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choice for 6, [or that we have iterated (3) once more], the third-order properties
of 0, and Oy are the same. In particular, the upper a nonparametric tilting
limit satisfies

brun(e) = 6+ 7% 2, + n7 249222 + 1)
+n 2 { Y322 + 4) + k(32 + 1)}] + 0,(n72).
Furthermore, the coverage probability associated with éTILT satisfies
mrr(@) = @ = n7%(2,)z,(22 + 8)5(x — ¥2 + 2) + O(n™?)
and, corresponding to Table 1,

t(z,_,) = —1.68x + 1.68y% — 3.35.
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This is the latest in Peter Hall’s series of impressive bootstrap papers. One
effect of these papers [and those by other authors, in particular Abramovitch
and Singh (1985)] has been to renew interest in bootstrap-¢ confidence intervals.
My original enthusiasm for bootstrap-¢ intervals, as naively expressed in Remark
F of Efron (1979) and slightly less naively in Section 10.10 of Efron (1982),
foundered on a list of their substantial drawbacks: noninvariance under transfor-
mations, occasional numerical instability and, worst of all, the need to compute
auxiliary estimates of standard deviation 6 and 6*. The good properties demon-
strated in this paper and others make it worthwhile to pursue the practical
details of applying the bootstrap-¢ method on a routine basis.

Figure 1 concerns “looking up tables backwards.” It is natural to assume that
if an error distribution is long-tailed to the right, then the corresponding
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F16.1. Leftpanel: Central 90% confidence interval for 0 having observed § = 1, where § ~ 8x2,/10.
Right panel: Central 90% confidence interval for p having observed p = 0.50 from a bivariate
normal sample of size n = 15. In both cases the long tail of the parametric bootstrap distribution
points in the same direction as the long side of the confidence interval.

confidence interval should be long on the left side of § and vice versa. This is
expressed in Hall’s first equation of Section 2.2,

(1) 0 4(a) =0 —n"%x,_,,
which says how to look up tables the right way.

Beware! The intuition provided by (1) leads literally in the wrong direction
when applied to even quite ordinary confidence interval problems. The left panel
of Figure 1 concerns a scale parameter estimation problem where we observe
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d ~ 6x2,/10. Having observed § = 1, the exact central 90% confidence interval
for 8 (5% error on each side) as given by the usual method of constructing
confidence intervals is

6 € [0.54,2.54],

which extends more than 3 times as far to the right of § as to the left. The
sampling distribution of § ~ 0x2,/10 for 6 = 1 is seen to be long-tailed to the
right in this case.

The left panel of Figure 1 shows another familiar problem, setting a con-
fidence interval for the correlation coefficient p having observed the sample
correlation p for a random sample of size 15 from a bivariate normal distribu-
tion. Having observed p = 0.50, the exact central 90% confidence interval is

6 € [0.056,0.761],

about 1.7 times longer to the left than to the right of . In this case, the sampling
distribution of § given p = 0.5 (i.e., the parametric bootstrap distribution of 5*)
is long-tailed to the left. Both of these examples seem to encourage looking up
tables backwards.

It is not hard to explain these results, at least on an individual basis. In the x?2
case, a log transformation gives

log(f) = log(0) + X,  [X ~ log(x%/10)],

showing that this is actually a translation problem with error distribution X
long-tailed to the left. In this sense, (1) is correct. A similar explanation involving
the tanh™! transformation and the bias of § as an estimate of p explains the
correlation coefficient example.

The trouble with these explanations is that in order to apply them you need a
lot of knowledge about the specific situation. The various bootstrap percentile
methods discussed in Efron and Tibshirani (1986) and Efron (1987), in particular
the BC, method, are designed to automate the process of construction con-
fidence intervals. If a transformation like log or tanh~! is appropriate to the
situation, then it is automatically incorporated into the bootstrap interval, and
likewise for other devices such as bias corrections. These methods may seem
antiintuitive, as Hall suggests in Section 2.2, but in specific situations like those
of Figure 1, they give quite sensible results.

Sensible is not the same as perfect. Neither the bootstrap percentile methods
nor the bootstrap-¢ give perfect confidence intervals in every case, and sometimes
their results can be disappointing. Understanding how much one can reasonably
hope for from general automatic methods like the bootstrap is a worthwhile goal,
which Hall’s paper does much to further.

REFERENCES

ABRAMOVITCH, L. and SINGH, K. (1985). Edgeworth corrected pivotal statistics and the bootstrap.
Ann. Statist. 13 116-132.
EFRoN, B. (1979). Bootstrap methods: Another look at the jackknife. Ann. Statist. 7 1-26.



972 DISCUSSION

EFRON, B. (1982). The Jackknife, the Bootstrap, and Other Resampling Plans. SIAM, Philadelphia.

EFRON, B. (1987). Better bootstrap confidence intervals (with discussion). J. Amer. Statist. Assoc.
82 171-200.

EFRON, B. and TIBSHIRANI, R. (1986). Bootstrap methods for standard errors, confidence intervals,
and other measures of statistical accuracy (with discussion). Statist. Sci. 1 54-77.

DEPARTMENT OF STATISTICS
SEQUOIA HALL

STANFORD UNIVERSITY

STANFORD, CALIFORNIA 94305-4065

WEL-YIN Lon!
University of Wisconsin-Madison

It was a pleasure to read Professor Hall’s paper, which so effectively analyzes
the relative performance of Efron’s many recipes for bootstrap interval construc-
tion, under the assumption that the parameter is a function of vector means. In
this setting, Hall shows that the percentile-t and accelerated bias-corrected
methods tie for first place, the main reason being that one consults “Studentized”
tables, and the other looks up “ordinary” tables, after employing an analytical
correction to adjust the critical points.

I share Hall’s prejudice that computer-intensive methods such as the bootstrap
should not have to appeal to tedious analytic corrections and therefore agree
with his preference of the percentile-¢ over the accelerated bias-corrected method
in the present situation. Because all the bias-corrected methods look up tables
“backwards,” the percentile-f may also be preferred in those nonlinear and
nonsmooth problems where the asymptotic distributions are asymmetric, if we
know how to Studentize. One such problem is discussed in Loh (1984).

On the other hand, I believe that the idea of looking up standard tables using
adjusted levels has intrinsic merit on its own, and I will present a simple way of
doing this which does not look up tables backwards and does not involve difficult
analytic manipulations. It turns out that, under the “smooth” model of Hall,
this method yields one-sided intervals that are second-order equivalent to the
STUD and ABC methods and two-sided intervals that possess coverage errors
which are an order of magnitude smaller than those of all the methods examined
in the paper. Furthermore, it requires no more bootstrap sampling than the rest.

The method I propose has its origin in the “calibrated” method introduced in
Loh (1987), and the basic idea is as follows. Starting with any reasonable interval
procedure, bootstrap its coverage probability «(a). (This is a distinct departure
from the other bootstrap recipes because the latter all call for bootstrapping the
distribution of a statistic.) After the bootstrap estimate #(a) is obtained, a
corrected a* is computed that is then used in place of « in the original formula.

'Work begun while visiting the T. J. Watson Research Center for a year as an IBM Junior
Faculty Research Fellow. Research also partially supported by NSF Grant DMS-85-02303.



