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ON THE CENTERING OF A SIMPLE LINEAR
RANK STATISTIC!

By WassiLy HOEFFDING
University of North Carolina at Chapel Hill

Haéjek (1968) proved that under weak conditions the distribution of a
simple linear rank statistic S is asymptotically normal, centered at the
- mean ES. He left open the question whether under the same conditions
the centering constant ES may be replaced by a simpler constant s, as was
found to be true in the two-sample case and under different conditions by
Chernoff and Savage (1958) and Govindarajulu, LeCam and Rhagavachari
(1966). In this paper it is shown that the replacement of ES by s is permis-
sible if one of Hajek’s conditions is slightly strengthened.

1. Introduction and statement of results. Hajek (1968) studied the asymptotic
distribution of the sum

(1.1) S = 2L aay(Ry),

called a simple linear rank statistic, wherec,, - - -, ¢y are real numbers, R, - - -, Ry
are the respective ranks of N independent random variables X, - - -, X, whose
distribution functions F,, ..., F, are continuous, and the so-called scores a,(i)
are generated by a function ¢(7), 0 < ¢ < 1, in either of the following two ways:

(1'2) aN(l):¢(i/(N+ 1))’ i= 1’ AR N:
(1’3) aN(i) = E¢(UN(i)) s - i = 1: DR} N-
Here U, denotes the ith order statistic in a random sample of size N from the

uniform distribution on (0, 1). Hajek proved four theorems asserting the as-
ymptotic normality of S under different conditions, of which we quote

HAJEKX’s THEOREM 2.3. Let ¢(t) = ¢.(t) — ¢u(1), 0 < t < 1, where ¢,(t) and
@4(t) are both non-decreasing, square integrable, and absolutely continuous inside (0, 1).
Then for every ¢ > 0 and n > O there exists N(e, ) such that

(1.4) N> N, 7), Var § > pNmax, .y (¢; — ¢)*
entails ,

(1.5) sup,|P{S — ES < x(Var S)}} — @(x)| < ¢.
The assertion remains true if we replace Var S in (1.4) and (1.5) by
(1.6) o= ¥, Var (X)),

li(x) = N7 27 (¢; — ) §{u(y — x) — Fi(n)}'(H(y)) dF () -
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Here¢ = N7 11X, ¢;, @(x) = (2x)~t {=_, exp(—)?/2) dy, u(x) = 1 or 0 accord-
ing as x > 0 or x < 0, ¢’ denotes the derivative of ¢, and

(1.7) H(x) = N7' 3I¥  Fy(x).
Hajek’s Theorem 2.4 states that under the conditions of Theorem 2.3, for

every ¢ > Oand 5 > 0 there exist N(e, 7) and d(¢, 7) such that the conclusion of
Theorem 2.3 holds with Var § replaced by

d* = ZiLi(e; — &) S {(t) — §5 (s)dsy dt

provided that the condition max; ; , |F;(x) — F;(x)| < d(c, n) is added to (1.4).

Hajek’s theorems are extensions of the earlier results of Chernoff and Savage
(1958) and of Govindarajulu, LeCam and Raghavachari (1966), which are con-
cerned with the special case ¢, = .-+ =¢,, Cppy= -+ =¢y, F, = --. = F,,
F,u = --- = Fy (two-sample case). Apart from different sets of assumptions
(which, in essential parts, are more restrictive than Hajek’s), the theorems in
those earlier papers differ from Héjek’s theorems in that the centering constant
ES is replaced by

(1.8) #= 2 € § 20 $(H(x)) dF () .
The problem of whether ES may be replaced by p is of interest since y has a
simpler structure and is easier to evaluate. Hajek observed ((1968) page 330)
that he did not succeed in showing that this replacement is possible under the
conditions of Theorems 2.3 and 2.4.

In this paper it is shown that if the condition of square integrability of ¢,
and ¢, is slightly strengthened, then the conclusions of Theorems 2.3 and 2.4
remain true with ES replaced by x or by

(1.9) #=p+ XL ¢EN + 1)) — N § é(t) dr} .
Explicitly, the following result is proved.

