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THE MOST POWERFUL SCALE AND LOCATION
INVARIANT TEST OF THE NORMAL VERSUS
THE DOUBLE EXPONENTIAL

By VINCENT A. UTHOFF
West Virginia University

The most powerful scale and location invariant test of normality
against the double exponential alternative is derived by the technique of
integrating with respect to the scale and location transformation group.
The resultant test is asymptotically equivalent to the likelihood ratio test
of this hypothesis and to Geary’s test (i.e. mean deviation over standard
deviation) for all three test statistics are shown to have the same asymptotic
normal distribution when the sampling is from a symmetric, absolutely
continuous distribution, whose density is continuous in the neighborhood
of its median and whose fourth moment exists.

0. Introduction. The purpose of this paper is threefold: (i) to derive the most
powerful scale and location invariant test of the hypothesis

H,: f(x) = (2ra®)* exp[—|x — pl¥20']
against the alternative

Hy: f(x) = (20)7" exp (—|x — ¢l/o) ,
(ii) to find the asymptotic normal distribution of the test statistic and finally,
(iii) to show that the most powerful invariant test is asymptotically equivalent
to the likelihood ratio test and to Geary’s [1] of H, versus H,. Goals (ii) and
(iii) are intertwined in the same results and will both be considered in Section 2.

The normality or nonnormality of a distribution is not affected by the values
of its scale or location parameters. Thus, it is often desirable that a test of
normality be invariant under scale and location transformations. The results of
this paper will yield the possibility of making an absolute judgment on the
power of the invariant tests of normality in regards to the double exponential
alternative.

Throughout this paper X, ..., X, will denote a random sample, x;, -+ -, x,
will denote a collection of reals which may or may not be outcomes of a random
sample, ¥, < ... < Y, will denote the order statistics and y, < ... < y, will
be the ordered values of x,, - - -, x,.

1. Derivation of the test. Note first that the most powerful scale and origin
invariant test of composite hypothesis H, against the composite alternative H,
is the same as that of the simple hypothesis

Hy*: f(x) = (27)~t exp (—x%/2)
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against the sirrfple alternative
H*: f(x) = 27'exp (—|x]),
because the distribution, and consequently the power, of the latter test is not
affected by a scale and location transformation.
The method of derivation is an application of a technique originated by Stein
[5] and further developed by Wijsman [4], Hajek [2] and Koehn [3] for finding
the density of the maximal invariant by integrating over the transformation

group. Specifically in the normal case the density of the scale and location
maximal invariant is

P* =7 {2 2r) "2 exp (— 27 (Ax; — u)?/2)2" " du d2
and for the double exponential it is
g* = (¢ 12 27" exp (— X7 |Ax; — u|)A*2duda .

Thus, the test will reject when ¢*/p* > k, where k is chosen to provide the
desired test size.

The test may be obtained in closed form if p* and ¢* can be obtained in closed
form. p* was evaluated by Hajek ([2] page 49) and thus its evaluation need not
be discussed here. The value of
1) p* =27 N (0)2 — B[(n — 1S,
where §? = (n — 1)7* 3 (x;, — %)*and X = n~' 37 x;,.

If y(r) = X7 |x; — 1], the key to evaluating ¢* is in recognizing that y is a
continuous, piecewise linear function, i.e.

r() = 2ty —nt, for =<y,
= (2i— n)t + Z?ﬂ)’j - Zi)’j,

for yiétéyi+l a‘nd i=19""n_19

=nt— Y1y, for y, <.

Thus, integrating first on the scale parameter and letting ¢ = u/d, ¢* =
27"I'(n) §=.. y~"(#) dt. Then §{=, y="(#) dt can be integrated piecewise to yield

(2) g* =270 (n — DIBy(xy, -+ - X )r(M)] 7™,
where
Me[Yap Yu)s  m=I[n+1)2], n=[n2]+1,
and
Bn(xl, oo, xn)

= [ D " (M)~ ()20 — n)(n + 2 — 2i)7 V=D for n odd,
=[(n — D(ya, — 3a)277 (M) + 27
F Ditisnginn, "M — )TN (r + 2 = 207V

for n even.
A little algebra then yields the following theorem.
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THEOREM 1. Let V,(x,, -+, x,) = n~'y(M)/S. The most powerful scale and
location invariant test of H, against H, rejects when B, V, < c where c is chosen to
provide the required test size.

2. Asymptotic results. It may be shown that the likelihood ratio test of H,
versus H, rejects when V, < ¢’. The most powerful scale and location invariant
test of the normal against the uniform and against the exponential have previously
been found [6] to be the same as the respective likelihood ratio tests. In the case
of H, versus H,, however, the two tests are different but are asymptotically equiva-
lent for, as is shown below, V, and B, V, have the same asymptotic normal dis-
tribution under H, and H,.

Geary’s test of H, versus H, rejects normality when G, = n~Yy(X)[(n —
1)/n]"tS-' < ¢”. G, shares the common asymptotic distribution of ¥, and B, V,
and thus, Geary’s test is asymptotically equivalent to the other two.

