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Abstract. Genotypes of infectious organisms are becoming the founda-
tion for epidemiologic studies of infectious disease. Central to the use of
such data is a means for comparing genotypes. We develop methods for
this purpose in the context of DNA fingerprint genotyping of tuberculo-
sis, but our approach is applicable to many fingerprint-based genotyp-
ing systems and/or organisms. Data available on replicate (laboratory)
strains here reveal that (i) error in fingerprint band size is proportional
to band size and (ii) errors are positively correlated within a finger-
print. Comparison (or matching) scores computed to account for this
error structure need to be “standardized” in order to properly rank the
comparisons. We demonstrate the utility of using extreme value distri-
butions to effect such standardization. Several estimation issues for the
extreme value parameters are discussed, including a lack of robustness
of (approximate) maximum likelihood estimates. Interesting findings to
emerge from examination of quantiles of standardized matching scores
include (i) formal significance is not attainable when querying a database
for a given fingerprint pattern and (ii) maximal matching probabilities
are not necessarily monotonely decreasing with increasing numbers of
fingerprint bands.

Key words and phrases: Extreme value distribution, genotyping, maxi-
mum likelihood estimation, moment estimation, tuberculosis.

1. INTRODUCTION

In recent years considerable attention has been
given to new, emerging and reemerging infectious
diseases (Institute of Medicine, 1992). The global
epidemic of human immunodeficiency virus (HIV)
demonstrates the potential impact of newly emerged
pathogens. Simultaneously, old pathogens such as
those which cause tuberculosis, cholera, plague,
dengue and yellow fever are having a profound im-
pact in various localities. In addition, mutation and
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selection are leading to drug-resistant strains of My-
cobacterium tuberculosis, enterobacteria, malaria,
pneumococci, gonococci and staphylococci.

Surveillance and applied research are two of
the four critical goals identified by the Centers
for Disease Control and Prevention (CDC) (1994)
in their response to emerging pathogens. Surveil-
lance emphasizes the detection, monitoring and
investigation of infectious diseases. These activi-
ties include conventional epidemiologic practices of
tracking trends in particular species, such as rates
of gonorrhea in a population and rates of drug resis-
tance among these cases. Applied research, which
integrates the principles and practices of molecular
biology and population genetics into these efforts,
may provide even greater insights. For example,
by using molecular epidemiologic approaches it is
possible to determine if drug resistance is simul-
taneously emerging in numerous different strains
(suggesting a need to modify antibiotic utiliza-
tion) or from the clonal dissemination of a single
strain (suggesting that efforts to interrupt disease
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transmission should be intensified). Hence, the
CDC has specifically identified “the expanded use
of molecular epidemiology in investigating emerg-
ing disease” as a central part of its response to
emerging pathogens.

1.1 DNA Fingerprints of Infectious Organisms:
IS6110 Genotyping of Tuberculosis

The vast majority of the molecular data collected
in molecular epidemiologic studies of infectious or-
ganisms take the visual form of DNA “fingerprints.”
Although these fingerprints can be generated
through a variety of techniques, we will focus on
one: restriction fragment length polymorphism. We
will also concentrate on a single infectious organ-
ism, M. tuberculosis. Other organisms for which
typing schemes have been devised, and for which
databases of corresponding genotypes have been
assembled, can potentially be analyzed analogously.

Recently, a technique has been developed that, for
the first time, provides a practical method to iden-
tify and track specific M. tuberculosis strains. This
genotyping technique is based upon the presence
of a genetic sequence known as IS6110, a 1,355
base-pair (bp) repetitive element found in vari-
able numbers and locations throughout the genome
(Figure 1). This variability is exploited to generate
strain-specific “DNA fingerprints,” that is, to geno-
type the strain. In brief, DNA is extracted from the
bacterial organism and cleaved into fragments us-
ing restriction enzymes (PvuII in Figure 1). These
fragments are then electrophoretically separated
according to size and transferred to nylon mem-
branes, which are probed to detect those fragments
containing IS6110 (Figure 1). The resulting pat-
tern of fragment or band sizes is called a restriction
fragment length polymorphism (RFLP) pattern and
is commonly known as a DNA fingerprint. Figure 2
displays a gel image of such patterns that features
fingerprints (the columns or “lanes” as numbered
at the top) corresponding to different specimens.
Replicate H37Rv laboratory strains (see Section 2)
appear on the leftmost and rightmost columns of
this figure. A standard protocol for IS6110 typing
of M. tuberculosis is described in van Embden et
al. (1993) and additional description is provided in
Salamon, Segal and Small (1998).

The use of fingerprint data for molecular epi-
demiology purposes has, to date, largely consisted
of treating sets of identical or “highly” similar fin-
gerprints as indicating transmission of infectious
disease from a common source. Thus, fingerprint
comparisons are used to decide whether or not
putative epidemiologic links exist between hosts
of the sampled infectious organisms. These links

Fig. 1. Restriction sites (circles) at which a restriction enzyme
(PvuII) cuts (“digests”) the genomic DNA are scattered through-
out the genome: each IS6110 element (rectangles) contains such
a restriction site, as well as a region to which a probe hybridizes
or binds (dark squares). Thus, digesting the genomic DNA (1) re-
sults in DNA fragments of varying lengths, some of which con-
tain the IS6110 element. These fragments are then separated
electrophoretically (2). Subsequently, a probe bound to a light-
emitting enzyme (diamonds) is hybridized to those fragments (3)
containing IS6110. The resultant light pattern corresponds to
the lengths of fragments (band sizes) containing IS6110 and is
recorded on photographic X-ray film (4) and later scanned into a
computer image file.

are further used to evaluate the extent of recent
transmission and the emergence of drug-resistant
or virulent strains. This program is only plausible
given a background of diverse fingerprints.

To properly differentiate fingerprint comparisons
we need to operationalize what constitutes “highly”
similar fingerprints. Such assessments make re-
course to band-matching algorithms that yield a
matching score as detailed later (Section 2). Basi-
cally, such algorithms use error characteristics of
the fingerprints to effect alignment of a fingerprint
pair, with the subsequent count of corresponding
bands (i.e., equally sized fragments) defining the
matching score. However, because of the obvious
dependence of such raw counts on the numbers
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Fig. 2. A gel image depicting IS6110 fingerprints of differing
tuberculosis strains: the far left and right fingerprints correspond
to replicates of the H37Rv laboratory strain.

of bands in the fingerprints being compared, it is
necessary to standardize these matching scores.

