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NONLINEAR OPERATORS AND SUFFICIENCY

By J. PFANZAGL AND J. WEBER
University of Cologne

Let (X, %) be a measurable space and &#| . a family of probability
measures. Given a sufficient sub-o-field, we define the sufficiency operator
by assigning to each integrable function a conditional expectation which is
independent of P 2% The operator thus defined is &*-a.e. linear, mono-
tone, idempotent, and expectation invariant for every P€ <. Not all of
these properties are necessary to make such an operator useful in statistical
theory: For the most important applications, linearity may be replaced by
homogeneity and translation invariance; idempotency may be relinquished.
It was therefore suggested (Pfanzagl (1967), page 416) to study homogene-
ous, translation invariant, monotone, and expectation invariant operators

as a possibly useful generalization of sufficiency-operators.

The purpose of this paper is to show that there exists to any such opera-
tor a sufficient sub-¢-field whose sufficiency operator effects at least the same
reduction. (Hence there is no real gain in introducing the idea of ‘‘reduc-
tion by homogeneous, translation invariant, monotone, and expectation

invariant operators” into statistical theory.)

This result generalizes Proposition 9 of LeCam (1964), page 1435, where,
roughly speaking, a similar result was obtained for monotone and expec-
tation invariant operators which are linear (rather than homogeneous and

translation invariant).

An ergodic lemma for homogeneous and translation invariant (but not
necessarily linear) operators, needed here as a tool for the proof of the main

theorem, may be of independent interest.

1. The main theorem. Let (X, %) be a measurable space and .Z°| %7 a family

of probability measures.

Let & C Npes LH(X, ¥, P), 1 <r < oo, be a linear subspace containing
1 which isrelatively closed in )., -, (X, %, P) under the formation of count-
able pointwise infima (and therefore also under the formation of countable

pointwise suprema).

Let T: % — & be an operator with the following properties:
homogeneous: Taf = aTfSF-a.e. forallac R, fe &

translation invariant: T(1 + f) =14 TfSP-a.e. forall fe &.
monotone: f < 9gFF-a.e. implies Tf < TgF-a.e. forallf,ge 7.

expectation invariant: P(Tf) = P(f) forall Pe & fe & .

For notational convenience we shall drop the phrase “.Z-a.e.” whenever this

is possible without danger of confusion.

Given a sub-s-field 7, C % and fe L (X, 7, P) let P*of denote the P-
equivalence class consisting of all conditional expectations of f relative to P,
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given o7, The sub-o-field %7 is sufficient for | ' if M., P¥of + @ for
everYfe nPeg Z(X’ &, P)'

For a sufficient sub-g-field %/ a sufficiency operator is defined by assigning
toeach fe MNpc L3(X, 7, P) an element of (.. P*of. Any sufficiency oper-
ator is F-a.e. linear, monotone, idempotent, and expectation invariant for every
Pe &

THEOREM. For every homogeneous, translation invariant, monotone, and expec-
tation invariant operator T: % — F there exists a sufficient sub-o-field 57, C S
such that any sufficiency operator T, transforms % into itself and fulfills T,T =
TT, =T,

Proor. (i) We define a sequence of operators T,,: & — & by

(1) T,: =1, the identity operator on &,
T,..: =+ nTT,)|(n + 1), neN.

It is straightforward to show for every n e N that T, is homogeneous, transla-
tion invariant, monotone, and expectation invariant.

As any homogeneous and translation invariant operator is constant preserving,
the sequence (T, f), .y is bounded for any bounded function f. For this reason
we shall restrict ourselves at first to the set of all bounded functions in &, say
F o

(ii) Now we define an operator T,| %, by

T,f:=Iliminf, (T,f, fe F,.
It is straightforward to show that T, is positive homogeneous (i.e. homogeneous

for constants @ > 0), translation invariant, and monotone.
From (1) we easily obtain

rr,="+1lp _ 1
n n
which implies
) TT,=T, on &,

by expectation invariance. This relation, in turn, implies T, T, = T, for every
ne N, whence

3) T, T, =T, on #,.

