey seal 43224411
Pocket gopher 22112222 Elephant seal 32225511
Kangaroo rat 22112222 Peccary 34224422
Pack rat 22111122 Elk 15214422
Field mouse 22111122 Deer 15114422
Muskrat 22111122 Moose 15114422
Black rat 22111122 Reindeer 15214422
House mouse 22111122 Antelope 15114422
Porcupine 22112222 Bison 15114422
Guinea pig 22112222 Mountain goat 15114422
Coyote 24225522 Musk-ox 15114422
Wolf 44225512 Mountain sheep 15114422

four groups: incisors, canines, premolars and mo-
lars. A description of the variables with their re-
spective coding is given next:

• TI, top incisors—(1) zero incisors; (2) one incisor;
(3) two incisors; (4) three or more incisors;
• BI, bottom incisors—(1) zero incisors; (2) one in-

cisor; (3) two incisors; (4) three incisors; (5) four
incisors;
• TC, top canine—(1) zero canines; (2) one canine;
• BC, bottom canine—(1) zero canines; (2) one ca-

nine;
• TP, top premolar—(1) zero premolars; (2) one pre-

molar; (3) two premolars; (3) two premolars; (4)
three premolars; (5) four premolars;
• BP, bottom premolar—(1) zero premolars; (2) one

premolar; (3) two premolars; (3) two premolars;
(4) three premolars; (5) four premolars;
• TM, top molar—(1) zero, one or two molars;

(2) more than two molars;
• BM, bottom molar—(1) zero, one or two molars;

(2) more than two molars.

Table A.2 gives the frequencies of the variables.

Table A2
Mammals’ teeth profiles �in percent, N = 66�

Categories

Variable 1 2 3 4 5

TI 15.2 31.8 13.6 39.4
BI 3.0 30.3 7.6 43.9 15.2
TC 40.9 59.1
BC 45.5 54.5
TP 9.1 10.6 18.2 39.4 22.7
BP 9.1 18.2 15.2 36.4 21.2
TM 34.8 65.2
BM 31.8 68.2

APPENDIX B: CRIME RATES IN
U.S. CITIES IN 1994

The data for this example are taken from ta-
ble No. 313 of the 1996 Statistical Abstract of the
United States. The coding of the variables is given
next:

• murder—(1) 0–10; (2) 11–20; (3) 21–40; (4) 40+;
• rape—(1) 0–40; (2) 41–60; (3) 61–80; (4) 81–100;

(5) 100+;
• robbery—(1) 0–400; (2) 401–700; (3) 701–1000; (4)

1000+;
• assault—(1) 0–300; (2) 301–500; (3) 501–750; (4)

751–1000; (5) 1001–1250; (6) 1251+;
• burglary—(1) 0–1000; (2) 1001–1400; (3) 1401–

1800; (4) 1801–2200; (5) 2200+;
• larceny—(1) 0–3000; (2) 3001–3500; (3) 3501–

4000; (4) 4001–4500; (5) 4501–5000; (6) 5001–
5500; (7) 5501–7000; (8) 7000+;
• motor vehicle theft—(1) 0–500; (2) 501–1000;

(3) 1001–1500; (4) 1501–2000; (5) 2000+.

The data along with the city codes used in Figure
12 are given in Table B1.

APPENDIX C: SCHOOL CLIMATE

A description of the variables is given next:

• A—student tardiness is a problem at school;
• B—student absenteeism is a problem at school;
• C—students cutting class is a problem at school;
• D—physical conflicts among students is a problem

at school;
• E—robbery or theft is a problem at school;
• F—vandalism of school property is a problem at

school;
• G—student use of alcohol is a problem at school;
• H—student use of illegal drugs is a problem at

school;
• I—student possession of weapons is a problem at

school;
• J—physical abuse of teachers a problem at school;
• K—verbal abuse of teachers is a problem at

school.
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Table B1
Crime rates data

City City code City City code

New York (NY) NY 3134213 Los Angeles (CA) LA 3235223
Chicago (IL) Chi 3*46343 Houston (TX) Hou 3223323
Philadelphia (PA) Phi 3232114 San Diego (CA) SD 1113223
Phoenix (AZ) Pho 3213464 Dallas (TX) Dal 3424354
Detroit (MI) Det 4546445 San Antonio (TX) SAn 2211362
Honolulu (HI) Hon 1111252 San Jose (CA) SJ 1213112
Las Vegas (NV) LV 2323333 San Francisco (CA) SF 2133253
Baltimore (MD) Bal 4445474 Jacksonville (FL) Jac 2424462
Columbus (OH) Col 2522453 Milwaukee (WI) Mil 3322244
Memphis (TN) Mem 3533534 Washington, DC DC 4246363
El Paso (TX) ElP 1213152 Boston (MA) Bos 2435245
Seattle (WA) Sea 2223373 Charlotte (NC) Cha 2325462
Nashville (TN) Nas 2425373 Austin (TX) Aus 1211262
Denver (CO) Den 2312323 Cleveland (OH) Cle 3533314
New Orleans (LA) NOr 4433444 Fort Worth (TX) FWo 3423363
Portland (OR) Por 2426375 Oklahoma City (OK) Okl 2514583
Long Beach (CA) LB 2133324 Tucson (AZ) Tuc 1314384
Kansas City (MO) KS 3536574 Virginia Beach (VA) VBe 1111131
Atlanta (GA) Atl 4546585 Saint Louis (MO) StL 4346585
Sacramento (CA) Sac 2223455 Fresno (CA) Fre 3234455
Tulsa (OK) Tul 2314323 Miami (FL) Mia 3246585
Oakland (CA) Oak 3445454 Minneapolis (MN) Min 2534573
Pittsburgh (PA) Pit 2322223 Cincinatti (OH) Cin 2523351
Toledo (OH) Tol 2522453 Buffalo (NY) Buf 3445533
Wichita (KS) Wic 2312463 Mesa (AZ) Mes 1113353
Colorado Springs (CO) Cos 1311151 Tampa (FL) Tam 3546585
Santa Ana (CA) SA 3122113 Arlington (VA) Arl 1213242
Anaheim (CA) Ana 1123223 Corpus Christi (TX) CCr 1313371
Louisville (KY) Lou 2222312 St. Paul (MN) StP 2413332
Newark (NJ) New 3346545 Birmingham (AL) Bir 4536573
Norfolk (VA) Nor 3322252 Anchorage (AK) Anc 1313152
Aurora (CO) Aur 1215252 St. Petersburg (FL) SPe 1426462
Riverside (CA) Riv 2225434 Lexington (KY) Lex 1213241
Rochester (NY) Roc 3332562 Jersey City (NJ) JC 2134414
Raleigh (NC) Ral 2113341 Baton Rouge (LO) BRo 3326584
Akron (OH) Akr 2413232 Stockton (CA) Sto 2224454

Note: The asterisk for the Rape variable for Chicago denotes a missing observation.

The four possible answers to each of the variables
are (1) serious, (2) moderate, (3) minor, and (4) not
a problem.

Table C1 gives the frequencies of the variables.

Table C1
Student response frequencies

Categories

Variable 1 2 3 4

A 2708 6264 7685 6,591
B 2611 6356 7508 6,773
C 3435 4032 5862 9,919
D 3724 5774 7425 6,325
E 3178 3462 6918 9,690
F 3392 3536 6759 9,561
G 3508 3414 5057 11,269
H 3281 2412 4786 12,769
I 2642 2180 5335 13,091
J 1811 666 2294 18,377
K 2633 3258 6150 11,207
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