THEOREM 1. Let ¢(t) = ¢,(t) — ¢y(t) satisfy the conditions of Hajek’s Theorem
2.3 with the square integrability condition on ¢, and ¢, replaced by

(1.10) (1 — O dg,(t) < oo, k=1,2.

Then the conclusions of Hajek’s Theorems 2.3 and 2.4 remain true with ES replaced
by p' in the case of the scores (1.2) and by p in the case of the scores (1.3). If
|c|/max; |¢; — €| is bounded, ES may be replaced by it also in the case (1.2).

Concerning condition (1.10) we observe the following. For ¢ non-decreas-
ing let

(1.11) J(9) = §oti(l — )t dg(r) .

Integrating by parts, we obtain

(1.12) JH9) = Bo((t — Pri(l — 1yt
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Hence condition (1.10) is equivalent to
(1.10") $ 8.1 — )7 tdt < o0, k=12,

In the Appendix it is shown that if ¢ is non-decreasing, then the condition
J($) < oo implies square integrability of ¢ and is implied by {; #*(t){log(1 +
|[6(®))}° dt < co for some 6 > 0. In this sense condition (1.10) is not much
stronger than square integrability.

The results of Hajek (1968) have been extended by Dupa¢ and Hajek (1969)
to cases where the function ¢ is not required to be continuous. The permis-
sibility of replacing ES by x or p' in the appropriate theorems of that paper
when the condition (1.10) is added has been proved by Dupac (1970), referring
to an earlier version of the present paper.

Theorem 1 is proved in Section 4. The proof depends on the following two
propositions which are demonstrated in Sections 2 and 3.

PROPOSITION 1. There is a numerical constant C, such that if ¢ is non-decreas-
ing, then

(1.13) L1 [EQ(UYD) — $([(N + 1))] < C,NY(g) -

PROPOSITION 2. There is a numerical constant C, such that if ¢ is non-decreasing
and F,. - - -, F,, are any continuous distribution functions, then
(1.14) L EGR(N + 1)) — §=. §(H(x)) dF(x)| = CNY(9) -

The author does not know whether the conclusion of Theorem 1 is true under
the conditions of Hajek’s Theorem 2.3. The role of condition (1.10) in the proof
of the theorem is discussed in Section 5.

2. Proof of Proposition 1. It is sufficient to show that if ¢ is non-decreasing,
then

@2.1) £ EOUL) = 6 (G + )| S GA)
and
22) Lo (5 ) — 2 ()| = GV

where C, and C, are numerical constants.
Let G, ,(+) denote the distribution function of U, . Then fori=1, ..., N,

EQUNY) = 6 (5 ) = {800 — 0 (5 +)} 46
= — §HD §YEr dg(r) dGy (u)
+ S Swvins d6(1) dGy (u)
= — W+ Gy (1) (1)
+ $owan+ {1 — Gy (1)} (1) -
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Hence if we define
i

23 Hyd) =Gy if 0<is ot
Hy()=1—G, () if — _<r<1,
w0 )i < s
then
2.4) [ BHU) — 6 (A )| S B D Hy ) 490

Inequality (2.1) will be proved if we show that
(2.5) Lo Hy (1) < CyNMY(1 — 1)t 0ttt
From definition (2.3) we have

| o -
ZiHslt) = Bl = Oy} + Dy Oy lt) i o <rs £E5,

forj=0,1,..., N. Now G, () = P{W(r) = i}, where W ,(¢) has the binomial

(N, t) distribution. Hence we obtain

(2-6) LiHya) = EWy(0) —j1 if j<(N+Dr<j+ 1,
j=0,---,N.