(iii) Now we shall prove that T, is expectation invariant and homogeneous.
We have for fe & and Pe &
P[T, f] = Pllim inf, o T, f] < lim inf, o P[T, ] = P[/],

as T, is expectation invariant. Similarly, P[T,f]= P[f] for T,/f: =
limsup, T, f. AsT,f = T,/fF-a.e. by the ergodic lemma, we have P[T, ] =
P[T) f] and therefore P[T, f] = P[f] for every P e %
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Finally, T(=f) =liminf,. ¢ T,(— f)=—limsup, T, f = —T/f = — T, f G-
a.e. so that T, is homogeneous.

(iv) The results of (i)—(iii) together imply that T,| ., is homogeneous, trans-
lation invariant, monotone, expectation invariant, and idempotent. By Pfanzagl
(1967), Theorem 3, T, is the restriction to &, of a conditional expectation rela-
tive to P e & given the g-field % : = {4e %: T,1, = 1,FP-a.e.}. (The cited
theorem in Pfanzagl (1967) is proved for the particular case r = 1. The proof
for 1 < r < oo is, however, the same.)

(v) It remains to show that ;T = T, on .%,. As both operators T and T,
are homogeneous, translation invariant, monotone, and expectation invariant
on &, sois T,T. Furthermore, T,T is idempotent, for

(T,T)T,T) = T(TT)T = T,T,T = T,T.

Hence T,T is the restriction to %, of a conditional expectation relative to
Pe Fgiventheo-field &7, : = {de & T,T1, = 1,FP-a.e.}. AsT,Tl,is %
measurable, we have %7, C V(&) (i.e. for every A, ¢ 7, there exists an
Ay € 7 such that P((4, N 4,) U (4, n A4;)) = 0 forevery Pe &). Conversely,
let 4)e %7, be arbitrary. As 7,1, =1, F-a.e., we have Tl, =TT,1, =
T,1,,= 1, -a.e. and therefore T,Tl, =T,1, =1, F-ae., so that & C
,. Hence &) = %7, (Z”) and the two operators T,T and T, are identical on
F o

(vi) It is a matter of routine to prove that the assertion, so far established on
F 4, holds true on .7,

The theorem should be compared with LeCam (1964), Proposition 9. If we
neglect the fact that LeCam’s proposition is formulated in a different conceptual
framework, it yields the assertion of our theorem for linear and constant pre-
serving (rather than homogeneous and translation invariant) operators.

We shall close this section by an example of a homogeneous, translation in-
variant, monotone, and expectation invariant operator which is not additive:
Let X ={1, 2, 3} and P({1}) = P({2}) = P({3})) = }. Let .& be the class of all
real-valued functions on X. Any element of .5 may be represented by a point
of R®. For (a,,a,,a,) € R* we define T(a,,a,,a;): = (3((a, A @A a5) + (a,V a,V ay)),
(@ Nay) V(ayNay)V(a A ay), $((a, A a, Aa) + (aVa,V a))). It is straight-
forward to show that T has the asserted properties. T is, however, not additive,
since 7'(1, 0, 0) + T(0,1,0) = (1,0, 1), whereas T((1,0,0) + (0,1,0)) = (3, 1,3).

2. The ergodic lemma. The following lemma is a generalization of the common
ergodic lemma to homogeneous and translation invariant operators 7. If the
operator T is linear, T,, n € N, defined by (1) becomes T, = I+T+T+...+
T*~")/n and the lemma reduces to the common ergodic theorem. The following
proof is modeled after that given by Garsia (1965) for linear operators.

LEMMA. LetT: & ,— &, be homogeneous, translation invariant, monotone, and
expectation invariant. Let (T,),.y be the sequence of operators defined by (1). Then
(T f)nen converges pointwise F-a.e. for fe F,.
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PROOF. As before we drop phrases excluding null sets if there is no danger
of confusion. (i) At first we shall show that T1, = 1,.%-a.e. implies T(g1,) =
(Tg)1,,P-a.e. for every nonnegative g € & .