This need becomes apparent from consideration
of identical or perfectly matched fingerprints. In
essence, a fingerprint is a vector of band sizes.
The length of the vector is the number of bands in
the fingerprint. The components of the vector (i.e.,
band sizes) are estimated using reference mark-
ers of known size run on the same gel. A perfect
match entails that the number and sizes of bands
in both fingerprints coincide. With simple similar-
ity measures, such as the Dice coefficient (which is
just the proportion of matching bands), there is no
differentiation between perfect agreement between
two 5-, two 10-, or two 20-band fingerprints. This
is contrary to the varying information content such
perfect agreement represents.

Trying to effect standardization using theoretic
models of the evolutionary processes underlying the
fingerprints themselves is problematic because of
the complexity of these processes. Beyond this, each
individual fingerprinting technology would require
its own specialized model development. Accordingly,
we develop an empiric approach that provides a gen-
eral prescription for standardizing matching scores.

Fingerprint data are being used extensively in
part because of the advantages they have over other
forms of genotyping. For example, relative to DNA
sequence data, fingerprints are technically simple
and inexpensive. Consequently, they can be used
in epidemiologic studies with large sample sizes.
Fingerprints can also simultaneously sample from
throughout the organism’s genome and so assess
genetic variation at a variety of genomic locations.
Finally, use of fingerprint data avoids concerns sur-
rounding DNA sequence alignment.

However, each of these advantages comes at a
cost. The technical simplicity results in several
sources of experimental error which, in part, spawn
a different set of alignment difficulties. The sensi-
tivity to a multiplicity of genetic variations makes it
impossible to identify specific genetic mechanisms
underlying different fingerprint patterns. And, of
foremost interest here, analytical approaches to
this type of data are relatively primitive. This pa-
per seeks to develop methodology for comparing
fingerprints in the face of experimental error, as
well as for standardizing the resultant matching
scores. We next provide contrasts with the more
developed area of DNA fingerprinting for forensic
purposes, which demonstrates the need to de-
vise new approaches for fingerprinting infectious
organisms.

1.2 Contrast with Forensic Uses of
DNA Fingerprints

As noted, to date there has been little investi-
gation of statistical methods for infectious disease
fingerprint data. This contrasts with the consider-
able attention directed toward the nominally related
field of human DNA fingerprinting for forensic sci-
ence and as evidence in criminal cases; see, for ex-
ample, Roeder (1994).

However, the applicability of forensics (F) find-
ings to molecular epidemiology (ME) of emerging
pathogens is limited for the following reasons:

(i) The use of multiple single-locus probes (F) con-
trasts with the use of a single multiple-locus
probe (ME). In a number of infectious disease
fingerprinting schemes, including that used
to type M. tuberculosis repetitive genetic ele-
ments found at multiple locations throughout
the genome are exploited; see Figure 1.

(ii) A huge number of individual genotypes (essen-
tially all are unique) (F) contrasts with a much
smaller number of genotypes with many mem-
bers (ME).

(iii) The genetics for a diploid organism (two sets of
complete genomes per organism) with sex and
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other recombination events decreasing linkage
disequilibrium (i.e., weak association between
genetic variants at different genomic locations)
(F) contrasts with a haploid (single genome
copy) system with little or no recombination
resulting in a clonal population structure and
hence a very high level of linkage disequi-
librium (strong associations between genetic
variants at different locations) (ME).

(iv) There exist differing ascertainment concerns.
(v) Interest solely in matching (F) raises issues dis-

tinct from those raised by interest in clusters
and relatedness of patterns (ME).

Several of these items make analysis more complex
in the molecular epidemiology setting. Still, a gel is
a gel, and so commonalities with regard to experi-
mental error exist as noted in Section 2.

1.3 San Francisco Database and Global Migration

During the 1990s a concerted effort has been
made to study tuberculosis in San Francisco. Cor-
responding databases have been assembled. These
data include extensive epidemiologic (e.g., age, gen-
der, race, country of birth) and clinical (e.g., organs
involved, therapy, x-ray, culture and AFB smear re-
sults, HIV status, antimicrobial susceptibility) data
on virtually all 1,874 microbiologically confirmed
cases of tuberculosis reported in San Francisco
during the years 1991–1996. We have collected
and performed RFLP analysis on 1,577 (84%) of
these cases. Of these, we analyze here the 1,335
(85%) fingerprints dating from mid-1992, laboratory
techniques being less stable prior to this date.

Our first comparisons of IS6110 based RFLP pat-
terns used Whole Band Analyzer (Genomic Solu-
tions, Ann Arbor, Michigan), a commercially avail-
able UNIX-based system, to digitize and store these
patterns. This system, which did not utilize informa-
tion on band size errors, was used to identify simi-
lar patterns which must then be visually compared
to determine identical matches (Woellfer, Bradford,
Paz and Small, 1995). This is extremely laborious.
Further, we have now exceeded the logistical limit
of this approach and are unable to perform compar-
isons between large data sets, such as comparing all
strains from San Francisco and Latin America.

Indeed, the focus of molecular epidemiological
studies has expanded from studies of the trans-
mission of M. tuberculosis in small, local outbreaks
to evaluating its global migration. As outlined
by Small (1995), this shift has resulted from
the coupling of substantial geographic dispari-
ties in both overall tuberculosis case rates and
multidrug-resistant tuberculosis with the dramat-

ically increased mobility of the world’s population.
Public health prevention efforts require data on the
nature and extent of disease spread. Consequently,
the technical challenge has shifted from the com-
parison of a few DNA fingerprints to the analysis of
thousands of patterns. Accordingly, a scoring algo-
rithm has been developed (Section 2) to automate
pattern comparisons. In Section 3 we describe ap-
proaches for standardizing these scores. Section 4
presents results of applying these methods to the
San Francisco data and also makes external com-
parisons with fingerprints from Orizaba, Mexico.
Section 5 offers concluding discussion.