But E[W (1) — j| < {EIWy(t) — jI'} = {Ne(1 — 1) + (Nt — j"}}, and (Nt — j)* <

Ni(1 — 1) in the range specified in (2.6). Thus (2.5) holds true with C, = 2%,

and inequality (2.1) is proved.
Finally, inequality (2.2) holds since

(vit) )
= 20 Seminren d9(0)

. 3 . Y
< max,goy <N;—|—1> <1 - N_l}_ 1> 2 St=i/(1\l+1)t§(1 — 1)t deg(r)

N
i=1

< 2NU(g) -
3. Proof of Proposition 2. We can write R, = }}1_, u(X; — X,), where u(x) = 1
or 0 according as x = 0 or x < 0. Thus if we let
B1) VW= Shioux - X,),
Vi) = 1 + 2ili i t(x — X;) = 1 —u(x — X;) + V(x),

Xi:x}qus(;L:)l).

then
62 #4 (351)

Hence, fori=1, ..., N,

@3 B () — S et R < § | B () — gcrcoy | ar o
(34) < V6 (F) — 00| 4r )
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Since V(x) < V(x) + 1 and V,(x) < N, we have

(3.5) ¢ <]\I,/if)l> = 9(V(®)
where
(3.6) g(v):min{gé(;([i 11>’¢<NZ l)}, 0Zv<N.

We now show that

8 E|g () — (00| aro

3.7) = N§ Elg(V(x)) — ¢(H(x))| dH(x) + $(N/(N + 1))
— ¢(1/(N+ 1)) .

Recall that >3, F;(x) = NH(x), so that the first term on the right of (3.7) is
equal to the sum on the left with ¢(V(x)/(N + 1)) replaced by g(¥(x)) for all i.
Hence, and due to (3.5), the absolute value of the difference between the first
term on the right and the sum on the left does not exceed

= § E{lg(V(x)) — ¢(Vi(x)/(N + 1))} dFy(x) -
But g(¥(x)) < g(Vi(x)), so that the latter sum is not larger than

s E{9(R:) — $(R/(N + 1)} = ZiLi{9() — G/(N + 1))}

= ¢(N/(N + 1)) — ¢(1/(N + 1)).
This proves (3.7).
It is easy to verify that

(3.8)  § Elg(V(x)) — $(H(x))| dH(x) < § E|g(V(x)) — g(INH(x)])| dH(x)
+ Solo(INVe]) — é(0)| dr,
where [«] denotes the largest integer < u, and
Elg(V(x)) — 9(INH(x)])|
(3-9) = L o) —9( = DIPV(x) = i — 1}
+ Lo (90) — 90 — D}P{V(x) = i} .

Let W,(p) denote a binomial (N, p) random variable. By Theorem §
of [7],

(3.10) PV < j)< PWy(HW) < j}  if j< NHEx) —1,
PV(x) 2 j} < PIWy(H()) = J} if j = NH(x) + 1.

It follows from (3.9) and (3.10) that

(3.11) Elg(V(x)) — 9(INH(x)])| = Elg(Wy(H(x)) — 9([NH(x)])] -
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Note that the right-hand side depends on x only through H(x). On integrating
both sides of (3.11) with respect to dH(x), we have
(-12)  § Elg(V(x)) — 9(INH()D| dH(x) < §; Elg(Wy(1)) — g([Ne])| dt .
From (3.9) with V(x) replaced by W,(H(x)) and H(x) by ¢ we obtain after
simplification
§0 Elg(W (1)) — g(INi])| dt
(3.13) = DI5H00) — 96 — DYy POVA(0) < i — 1} dr
+ §iN P{W (1) = i} dr) .
In the notation used in Scetion 2, P{W (1) = i} = P{U,) < 1} = G, (t). Thus
v PIWy(t) < i — 1}de + §iY P{W (1) = i} dt
= (in {1 — Gy ()} dt + §i'¥ G, (¢) dt

:sou

(3.19) < {si(u— L) a6, )

:{leuzzvju( —Nil>+<ﬁi—%>z}i
(3) () (= )
()

for1 i< N— 1.Sinceg(i) = ¢((i + 1)/(N+ 1)) for0 < i < N — 1, we have
from (3.13) and (3.14)