THEOREM 2. If the underlying distribution is symmetric and absolutely continuous,
has a finite fourth moment and if its density is continuous in a neighborhood of its
median, then V,, B, V, and G, have a common asymptotic normal distribution with
mean v,v,~% and variance n~[1 — v,v,v,7% + 47,7 (v, 0,72 — 1)], where v, =
E[|X — p|*] and p = E[X] = med X.

Before giving proof for Theorem 2, it is first convenient to show that if V,
has an asymptotic distribution then G, and B, V, share it.

LeEMMA 1. Under the hypothesis of Theorem 2, ni(V, — G,)—, 0 where
G, = (n/(n — 1))iG,.

Proor. Let F be the underlying distribution function and let F, be the empiri-
cal distribution function. Furthermore, let I, ;,(x) be the indicator function of
the interval (a, b). For any distribution, if m = med X,

E[IX — ¢l] = E[|IX — m] + |c — m|(2F(m) — 1)

3 + 2E[I o(X)|c — X1, if m<e,
= E[|X — m|] + |¢ — m|(1 — 2F(m"))
+ 2E[I(c,m)(X)|c - Xl] ’ lf m > C,

where F(m~) is the limit from the left of F at m. In particular, this is true for
the empirical distribution. Calculation then reveals that, if y'(f) = n~'y(?),

@) nify(M) — y'(X)| < [n¥(Y,, — p)QF(X) — )] + [n}(X — p)2F,(X) — 1].
Note that [2F,(X) — 1| = 2|F,(X) — F(z)| and
(5) |F(X) — F(p)] < max, |F,(x) — F(x)| + |F(X) — F(p)| .

By the Glivenko-Cantelli theorem the first term on the right of inequality (5)
converges stochastically to zero, and since F is continuous and X —, z, the
second term also converges to zero and thus, 2F,(X) — 1 —,0. Consequently,
since n#(Y, — p) and ni(X — p) are limiting normal, both terms on the right of
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inequality (4) converge stochastically to zero. Therefore, nt(y'(M) — 7'(X)) con-
verges stochastically to zero. Since §— v} and n¥(V, — G,') = n*(y'(M) —
7'(X))/S, the result follows. []

The relationship between V, and B, V, is stronger than that between ¥, and
G

n*

LEMMA 2. For all sequences x,, ---, x, and p < 1,
Vn(xv R xn)Bn(xv R xn) = Vn(xv D] xn) + o(n_p) *

Proor. From (3) and Jensen’s inequality, it may be shown that for all dis-
tributions 0 < E[|X — med X|] < v, < v,}. Thus, it holds for the empirical
distribution and hence

6) osv,<1.
It is next shown that
@) |B, — 1] £ nV/»-0 — 1,

for all x,, - .., x,. Because B, has a different definition for n odd than for n even,
two cases must be considered. First let n = 2k 4+ 1. Since 0 < (M) < r(1,),
for all i, 0 < y"*(M)y="*'(y;) < 1 with equality holding when i = k + 1. Fur-
thermore, [(2i — n)(n + 2 — 2i)]~* is negative if i = k 4 1, and equals one if
i=k+ 1. Thus, 1= 3?7 (M)r—*(y)(n + 2 — 2i)~*2i — n)~* = n~* and
n¥/*=t > B> 1. Hence, inequality (7) holds.

If n = 2k then as above it is shown that

0= Ziiivnyien, 7" (M) ()20 — n)™H(n + 2 — 207 = n7t — 271,

Furthermore, y(M) = 3%, (Jas1-j — ¥;) = m(Va, — ¥a) and thus, 1 > (n —
D)(Vay — Yu)27'r (M) = 0. Therefore, n/*~" > B, > (%)"/~". Since (3)/"V —
1 = [1 — »n¥"=Y], inequality (7) holds.

Finally, |V, — B, V,| < |V,||1 — B,|n* < n?(n/"Y — 1). If0< p< 1, it
may be shown by I’Hospital’s rule that lim,,_, n?(n/"=» — 1) = 0, andif p < 0
the limit is zero because both factors are bounded and at least one has limit
zero. []

ProoF oF THEOREM 2. From Lemmas 1 and 2, it is sufficient to consider the
asymptotic distribution of V,. Furthermore, because Sy,”* — 1 and ni(V, —
vy~ 1) = i (M)y,t — v,0,71S)/(Sv,7Y), it is sufficient to investigate the limiting
distribution of nt(y'(M)v,"t — v,v,71S).

As in proof of Lemma 1 it may be shown that
() 7'(M) =7'(¢) + R,
where n*R, —_ 0. From Taylor’s theorem

©) S = vt 4+ 27w, it T (X; — p) — vy) + R,
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]

where ntR,” — 0. From (8) and (9), it follows that n#(¥, — v,v,”t) has the same
limiting distribution as n}( 7 n={v," | X, — p| — 27,0, 4 (X; — p)?} — 27,0, %),
The result then follows from the central limit theorem. []

Finally, the limiting normal distribution could be used to approximate the
critical region of the test. In the normal distribution v,/v;? = 3, vy/v,} = 2(2/x)}
and v,/v,t = (2/x)t. Thus, under H, B, V, is approximately n(.798, .045/n).
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