2. AUTOMATED ALIGNMENT AND SCORING

We briefly describe some salient features of an au-
tomated algorithm for effecting fingerprint compar-
ison; details are given in Salamon, Segal and Small
(1998). The starting point for algorithm develop-
ment was investigation of errors in fingerprint data.
An empirical investigation of a laboratory tuberculo-
sis strain (12-banded H37Rv), for which more than
100 replicate fingerprints were available, revealed
the following:

1. Between-gel comparisons are subject to larger er-
rors than within-gel comparisons (Figure 3), as
would be anticipated.

2. For band sizes less than or equal to 5 kilobases
(kb), error is proportional to band size (Figure 3).
Such band sizes comprise 90% of the M. tubercu-
losis bands.

Fig. 3. Error in band size is proportional to band size: the inter-
vals around the means are ±2 standard errors.
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Fig. 4. Smoothed scatterplot matrix showing strong positive dependence among the five smallest H37Rv bands.

3. Error in one band is highly, and positively, cor-
related with error in measuring other bands in
the same fingerprint; for example, if band 1 of
a particular fingerprint is larger than average
for H37Rv, then the other bands also tend to be
larger than average. This positive correlation is
displayed for the five smallest H37Rv bands in
Figure 4.

These findings have also been documented in
the forensic fingerprinting literature (Sudbury,
Marinopoulos and Gunn, 1993; Eriksen and Svens-
mark, 1993).

That we observe proportional error together with
correlated band size errors invites alignment of
pairs of fingerprints by initially scaling the set of
band sizes of one fingerprint to those of the other.
The matching score is then obtained by counting
the number of mutually closest bands within a pre-
scribed (proportional) size difference. This approach

requires two input parameters: (i) a range of scal-
ing limit which restricts how much one fingerprint’s
bands can be inflated with respect to another fin-
gerprint and (ii) a proportional error threshold for
decreeing scaled bands to match or not. As briefly
indicated below, the replicate patterns provide a
basis for specifying these parameters. The applica-
bility of the algorithm hinges on the above error
characteristics. These require empiric assessment
for a given combination of typing system and or-
ganism. They are not inherently determined by the
biology of the organism.

For IS6110 typing of M. tuberculosis, the repli-
cates derive from running each gel with two or three
H37Rv samples. Let the total number of replicates
be r. All N = r�r − 1�/2 pairwise comparisons of
these replicates are performed, noting whether com-
parisons are between or within gels. Being repli-
cates, we assume that each fingerprint has the same
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number of bands, B. Let mi�b be the size (in kilo-
bases) of band b (assigned from smallest to largest)
of fingerprint i. Alignment of two replicate finger-
print patterns is effected using the following least
squares criterion. We minimize

Q�βij� =
B∑
b=1

(
log�mi�b� − log�βij ∗mj�b�

)2
with respect to the scaling factor βij by which finger-
print j is aligned to fingerprint i. Log-transformed
band sizes are used to reflect the fact that measure-
ment error is proportional to band size. It is not
critical whether scaling is applied before (as here)
or after log transformation. The readily computable,
closed-form solution for βij is

β̂ij = exp

(
1
B

B∑
b=1

log

(
mi�b

mj�b

))
�

Denote the scaled band sizes as m∗: if fingerprint j
is scaled to fingerprint i then m∗

i�b = mi�b and m∗
j�b =

βij ∗ mj�b. Comparing scaled fingerprints i and j
we calculate band-specific absolute and proportional
differences:

di�j�b� = �m∗
i�b −m∗

j�b�
and

ri�j�b� =
di�j�b�

�m∗
i�b +m∗

j�b�/2
�

The distribution of corresponding means (e.g.,
r�b� = �1/N��r

i=1
�r

j>i ri�j�b�) over all pairwise
comparisons is used for setting error tolerances for
declaring specific bands b to match as described
in Salamon, Segal and Small (1998). Throughout,
consideration is given to whether comparisons are
between or within gels.

We now can discuss how to compare fingerprints
possessing differing numbers of bands. The distri-
bution of fitted scaling factors (β̂ij’s) (again over all
pairwise comparisons) is used to establish the range
for which alignment is attempted. Such alignment
is effected by incrementally “sliding” fingerprints
past one another and, in accord with the tolerances,
counting the number of band matches. Setting the
number of increments to 100 gives results closely
agreeing with visual matching. The reported match-
ing score is the maximum count over the 100 com-
parisons.

Numeric results and further details of the algo-
rithm, including threshold settings that accommo-
date bands larger than 5 kb are given in Salamon,
Segal and Small (1998). This “align-and-count” al-
gorithm has proven invaluable for avoiding labor-
intensive visual inspection and allows in excess of

50 pairwise comparisons of IS6110 fingerprints per
second on a SparcStation 20 or on low-end Pentium-
based Unix platforms. The resulting comparisons
are consistent with the labor-intensive matching in
the San Francisco data. Furthermore, the align-and-
count method has allowed comparison of San Fran-
cisco fingerprints with fingerprints from other local-
ities, as illustrated in Section 4.

3. STANDARDIZING FINGERPRINT MATCHES

Application of the align-and-count algorithm
yields a score: in comparing a fingerprint with
m bands to another with n bands we observe
S = Sm�n matches. How we interpret and contrast
these scores is important because, for example,
when appropriately standardized they provide sim-
ilarity measures which, in turn, serve as inputs
to clustering algorithms used in tracing disease
transmission. Questions of the following flavor
arise:

• What is the probability, due to chance, that we
would observe 8 matches when comparing two 8-
banded patterns?

• Is it more surprising to observe 11 matches from a
comparison of 13- and 15-band fingerprints than
7 matches from comparing 8- and 9-band finger-
prints?

Addressing these questions requires distributional
results for the matching scores. This will be the
case regardless of the algorithm used to calculate
such scores or, indeed, the nature of the genotyp-
ing system employed and the organism being stud-
ied. Thus, the approach to follow has much wider
applicability than solely align-and-count scoring for
IS6110 typing of tuberculosis.