(3:15)  §o Elg(W (1)) — g([Ni])| at

s o () - o () () (-2

The sum on the right is equal to J(¢,*), where ¢,*(t) = ¢(([Nr] + /(N + 1)).
Since ¢ is non-decreasing, it is easy to show that

019 S lp(Eh) o () (1 )~ 500,
By (3.7), (3.8), (3.12), (3.15) and (3.16),

IA

IA

1§ g (F49) - pto) | arx)

(3.17) < ANU($) + N §3l0(INE]) — (o) di
) 4 G-
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Finally,
N §5lg([Ne]) — $(1)] dt
(3.18) = NG [p(([Ne] + /(N + 1)) — $(n)] dt
) Nt + 1 Nt
=V () 2 ()t

= (N + 1){S}v/(zv+1) ¢(t) dr — Sé/(NH) ¢(t) dt} ’
(3.19)  S(N/(N + 1)) — ¢(1/(N + 1))

= (N + D{§xaven @(1) dt — §/0*0 ¢(2) dr}
and

(3.20) Ve $(1) dt — §7V G(1) dr = §min(u, (N 4 1)7 1 — w) dp(u)
< NH§hud(l — u)t d(u) = N-3(g) .
Proposition 2 now follows from (3.3), (3.4) and (3.17) through (3.20).
4. Proof of Theorem 1. The following lemma will be used.

LeMMA 1. If ¢ satisfies the conditions of Theorem 1, then for every a > O there
exists a decomposition

(4.1) ¢(0) = ¢(1) + ¢7(1) — ¢%(1), 0<t<I,
such that ¢ is a polynomial, ¢ and ¢* are non-decreasing, and
(4.2) J(¢") +J($%) < a.

Lemma 1 is an analog of Lemma 5.1 of Hajek (1968), which differs from
Lemma 1 in that ¢ is assumed to satisfy the conditions of Theorem 2.3, and
(4.2) is replaced by >i_, (3 ¢¥)(£)*dt < a. Hajek’s proof of Lemma 5.1 serves
without change to prove Lemma 1.

It will be sufficient to prove the assertion of Theorem 1 concerning Theorem
2.3 since for Theorem 2.4 the proof is analogous. First let S be defined with
ay(i) = ¢(i/(N + 1)). To prove the statement of the theorem with centering
constant g/, it is enough to show that for every 8 > 0 and 7 > 0 there exists a
number N’ = N'(8, ») such that

(4.3) N> N, Var § > » Nmax,,;cy(c; — C)
implies ‘
(4.4) |ES — ¢/|/(Var S)} < 8.

Indeed, given ¢ > 0 and 7 > 0, choose 8 = f(¢) so that max, [@(x + B) —
D(x)| < /2. Let N”(e, p) = max{N'(8(¢), 7), N(¢/2, 5)}, with N(., «) defined in
Héajek’s Theorem 2.3. Then (1.4) with N(e, ) replaced by N"'(e, n) implies (1.5)
with ES replaced by ¢’
We write S(¢), ¢'(¢) for S, p/ to exhibit the dependence on ¢. Since
L $(RJ(N + 1)) = B, /(N + 1)) and T, § g(H(x))AFi(x) = N §36(1) dt,
we have from (1.9)

S(¢) — 1'(9) = LiLi(ei — HS(RJ(N + 1)) — § $(H(x) dF(x)} .
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Hence
(4.5) |ES(¢) — p'(9)] = max,g;oyle; — ¢| XL, |[ES(R/(N + 1))
— § ¢(H(x)) dF(x)| .
We apply Lemma 1 with a to be specified later. Clearly
(4.6) |ES(¢) — '(9)| = |ES(¢) — /()] + Zi-i |ES(9™) — p'(¢)] -

Since ¢ has a bounded second derivative, it follows by a Taylor expansion
(see Hajek (1968) page 340) that there is a constant K(¢) such that

(4.7) EQRJ(N + 1) — § $(H(x) dF(x))] < KGN, i=1,.--,N.
Hence, from (4.5) with ¢ = ¢,
(4.8) |ES(¢) — ¢'(¢)| = K(¢) max,g;yle; — € .