Note that 1,e.%#, and ge .5, g =0, implies gl, e .5, since gl, =
Vaen (@ A (nl,)). The relation 0 < g < ¢ implies 0 < g1, < cl, and therefore
0=T(gl,) < cTl, = cl,SF-a.e. Similarly, 0 < T(gl3) < cl;FP-a.e. Asg =
(91,) V (913), weobtain Tg = T(g91,) v T(gl3) = T(91,) + T(g9l3)FP-a.e. (since
T(g9l,) A T(9lz) = 0FF-a.e.). Hence expectation invariance implies Tg =
T(gl,) 4+ T(gl;)<-a.e. Multiplication by 1, yields (Tg)1, = T(g91,)F-a.e.

(i) LetT,: & —»F,and T): & —.F  bedefined by T, f: = liminf, T, f
and T/f: = limsup, . T, f, respectively, and let for fe F andr,sc R, r < s

M (f):={xeX: T f(x) <r<s<T/f(x)}.
At first we shall show that
4) Tl (f) = ly, (f)F-a.e. forall r,seR, fe F,.

For notational convenience we shall write M, , instead of M, ,(f).
We have

O) L, = Vaen[OV A AR =T fNIA Vaen [0V (1A (TS - 9)].
As TT, = T, on & (see part (ii) of the proof of the main theorem), we have
T(n(r — T,f)) = n(r — T, f) FP-a.e. Similarly T(n(T,f — 5)) = n(Tyf — s5).F-
a.e.

As T is monotone, Tg, = g, F-a.e. for alln ¢ N implies T(V e n 9n) = T9, =
g, F-a.e. for all ne N and therefore T(V ,cx9n) = Vmen 9nF°-a.e. Together
with expectation invariance this implies T(V ,ex 9n) = Vmen 9nZ-a.€. Simi-
larly, T(Amen 9m) = Amen 9nF°-a.e. Repeated applications of these relations
imply that the function on the right side of (5) has property (4).

(iii) Next we shall show that

(6) P(fan(zeX:VmeNmef(z)>0)) g O

for every fe &, every Pe Zand every M ¢ % with T1,, = 1,,F-a.e.
Forfe &, letg,: = \Vr_,mT, f. We have

g,t =mT,f  forevery mef{l, ..., n}.
Hence

f+T9,*=f+ mIT, f=@m+ )T, fF-a.e. for every me{l, ..., n}

and

f+Tgr=f=T,[fF-a.e.
so that
f+ Tgn+ g gn‘?-a'e'

Let G,: = {xe X: g,(x) > 0}. We have
(7) flG,n + Tgn+ g flGn + (Tgn+)lG” g gan” = gn+*95'a'e'
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Let M e %7 be such that T'1, = 1,. Multiplication of (7) by 1,, and an ap-
plication of (i) yields
fanan + T(9,*1y) = 9,71, F-ae.
As T is expectation invariant, this immediately implies

P(flyng,) =0 forall Pe%” and neN.

(6) now follows for n — co.
(iv) xe M, , implies limsup, . T, f(x) > s and therefore V. m(T,, f(x) —
s) > 0. Hence

M,, 0 {xeX: V oy m(T, f(x) — 5) > 0} = M,
and (5) applied for M, , instead of M and f — s instead of f implies
P(fly, ) = sP(ly ) forall Pe &~
The dual argument yields
P(fl, )= rP(l, ) forall Pe &

whence
sP(ly ) = rP(ly ) forall Pe 7.

Asr < sand P(1, ) =0, this implies P(1,, ) = 0 for all Pe &
Hence

P(l(meX:TOf(z)<T0'f(z))) = P(l Ur,seO, M,.,s;,,.<s) = Zr,seO;r<s P(IMN,) =0
for all Pe &~
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