Directly obtaining such results is difficult ow-
ing to the complexities of the fingerprint data and
the align-and-count algorithm. For instance, mod-
eling the tendency for band size to be positively
correlated within fingerprints and allowing for pro-
portional error thresholds that vary by size seems
prohibitive. More difficult is trying to model the
underlying molecular biologic dynamics that pro-
duces fingerprint bands as a precursor to modeling
(band) matching scores. This is because even a sim-
ple single base mutation that creates or destroys
a restriction site can arbitrarily change the pres-
ence, absence, or size of a band. Far more complex
changes affecting both the restriction sites and the
IS6110 elements, especially transpositions thereof,
would need to be modeled. Because of these bar-
riers, we proceed by a combination of empiricism,
simulation and analogy, the analogy being to the



DNA FINGERPRINTS OF INFECTIOUS ORGANISMS 33

more tractable and developed world of sequence
comparisons that is described next.

3.1 Sequence Comparison Scoring

The advent of rapid gene sequencing technology,
the repository of resultant sequences in assorted
databases and the subsequent “querying” of these
databases for similarities to a new, target sequence
has generated considerable statistical interest, es-
pecially with regard to assessing significance of the
similarity scores so obtained. Recent overviews in-
clude Waterman and Vingron (1994) and Altschul
and Gish (1996). Sequence data consists of strings
of letters: for DNA sequences these come from
the 4-letter alphabet (A, C, T, G) of nucleotides or
bases, whereas protein sequences use the 20-letter
alphabet of amino acids. Null characters are often
included in the sequences to represent insertions
or deletions. Given two sequences, algorithms ex-
ist (e.g., Smith and Waterman, 1981) for optimally
aligning them. An optimal alignment consists of
segments of the respective sequences that maximize
a score function computed by totaling (i) matching
scores for each pair of aligned letters and (ii) gap
scores for each instance where a null character is
aligned with a letter. We briefly summarize some
relevant results on significance of optimal align-
ment scores, concentrating, for simplicity, on the
case where gaps are not allowed.

Let s�x�y� be the score for aligning letter x with
letter y. For proteins, the scores may derive from
structural or physicochemical properties. The na-
ture of the optimal alignment depends critically on
whether the expected score for a pair of randomly
chosen letters is positive or negative. A positive ex-
pected score results in so-called global alignment:
there is, on average, no penalty for accumulating
additional mismatched letters so that the maximal
score will correspond to virtually the entire shorter
sequence. A negative expected score gives rise to the
more interesting case of local alignment, on which
we now focus. Expectations here, and distributional
results to follow, are often based on assumptions
that the letters are deterministic or iid. However,
in efforts to achieve greater realism with regard to
actual sequences, generalizations to Markov depen-
dence have been made (Dembo and Karlin, 1991).

Let the maximal alignment score from comparing
two random sequences of lengths m and n be

Sm�n = max
i�j�H

H−1∑
h=0

s�xi+h� yj+h��

where the maximum is over all possible starting po-
sitions �i� j� and all possible alignment lengths H.

Then a variety of analytic and empiric studies show
that, for m and n sufficiently large, the distribution
of Sm�n is well represented by an extreme value dis-
tribution with cumulative distribution function

FS�s� = Pr�Sm�n ≤ s = exp�− exp�−λ�s− u����(1)

The parameters u and λ are termed the characteris-
tic value and decay constant and correspond to loca-
tion (mode) and inverse scale, respectively. Their es-
timation has been addressed using a variety of data
and estimators. Among types of data considered are
permuted or shuffled sequences, model-generated
sequences and sequence databanks (these are of-
ten edited to exclude sequences known to be highly
homologous). We discuss estimators below. Given
parameter estimates, significance assessments for
the comparison of either a pair of aligned sequences
or, following some adjustment for multiple compar-
isons, a target sequence aligned to all sequences in
a databank are readily obtained. For example, the
100�1 − p� quantile S1−p is estimated by

S1−p = û− λ̂−1 ∗ log�− log�1 − p���(2)

which is reasonably approximated by S1−p = û −
λ̂−1 ∗ log�p� for p ≤ 0�1.

There are numerous software packages imple-
menting a variety of alignment strategies and
significance scoring assessments. Even though
some refinements to significance assessment have
been touted, the above extreme value theory still
remains the workhorse and basis for most appli-
cations. A recent collection of papers, illustrating
some advances, is provided by volume 266 of Meth-
ods in Enzymology (1996). Here, we are interested
in applicability of these sequence-based ideas and
results to fingerprint comparisons, and so we omit
discussion of additional fine points.

3.2 Contrast and Analogy: Sequences
and Fingerprints

A number of parallels between sequence and
fingerprint matching scores suggest that extreme
value distributional results from the former might
pertain to the latter. Of course, such an assumption
requires stringent checking. First, we outline the
correspondences.

Alignment and scoring. At first blush, it appears
that there are consequential differences between the
settings with regard alignment and scoring, but this
is not the case. Typically, for sequences, several hun-
dred base pairs are compared, making appeal to
large sample results reasonable. Fingerprints are
aligned by incrementally sliding them past one an-
other. As the score is the maximum over each of
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these candidate alignments, and the number of in-
crements is on the order of 100, we may again an-
ticipate large sample results to obtain.

Sequence substitution scores are constructed to
have negative expected value, thus favoring the
emergence of local alignments. Further, proper-
ties of these scores feature in some derivations of
extreme value asymptotics. Now, while it is the
case that the expected value of the matching score
scheme used for fingerprints (1 for bands within
the prescribed tolerance, 0 otherwise) is positive,
the distinction between local and global alignments
for fingerprints is moot. The interest is in matching
entire fingerprints, not portions thereof. Addition-
ally, replacing the zero score with, say, −5 would
not change which alignment scored maximally but
would yield negative expected values.

Null model and data generation. With sequence
data, the parameters of the extreme value distribu-
tion are often obtained from the set of scores from an
artificial “null” databank. Using the resultant distri-
bution for significance assessment is then deemed
valid (Mott, 1992) because the query sequence will
be unrelated to the vast majority of databank se-
quences. Generation of such databanks is either by
way of (i) simulation or (ii) permutation. It is pos-
sible to incorporate varying degrees of local struc-
ture by using, for (i), prescribed probabilities not
just for individual nucleotide or amino acid occur-
rence but also for joint events, and, for (ii), permu-
tations within blocks of prescribed length. Alterna-
tively, sets of scores from an appropriate (edited)
referent databank can be used.