From (4.5) with ¢ = ¢®), Proposition 2, and (4.2),
4.9) 2= |ES(9) — p/(¢*)] £ CyNta max,g;cy|c; — ¢ .

If Var § > »N max;(c; — ¢)? it follows from (4.6), (4.8) and (4.9) that
(4.10) |ES(¢) — p'(9)l/(Var S)t < 9 #K(¢)N-F + Cypptar .

Now, given 8 > 0 and » > 0, choose a in Lemma 1 so that C,y~ta = /2.
This choice fixes K(¢) = K,(8, ). Define N' = N'(8, ) by 7 1K(¢)(N')~* = B/2.
Then (4.3) implies (4.4), as was to be proved.

To prove the last part of Theorem 1 concerning the case (1.2), note that, by
(1.9),

| — ] 16| S $GIN + 1) — N §3(t) d

— eV {g (TN + 1) _
=t |5i o (BLE) - s} .
Assume for the moment that ¢ is non-decreasing. Then (compare (3.18))
1 N+1
N§ig (M) — 900] de = OV DSkyinnn 60 di = 50 ()

< (N 4 DSk 901 — 072
+ R gL — i)

Since ¢ = ¢, — ¢, is the difference of two non-decreasing functions which sat-
isfy condition (1.10%), it follows that

| — p| < [€IN*Ky
where K, = K,(¢) — 0as N — oco. Hence if Var S > »N max(c; — ¢)%, then
| — pli(Var $)} < 7K y|e|jmax e, — ¢,

which is arbitrarily small for N large enough if |¢|/max|c; — ¢| is bounded.
This implies the last part of the theorem.

Finally consider S with a, (i) = E¢(U,"). In thiscase 3}, a,(i) = N} ¢(2) d1,
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hence

(4.11) S(9) — w(9) = ZiLi (e — ay(Ry) — § $(H(x)) dF(x)},
|ES(¢) — 1(9)] < max;|c; — &| T, |Eay(R;) — § $(H(x)) dFy(x)| .
Now it is easily seen that
(4.12) =1 |Eay(Ry) — § ¢(H(x)) dF(x)|
= 2L ES(RJ(N + 1)) — § ¢(H(x)) dF (x)|
+ DL ES(ULY) — ¢(i/(N + 1))] .

For ¢ = ¢ we apply Taylor’s formula to the last term. Since EU," =
i[(N + 1) and Var U, < N-* for all i, we find that there is a constant K’(¢)
such that |E¢(Uy') — ¢(i/(N + 1))| < K'($)N-*, i =1, ..., N. Together with
(4.7) this implies an inequality analogous to (4.8). Applying Propositions 1 and
2to (4.12) with ¢ = ¢, k = 1, 2, and using Lemma 1, we obtain an inequality
analogous to (4.9). Now the conclusion follows as in the first part of the proof.

S. Remarks on the condition J(¢) < co. Theorem 1 shows that if the condi-
tion J(¢,) < oo, k = 1, 2, is added to the assumptions of Hajek’s Theorem 2.3,
then the conclusion of that theorem holds with ES replaced by x or x/. The
analogous result has been proved by Dupaé (1970) concerning Theorem 2 of
Dupac¢ and Hajek (1969), where ¢ is not required to be continuous, but restric-
tions beyond continuity are imposed on the distribution functions F,, - - ., F,.
The remarks of this section are intended to throw some light on the role of the
added condition, although the question whether the condition is needed remains
open.

In the case of the scores ¢(i/(N + 1)) the proof of Theorem 1 depends on
Proposition 2. Let

(1) Di=Dyg, Fr, -+, Fy) = EG(RJ(N + 1)) — § ¢(H(x)) dFy(x) .

Proposition 2 implies that if ¢ is non-decreasing and J(¢) is finite, then
N-% 31X, |D;| is bounded, and is small if J(¢) is small. Recall that Proposition
2 is applied only with ¢ = ¢ or ¢®, the irregular components in the decom-
position (4.1). An inspection of the proof shows that for the function ¢ of
Theorem 1, the D; = D,(¢) satisfy '

(5.2) ¥ |Dy| = o(NY) as N— oo .

The following suggests that condition (5.2) is essential for the conclusion of
Theorem 1. If (§ — ES)(Var S)~t has a limit distribution, then (S — p’)(Var §)-#
has the same limit distribution if and only if

(5.3) (ES — p')(Var §)~t = o(1) .
Now

(5.4) ES — p' = ¥ (¢c; — &)D;
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whence |ES — p/| < max;|c; — é| X3, |D;|. If assumption (1.4) of Hajek’s Theo-
rem 2.3 is satisfied, that is, if

max;|c; — ¢|(Var §)"t = O(N7¥),

then (5.2) implies (5.3).

On the other hand, if (A) ¢ is non-decreasing and square integrable, and (B)
the F, = F, , are such that condition (5.2) is not satisfied, then there exist
constants ¢, = ¢; 5 such that (5.3) is not satisfied. To see this, note first that

¥, D, does not depend on the F; and may be written as

Nl + 1
5.5 ¥.D,=N { <[ >_ t}dt.
(5.5) ., i {s () — 40
Assumption (A) implies that the right-hand side of (5.5) is o(N?); this follows
from (3.18) and Schwarz’s inequality. Hence if we define the c; by

(5.6) ¢ =sgnD;,
then, from (5.4),
(5.7) ES — 4/ = S, D] + o(NY).

Also, Since ¢ is non-decreasing, we have, by Theorem 3.1 of Hajek (1968),
Var S < 21 max;(c; — ¢)* 1, (a; — @), where a, = ¢(i/(N+ 1)) and a =
N-* ¥ a;. Since ¢ is also square integrable, }; (a; — d@)* = O(N). Combined
with (5.6) this implies Var S = O(N). It now follows from (5.7) that if (5.2) is
violated, so is (5.3).

We now turn to a review of the proof of Proposition 2. The proof starts with
the inequalities (3.3) and (3.4), which imply

(5.8) 22104 = 2§ |6 (7 40)) — ()| dF o)
< B § g (F) — soeep| arieo

The proof is completed with inequalities (3.17) through (3.20) which show that

(5.9) 12§ E| (39) = p(H()| P i) < CNM)
N+ 1
This last inequality is best possible in the sense that in the special case
F, = ... = F, the left-hand side of (5.9) is asymptotically proportional to the
right-hand side (asymptotically equal to (2/z)}N¥J(¢)) if J(¢) is finite. Indeed,
if F, = ... = F,, then the sum on the left of (5.9) is nearly equal to N times

{3 Elg(Wy(t)) — g([N?])| dt, and an elaboration on the calculations following
(3.13) yields the stated result.

Thus if the condition J(¢) < oo can be avoided, we must go back to one of
the first two sums in (5.8). In the i.i.d. case, F, = ... = F,, the second of
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those sums is equal to

(5.10) N Eg (%) _ ¢(t)’dt.
Note that
.11y  Ep (%) — s (_]I;_:t_b (N; 1) f(1 — -1k

is a slightly modified version of the Bernstein polynomial of ordered N — 1 which
approximates the function ¢(#), and (5.10) is N times the L, norm of the error
of approximation. Theorem 2 of [8], which is concerned with polynomials
closely related to the polynomials (5.11), implies the (ollowing. If ¢ is a non-
decreasing square integrable step function having finitely many steps in every
closed sub-interval of (0, 1), then

E¢ (MA) _ ¢(t)’dt = (%)i Jp),

5.12 lim,,_, Nt §}
(5.12) e N 3 | (Pl

irrespective of whether J(¢) is finite or infinite.