For fingerprints, artificial data generation is more
complex. As permutation is not an option, we out-
line a simple simulation scheme below. However, it
is apparent that this does not capture some essen-
tial features of fingerprints. Rather than trying to
construct more intricate data-generation schemes,
we revert to the use of referent databanks and re-
sampling, with subsequent discussion (in Section 4)
of editing issues.

To generate fingerprints we need a model. For
simplicity, we base this on restriction site occur-
rence. The following is a highly simplified formu-
lation:

1. Assume that the PvuII (CAGCTG) restriction
sites (see Figure 1) occur at a constant rate
outside the insertion sequence IS6110.

2. Assume a GC content of 65% (as observed), giving
the probability of the restriction site sequence as
�0�35/2�2�0�65/2�4 = 0�000342.

3. Assume that band sizes are distributed as a
(truncated) exponential with rate parameter

equal to the probability in item 2. The trunca-
tion arises because we cannot observe any band
sizes less than approximately 900 bp.

It is very easy to efficiently generate band sizes
according to the above model. We can then simulate
fingerprints with varying numbers of bands. Figure
5 displays the empiric and model (both with and
without truncation) band size distributions. While
the model rate parameter (0.000342) agrees very
closely with its empiric estimate (0.000344), there
are obvious regions of lack of fit. These can in part
be ascribed to preferred insertion sites of IS6110.
These are regions of the genome partial to receiv-
ing IS6110. This results in the observed multiple
modes. Also, second-order characteristics such as
positive dependence between band sizes within fin-
gerprints are lost. Remedying these and other de-
ficiencies would require a highly contrived model.
For these reasons, we emphasize use of resampling
schemes as described in Section 4.

3.3 Extreme Value Parameter Estimation

Given a set of matching scores there are essen-
tially three ways of estimating the parameters of
the extreme value distribution: (i) moments, (ii)
maximum likelihood and (iii) regression methods.
The latter exploits hypothesized relationships be-
tween the parameters and the sample sizes, m�n, of
the items (sequences, fingerprints) being compared
(numbers of residues, number of bands, respec-
tively). For example, in (1) one could assume that
u grows linearly in log�mn� whereas λ is constant.
Here, by virtue of the resampling schemes used,
we have considerable data on conditional (on m�n)
comparisons, and so focus on moment and likeli-
hood estimation, thereby avoiding the regression
assumptions. We then examine the behavior of the
resultant estimates.

Method of moments estimators are given by

λ̃ = π
/√

6 var�S��(3)

ũ = S̄− γ/λ̃�(4)

where γ is Euler’s constant (0.577...) and S̄� var�S�
are the sample mean and variance, respectively. Be-
cause these estimators are one-to-one continuous
functions of all (two) parameters they are consis-
tent (e.g., Bickel and Doksum, 1977). Furthermore,
they are obviously very easy to compute. Efficiency
considerations are addressed in the Discussion (Sec-
tion 5).

The density corresponding to (1) is fS�s� =
λ exp�−λ�s− u�� exp�− exp�−λ�s− u���. The atten-
dant maximum likelihood estimates, û� λ̂, based on
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Fig. 5. Histogram of band sizes for the San Francisco database: the heavy curve is the fitted truncated exponential model; the light
curve is from an untruncated exponential model. For each model the rate parameter corresponds to the probability of observing the PvuII
restriction site sequence assuming a GC content of 65%.

a sample of scores S1� S2� � � � � Sk satisfy

k∑
i=1

exp �−λ̂�Si − û�� = k�(5)

k∑
i=1

�Si − û� ∗ �1 − exp �−λ̂�Si − û��� = kλ̂−1�(6)

Numerical solution is required. However, by adopt-
ing an approximation due to Kimball (1956), itera-
tion may be avoided. The approximation works as
follows. Substituting (5) in (6) yields

λ̂−1 = S̄− k−1
k∑
i=1

Si exp �−λ̂�Si − û��

= S̄+ k−1
k∑
i=1

Si log�F̂�Si���
(7)

where F̂�Si� is the estimated cdf which may be
in turn be estimated from the data via the em-
piric distribution function using the order statis-
tics S�1�� S�2�� � � � � S�k�. Approximating the expected
value of F̂�S�i�� by the appropriate (continuity cor-
rected) beta mean then gives the readily computable
expression

λ̂−1 = S̄+ k−1
k∑
i=1

S�i� log
(
i− 1/2
k+ 1/2

)
�(8)

Some comments on the maximum likelihood es-
timators are warranted. First, they are biased, but
the biases in û and λ̂ are compensatory with respect

to quantile estimation (see (2)). Further, the biases
are negligible when dealing with the large sam-
ples afforded by resampling. This is evident from
the O�k−1� bias correction formula given by John-
son and Kotz (1970). More consequential, however,
is a lack of robustness reflected by the very large
weight attached to small order statistics. An illus-
tration of this effect is provided in the next section.
This concern was presaged by Kimball (1956), be-
fore robustness considerations were in vogue.

3.4 Alternative Approaches to Standardization

Rather than relying solely on standardizations
provided by extreme value distributions, we con-
sider some alternate distributions. These include
continuous (gamma) and discrete parametric den-
sities. We also explore nonparametric methods. It
is important to remain mindful of the goal of stan-
dardization: to readily provide a ranking of match-
ing scores irrespective of the numbers of bands in
the fingerprints being compared.

Gamma distribution. The two-parameter gam-
ma distribution has density

fS�s� =
sα−1 exp�−s/β�

βα �α�
where α�β > 0 and  �·� is the gamma function.
Given a sample of scores S1� S2� � � � � Sk as above,
let Y = log�S̄�−k−1�k

i=1 log�Si� (Y = log(arithmetic
mean/geometric mean)). Then an approximate MLE
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for α (Thom, 1968) is

α̂ = 1 +√
1 + 4/3Y
4Y

�

Bias corrections for α̂ exist, but these make little
difference in the present context (α̂ ≥ 10). Given α̂,
the MLE for β is β̂ = S̄/α̂. Clearly, these estimates
are easily computed.

The intended applications also require ready com-
putation of quantiles and tail probabilities. This can
be accomplished by adapting the Wilson–Hilferty
transformation to the two-parameter gamma distri-
bution:

S1−p = β̂α̂

(
"−1�1 − p�

3
√
α̂

+ 1 − 1
9α̂

)3

�(9)

where "�·� is the standard normal cdf.
Given the similarity in their underlying shapes

over a range of parameter values, we anticipate con-
cordance between gamma and extreme value fits.
Indeed, this transpires for moderate m�n�≤ 10�.
But the two-parameter gamma tends to normality
as α → ∞, which occurs here for m�n = 15�20. De-
spite the gamma thus producing density estimates
that are appreciably more symmetric than those
provided by extreme value density estimates, there
is nonetheless reasonable agreement between quan-
tile estimates obtained with either family. There-
fore, similar conclusions result from either paramet-
ric model.

Discrete distributions. Given the discrete sup-
port (�0�1� � � � �min�m�n�) of Sm�n, standardizing
via discrete probability mass functions is indicated.
Simplistic arguments can be proffered to justify
use of binomial or hypergeometric families. How-
ever, perhaps due to this simplification (e.g., no
accommodation for within-fingerprint dependence),
generally poor tail fits were obtained. These were
not improved by various generalizations. For ex-
ample, attempting to account for differing band
numbers in the fingerprints being compared by es-
timating the binomial sample size did not improve
fit and yielded estimates close to min�m�n�. Fur-
ther, attempting to capture putative extra-binomial
variation (arising from heterogeneity of matching
probabilities) via, say, beta-binomial formulations
failed due to Sm�n being underdispersed for most
�≈ 80%� m�n combinations. Given the success of
the continuous parametric families in meeting the
standardization objectives, discrete alternatives are
not pursued further.

Nonparametric approaches. Rather than pre-
scribing parametric families, nonparametric ap-
proaches to standardization can be attempted. Fig-
ure 6 displays surfaces of Pr�Sm�n = min�m�n�−k

against m and n for k = 0�1�2�3 and 8 ≤ m ≤ n ≤
23. Again, given the objectives of a unified (for all
m�n and for k as given), accurate and readily com-
putable standardization for the matching scores,
both the irregular form of these graphs and results
from using additive or local regression models (not
shown) indicate that nonparametric approaches are
less successful here than the simple parametric
families employed and so will not be considered
further.

4. RESULTS

Our results have a largely graphical flavor. Af-
ter presenting a series of figures, we describe in
the Discussion further implications of the find-
ings. The basis for the various analyses are sets
of align-and-count matching scores obtained ei-
ther from simulation using the model from Section
3.2 or from resampling from the San Francisco
database. This resampling was performed in a vari-
ety of ways: (i) individual band sizes were sampled
and fingerprints with differing numbers of bands
formed thereof; (ii) individual fingerprints were
sampled; (iii) distinct individual fingerprints were
sampled. In each instance sampling is with replace-
ment. The idea behind the restriction (“editing”)
to distinct fingerprints in scheme (iii) is to exclude
epidemiologically linked fingerprints. If the iden-
tical fingerprints so excluded arose from direct
transmission of tuberculosis, their inclusion would
distort the target “null” referent population. This
distortion would conservatively bias significance
assessments for matching a new fingerprint to the
existing database. However, as our objectives are to
assess (tail) adequacy of the extreme value distri-
bution and examine attendant statistical issues, we
focus primarily on scheme (ii) and note that results
from schemes (ii) and (iii) were very similar. As
discussed below, we believe this similarity derives
from scheme (iii) only minimally accounting for epi-
demiologic linkage. Regardless of the scheme used,
large datasets (sample sizes of 105) were generated.
The align-and-count algorithm was then used to
compute matching scores for all pairwise compar-
isons, distinguishing where applicable (schemes (ii)
and (iii)) between intragel and intergel comparisons
by using differing error tolerances.

Figure 7 displays line densities (histograms are
not used, for clarity) for the number of matches cor-
responding to simulated data (“truncated exponen-
tial”) and resampling schemes (i) and (ii) for the case
of comparing two eight-banded fingerprints. Super-
imposed are extreme value fits (based on moment
estimation) corresponding to scheme (ii) (“resam-
pled fingerprints”). The agreement, where it matters
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Fig. 6. Empirical values of Pr�Sm�n = min�m�n�−k against m and n for k = 0�1�2�3 and 8 ≤ m ≤ n ≤ 23� the four panels correspond
to the four values of k.

in the right (upper) tail, is excellent. Such accurate
approximation of the right tail also holds for the
simulated and scheme (i) densities. The stochastic
ordering of the densities is as anticipated. We ob-
serve more matching when resampling fingerprints
because this is the only scheme that captures the
positive dependence between bands within a finger-
print. That the simulated data are slightly stochas-
tically smaller (less matching) than the resampled
bands is simply due to the resampling approach us-
age of a finite set of band sizes.

We now focus solely on scheme (ii) and turn next
to contrasting extreme value (likelihood and mo-
ment) and gamma fits. Revisiting the same eight-
versus eight-band fingerprint comparison (Figure 8)
we see near identical density estimates for the two
extreme value estimators, attributable to the large

sample sizes as noted in Section 3.3. The gamma
distribution does worse in the right tail but better
in the left tail.

We did not assume, however, that good fit or es-
timator concordance pertained irrespective of the
numbers of bands in the fingerprint comparisons.
Figure 9 shows (a) 10-versus 10-band, (b) 10-versus
15-band, (c) 15-versus 15-band and (d) 20-versus
20-band comparisons. In (a)–(c) the usefulness of
the fitted extreme value densities in capturing the
right tail is visually apparent. The gamma fits are
comparable, with perhaps their (large sample) ten-
dency toward symmetry producing poorer right tail
fits [cf. (c), (d)]. But, in (d) (20 vs. 20) the tail ap-
proximation is considerably poorer. The differences
between extreme value moment and likelihood es-
timates are also more pronounced. This behavior is
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Fig. 7. Densities of align-and-count matching scores for two eight-band fingerprints corresponding to differing fingerprint generation
schemes (see text): the fitted extreme value density (solid) is based on resampled fingerprints.

attributable to the left tail mass evident in the em-
piric density. As noted above, the MLE (8) attaches
very large weight to small order statistics. The “ex-
cess” left tail mass itself results from there being
few 20-band patterns (21 distinct) in the database
so that the paucity of matches between select pairs
emerges irrespective of how much resampling is
performed. Further, as discussed below, relatedness
among the few high band number patterns means
that the mode and right tail are inflated, accentu-
ating the left tail mass. The smoother, unimodal
empiric densities obtained for the other compar-
isons reflect more diversity, for example, 80 distinct
10-band patterns.