In Theorem 2 of Dupac and Hajek (1969), ¢ is allowed to be a step function
of the type here assumed, and the stated result shows that the behavior even of
the first upper bound in (5.8) does not permit us to decide whether ES may be
replaced by ¢’ under the conditions of that theorem.

It should be noted that in the case F, = ... = F, the sum Y |D,| itself does
not behave in a way similar to (5.12). In fact, 3} |D,| is minimized with respect
to Fy, .-+, Fy when the F; are all equal, since equality in Y |D;| = |3 Dy

holds in the latter case. And, as noted after (5.5), |3 D;| = o(N?) if ¢ is non-
decreasing and square integrable.

It can be shown (proof omitted) that the following analog of (5.12) with
J(¢) = oo holds for 37 |D;|. Let ¢ be a non-decreasing square integrable step
function having finitely many steps in every closed sub-interval of (0, 1), and
let J(¢) be infinite. Then there exist continuous distribution functions F; = F,
such that

Nt 3% |D;| — o0 as N— oo.

However, the distribution functions F; in the author’s proof do not satisfy the
conditions of Theorem 2 of Dupa¢ and Hajek.

APPENDIX
Here the following is proved.

(Al) If ¢ is non-decreasing and J(¢) < oo then (! ¢*(¢) dt < oo.

(A2) If ¢ is non-decreasing and {; ¢*(r){log(1 + |4(?)|)}+’ dt < oo for some
0 > 0 then J(¢) < oo.

(A3) There exists a non-decreasing function ¢ such that the integral in (A2)
with ¢ = 0 is finite but J(¢) = co.
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Proor oF (Al). If ¢ is non-decreasing and J(¢) < oo then ¢ is integrable on
(0, 1), as can be seen from (1.12). Hence it is sufficient to prove:

(Al") If ¢ is non-decreasing and integrable on (0, 1) then
§olo(r) — So 8(s) ds} dr < {§3ub(1 — u) dg(u)) = JX(9) .

To see this, we note that

old() — G g(s)dspdr = §§ {$(1) — g(s)} dsdr.
If ¢ is non-decreasing then ¢(r) — ¢(s) = §,.., dd(u) almost everywhere for

0<s<t<1,and interchanging the order of integration we obtain

S 18() — ()} ds dr = 3§} {min (s, v) — w0} dg(u) dg(v)
But min(u, v) — v < u¥(l — u)tvi(1 — v)t for u and v in [0, 1], and the ine-
quality in (A1’) follows.

PROOF OF (A2). The assumption that ¢ is non-decreasing is here made only
because this was assumed in the definition of J(¢). It is sufficient to prove:

(A2') If ¢ is Lebesgue measurable and {} ¢*(¢){log(1 + |¢(#)|)}'+° dt < oo for
some 6 > 0 then {} |¢(¢)|r"}(1 — t)"t dt < oo.
Letd > 0,

fe) = (1 + uflog(1 + w)}*?,  F(v) = §§fw)du,  G) = §; f~u)du,
where f~' denotes the inverse of f. As v — oo, the function F(v) is asymp-
totically proportional to v*{log(1 + v)}'*’. Hence the hypothesis of (A2') im-
plies §3 F(|¢(#)]) df < co. From Young’s inequality (see Theorem 237 in [6])
we have

o le@l*(1 — 7t dt < §F(lg(n))) dr + §5 G741 — 1)~H)dr .

Thus it is sufficient to show that the second integral on the right is finite. The
latter is equivalent to the finiteness of each of the following integrals:

iGedr,  fGx)xTdx,  §P Oy dy, ST uf(u)(u) du
The last integral is finite since uf(u)~'f’(u) is bounded and f(u)~ is integrable
on (1, oo0).

Proor oF (A3). The function

#(f) = (1 — )74 — log(1 — 1)}7'{log(4 — log(1 — 1))}~
may be shown to have the properties stated in (A3).
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