To gain a better overview of extreme value and
gamma fits to all possible (pairwise) fingerprint
comparisons we next examine quantile estimates as
a function of the number of bands constituting the
comparison. Figure 10 displays 95% quantile esti-

mates for both gamma and extreme value moment
estimators according to (9) and (2), respectively.
Again, there is little difference between the esti-
mation methods. This also holds for extreme value
quantile estimates based on maximum likelihood
estimates. So, focusing on extreme value moment
estimation, Figure 11 shows 95%, 99% and 99.9%
quantiles versus the minimum of the number of
bands in the two fingerprints being compared. Two
interesting features emerge from this plot. The first
concerns achievable significance levels for these
sorts of comparisons. The maximal score obtain-
able is equal to the minimum of the number of
bands, realized when all bands of the fingerprint
with fewer bands match corresponding bands of
the other fingerprint. Such scores are depicted
by the 45◦ line. As is apparent, few comparisons
achieve the 99% level, and none attain the 99.9%
level. While we are not concerned with p-values
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Fig. 8. Extreme value and gamma densities for two eight-band fingerprints: the histogram depicts the empiric discrete density.

per se, this is consequential from the perspective
of invoking significance assessments when match-
ing a fingerprint to a (large) database thereof. The
need to accommodate multiple testing corrections,
no matter how effected, will result in levels not
reaching conventional goals, as is subsequently
demonstrated.

Another finding pertains to the curvature of the
smoothed quantile estimates, which is seen more
clearly by restricting to comparisons of fingerprints
with equal numbers of bands (not shown). The
implications of this curvature are somewhat non-
intuitive: more “significant” results are attainable
when comparing two 15-band fingerprints than for
two 20-band fingerprints. Initially, we attributed
this result to precision losses deriving from band
density within a fingerprint becoming too high:
at some point matching within the prescribed tol-

erances becomes inevitable, leading to impaired
resolution. However, investigation of precision phe-
nomena using resampled bands revealed no such
degradation (i.e., no curvature) out to 30 bands
per fingerprint, a higher number than arises with
tuberculosis. As the behavior of the two resam-
pling schemes is the same in terms of precision,
the explanation for the loss when using finger-
print resampling lies elsewhere. We have observed
groups of visually similar fingerprints among high
band number samples in the San Francisco data.
That these are nonidentical limits the effective-
ness of scheme (iii) above. Furthermore, high band
number samples are more frequent among foreign
born (relative to U.S.-born) subjects. The develop-
ing countries so represented have far higher rates
of recent transmission. This all suggests epidemi-
ologic linkage of these high band number strains
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Fig. 9. Extreme value and gamma densities for various band comparisons: the legend is as for Figure 8.

which, in turn, results in the observed curvature by
(i) inflating the estimate of the mode u (i.e., there is
more matching), which in turn inflates the quantile
S1−α according to (2), and (ii) increasing variability
(proportional to λ−1 by (3)) by reducing the number
of distinct fingerprints. For comparison, there are
52 distinct 15-band fingerprints and, as noted, only
21 distinct 20-band fingerprints.

Figure 12 presents sample moments as functions
of log�mn�. As developed in the sequence setting,
the simple theoretic forms of these relationships can
be used as a basis for extreme value parameter es-
timation and as a diagnostic. In particular, under
an extreme value distribution, the mean grows lin-
early in log�mn� while the standard deviation is
constant. While agreement with the theoretic be-
havior is only passable, it is qualitatively compara-
ble to that obtained in the sequence setting (Mott,
1992). Note that, as in Altschul and Erickson (1986),

we have restricted attention to large (> 4.5) values
of log�mn�. These relationships permit estimation of
global extreme value parameters by, say, nonlinear
least squares. Here global means unconditional on
the specific numbers of bands being compared. This
offers the considerable benefit of avoiding simula-
tion or resampling of the (numerous) band number
specific comparisons.

We illustrate this and other points by comparing
a collection of 99 fingerprints obtained in Orizaba,
Mexico, with the San Francisco database. While
the align-and-count algorithm allowed for rapid
determination of all 99 × 1,335 = 132,165 match-
ing scores, for the present purposes we focus on
comparisons between the sole 15-band fingerprint
from Orizaba with the 808 San Franciscan finger-
prints having between 10 and 20 bands inclusive,
yielding 808 matching scores S15�n� n = 10� � � � �20.
These were standardized using the extreme value
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Fig. 10. Comparison of gamma and extreme value (moments) 95% quantile estimates: the individual symbols correspond to distinct
values of max�m�n� holding min�m�n� constant; The straight line represents the maximum achievable score which is the minimum of
the two band numbers being compared.

distribution. Moment estimation made recourse to
fitting cubics [in log�mn�] to the (resampled) means
and standard deviations in Figure 12 and plugging
into (3) and (4). The resulting matching probabil-
ities are displayed in Figure 13. The (somewhat
arbitrary) selection of the 15-band Orizaban finger-
print for illustrative purposes was based on the fact
that it was the only fingerprint with a unique, yet
moderate, number of bands.

Interesting findings include the following: (i)
the “best” overall match corresponds to a 13-
banded San Franciscan fingerprint with S15�13 = 12
and Pr�S15�13 = 12 = 0�009 as compared to
the best match with any 15-banded San Fran-
ciscan fingerprint for which S15�15 = 13 and
Pr�S15�15 = 13 = 0�012; (ii) correcting for the
large number of comparisons, no matter how ac-
complished, would yield null results from a formal

significance perspective—this remains so even if
we were a priori to restrictively limit comparisons
to the 52 distinct 15-banded San Franciscan finger-
prints; and (iii) using the probabilities as a means
for ranking as a prelude to further investigation re-
veals the following demographic information for the
top three matches: a U.S. born white, a Honduran-
born Hispanic and a Guatemalan-born Hispanic.
Further follow-up would involve contact tracing.

5. DISCUSSION

The utility of genotyping tuberculosis, via DNA
fingerprinting, has been widely demonstrated.
Studies include investigation of outbreaks and
multidrug-resistant strains (Edlin et al., 1992),
transmission dynamics (Small et al., 1994) and lab
cross-contamination (Small et al., 1993). Much of
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Fig. 11. Moment estimators for select quantiles: straight line and individual symbols as in Figure 10.

this work was done without recourse to the more
careful alignment and assessment methods de-
scribed here. So, we now consider the utility of such
methods and consequent “added-value” in light of
the above results.

We are not advocating the use of probabilities de-
riving from the fitted distributions for formal test-

ing of fingerprint relatedness (more closely related
organisms are those that have a shorter chain of
transmission between them). Aside from all the as-
sumptions and abuses posed thereby, as illustrated
by the achievable significance plots and the Orizaba
comparisons, such testing would only yield null re-
sults when multiplicity considerations were accom-
modated. Rather, the probabilities can be used as
a means of ordering and investigating fingerprint
relatedness. This usage corresponds to that advo-
cated for sequence significance assessments (Water-
man and Vingron, 1994).

As noted by a referee, a number of additional fac-
tors can contribute to the lack of achievable signif-
icance levels. These include (i) the number of dis-
tinct fingerprints constituting the database(s), (ii)
epidemiologic linkage of these fingerprints, (iii) the
appropriateness of referent densities and how they
are fitted and (iv) the extent of information in the
fingerprints themselves. While we have commented
on some of these items a detailed examination of
their relative importance is beyond the scope of this
paper.

One potential usage is to treat the probability p
as a similarity measure of fingerprint relatedness
(or 1 − p as a distance). These can then be used as
inputs to clustering or phylogeny algorithms. Phylo-
genies depicting strain relationships play a number
of roles. First, the extent of clustering so delineated
is used as a proxy for the percentage of tuberculo-
sis attributable to recent infection, as opposed to
latent reactivation (Small et al., 1994). This has
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Fig. 12. Sample means and standard deviations for align-and-count matching scores as a function of band numbers.

direct public health implications. Presently, clus-
tering is done in a very crude fashion. Improved
distance measures ought to enhance the ability to
delineate clusters, although the need for sensitiv-
ity analysis remains. We note that pursuing such
sensitivity by bootstrapping the phylogeny (New-
ton, 1996; Efron, Halloran and Holmes, 1996) is
problematic here because the bootstrap requires in-
dependence, or known dependence structure, among
the attributes being resampled, neither of which
pertains to fingerprint data. Second, fingerprint
databases often contain, or are linked to, clinical
and epidemiologic outcomes. It is desired to relate
these outcomes to covariates. However, to the ex-
tent that strain affects outcome, the data are not
independent but, rather, phylogenetically related.
So, again, it is important to have good inputs for
phylogeny estimation.

What extreme value or gamma fitting there-
fore provides is a basis for standardizing matching
scores so they can be used in their totality. Con-
cerns about the adequacy of this standardization

for low or moderate scoring matches, based on the
lack of fit evidenced in corresponding regions in
some of the figures, are mitigated by the fact that
the associated comparisons (i) are inconsequential
with regard to clustering and (relatedly) (ii) are
downweighted in phylogenetic regressions since
they correspond to deep branches.

Interestingly, more bands do not necessarily pro-
vide more information as discussed above. There the
issue of recent transmission resulting in an overrep-
resentation of related fingerprints—in this instance
of high band number—was raised. These concerns
relate to database editing and/or data generation.
While differing approaches can dramatically impact
resultant probabilities, the relative orderings are
less affected. Determining an appropriate database
on which to base parameter estimation and subse-
quent standardization depends heavily on context
and, indeed, assumptions about whether related-
ness derives from transmission or from molecular-
level constraints.
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Fig. 13. Extreme value probabilities for matching scores between the 15-band Orizaba fingerprint and 10- to 20-banded San Francisco
fingerprints.

Some comment on extreme value parameter esti-
mation from the practical perspective is warranted.
In most instances, very similar estimates were ob-
tained from either moment or maximum likelihood
estimation. This being the case, moment estimation
would be preferred on the grounds of its computa-
tional ease. Beyond this, however, the robustness
concerns cited in the context of Figure 9 make max-
imum likelihood less desirable. This is especially so
in view of interest focusing on the right tail, a point
noted by Kimball (1956). The objective of using re-
sulting probabilities for the above standardization
purposes makes efficiency considerations moot.

The utility of the align-and-count algorithm for
comparing fingerprints hinges on the availability of
fingerprint replicates. There is a general need to
study sensitivity to the choice of strain used in gen-
erating replicates. Unfortunately, we are not posi-
tioned to do this as the only laboratory strain for
which replicates were obtained was H37Rv as used.

Qualities that the replications ought to possess in-
clude (i) covering the range of band sizes that will
be measured in experimental samples, (ii) multi-
ple (ideally random) placements in lanes across the
electrophoresis gel and (iii) minimized opportunities
for evolution. H37Rv possesses properties (i) and
(iii) and is satisfactory with regard to (ii).

The approach taken here is shamelessly em-
piric. That is, both scoring via the align-and-count
algorithm and subsequent standardization via ex-
treme value or gamma distributions were motivated
by empiric as opposed to model-based considera-
tions. However, this approach was not pursued on
grounds of expediency. Rather, devising an appro-
priate molecular biologic–statistical model appears
prohibitive given existing data due to the following
concerns. As mentioned, the fact that a single base
mutation can arbitrarily change the presence, ab-
sence, or size of a band and more complex changes
can impact both the restriction sites and IS6110 el-
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ements makes modeling problematic. This contrasts
with fingerprint data obtained solely from restric-
tion enzyme cutting (Nei and Li, 1979) although
even there the modeling is simplistic. Further, at
some point, an empiric approach will be necessary to
accommodate the various sources of measurement
error including those attributable to alignment.
Attempting to model attendant within-fingerprint
dependencies is also problematic as exemplified by
(i) the unstructured pattern of H37Rv correlations
(not shown) and (ii) the need to condition on band
numbers and sizes. One potential (future) source
from which we hope to obtain data allowing mod-
eling of band pattern dynamics is the repeated
fingerprinting of individuals with long term, active
tuberculosis. This data may permit, if sufficiently
rich, probability and rate assessments for band
pattern changes.
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