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TWO-STAGE BANDITS

BY MURRAY K. CLAYTON AND JEFFREY A. WITMER
University of Wisconsin and Oberlin College

Two stochastic processes, or “arms,” that yield dichotomous responses
are available for use in a two-stage decision problem. During the first stage,
arms are chosen sequentially; the resulting observations are discounted by a
fixed value B. A single arm must be -used in the second stage, in which
observations are not discounted. The decision to end the first stage is based
on the data obtained. Optimal strategies are considered in the presence of the
random discount sequence that arises in this setting. This extends the work
of Berry and Fristedt (1979).

1. Introduction. Consider a “two-stage bandit” problem. Assume that there
are two “arms” (or machines, treatments, etc.) that yield dichotomous responses
—success or failure. The characteristics of the arms are at least partially
unknown, and so learning can take place. Observations or “pulls” on the arms
may be made in two “stages.” In the first stage, pulls can be made on both arms,
but in the second stage, all pulls must be made on the same arm.

We consider sequential strategies for this problem. [Nonsequential strategies
for the two-stage problem are discussed in Clayton and Witmer (1986) and
Witmer (1986)]. In this context, a strategy is a decision rule that specifies, for
any history of pulls and their outcomes, which arm to select for the next pull.
When the first stage has not yet ended, a strategy must specify whether to
continue the first stage. If the first stage is ended, the strategy must specify
which arm is to be pulled throughout the second stage. Note that the first-stage
length, denoted here by K, may be random. We allow for the possibility that the
total number of pulls to be made, N, is not known at the onset.

Let X; denote the outcome of the ith pull of arm 1; let Y; denote the
corresponding quantity for arm 2. We assume that the sequences X, X,,... and
Y,,Y,,... are independent of each other. The success rate on arm 1, 6,, is
assumed known, whereas the success rate on arm 2, 6,, is unknown. Information
regarding the effectiveness of arm 2 is summarized by a prior distribution, 7, on
0,. Conditional on §;, the results on arm i are assumed to be independent;
unconditionally, they are exchangeable.

We consider discounting of first-stage successes by a factor 8, where0 < 8 < 1,
such that each success in the first stage has utility 8, whereas a success in the
second stage has utility 1. “Optimal” strategies are defined in this setting to be
those that maximize the total expected discounted utility. When B8 = 1, this
setting coincides with that of a one-armed bandit [see Berry and Fristedt (1979,
1985)]. A two-stage problem with a sequential choice of first-stage length has also
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been discussed by Petkau (1978), wherein first-stage observations are discounted
by an additive “cost per observation,” rather than by a multiplicative factor, 8,
as applies to the current setting. In a broader sense, the current model can be
viewed as a modification of the two-stage models of Canner (1970) and Witmer
(1986). This issue is discussed in further detail in Clayton and Witmer (1986). See
Berry and Fristedt (1985) for a discussion of other approaches to two-stage
problems.

Ideally, we would give an explicit specification of an optimal strategy for any
0,, m, B and distribution for N. However, this is next to impossible unless N is
known and is small. In most cases the determination of optimal strategies will
typically require the use of a computer. Consequently, knowing the properties of
such strategies will be helpful in reducing the number of strategies that must be
considered in such an explicit determination. Therefore, we give a partial
characterization of optimal strategies and of optimal values of K.

Our main result is a generalization of Theorem 2.1 of Berry and Fristedt
(1979). We consider the case 8 < 1, which stands in contrast to the case 8 = 1.
This leads to a discussion of random discount sequences.

2. Regular discount sequences. Let 7 denote a given strategy, and let 7;
denote the outcome, 0 or 1, for pull i when following 7. When the total number
of pulls to be made, N, is known the expected utility of 7 is

K N
(2.1) u(7|N) = E{ YBar+ Y 'ri}.

i=1 i=K+1
When N is unknown we suppose that N is a random variable with a probability
distribution, @, on the positive integers and that N is independent of the data
X;, Y;. In addition, we assume that E(N) < co. Let P(N = n|@) = p, and let
a, = P(N = n|Q). Let §;= B, for i < K and let 8, = 7, for i > K. Then the
expected utility of a strategy 7 is

o0

w(71Q) = ¥ u(rln)P(N = n|Q)

n=1

==§AJ(Z&W)
n=1 i=1

(2.2)

=§4wm§m}

=§mwmm.

Equation (2.2) lends an intuitive understanding to the role of the discount
factors a; and B: Each potential observation, 7, is discounted by the probability
‘that it is actually observed, a;. First-stage observations are also discounted by
the discount factor B. We refer to the sequence Ap = (Bay, Bay, .. .,
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Bag,akg.q,...) as the “effective” discount sequence; the sequence A =
(ay, ay,...) we call the “distribution” discount sequence.
An equivalent and more natural expression of (2.2) is

2.3) u(T)=E{fBTiai+ ¥ Tia,.},

i=1 i=K+1

suppressing the dependence on Q.

Intuitively, one might expect that the first stage would be used exclusively for
experimentation with the unknown arm. However, the following example shows
that it is possible for arm 1 to be optimal in the first stage.

ExAMPLE 2.1. Suppose @ is such that P(N=1)=09 =1 — P(N = 10).
Furthermore, assume that B €[0.923,1], 8, = 0.55 and that « is a uniform
distribution on [0, 1]. By evaluating all possible strategies, we can show that it is
uniquely optimal to pull arm 1 initially (in the first stage).

We are interested in those cases in which it is optimal to never use arm 1 in
the first stage. Berry and Fristedt (1979) have characterized such cases when
B =1, i.e., for the “standard” one-armed bandit problem. This characterization
involves consideration of regular distribution discount sequences.

DEFINITION 2.1. A discount sequence A = (a,, a,,...) is regular if, for each
m, YpYmio < Vi1, Where y,, = T2 a,. A distribution is said to be regular if it
yields a regular discount sequence.

Note that the class of regular distributions includes the geometric, discrete
uniform, binomial and Poisson distributions on N. Also note that if (a3, @,,...)
is regular, then so is {(a;, @;,,...), for all i.

Although Berry and Fristedt did not develop their results explicitly for the
two-stage setting under discussion here, it is possible to restate their Theorem
2.1 as follows.

THEOREM 2.1 [Berry and Fristedt (1979)]. For B =1, for all = and for all
0, € [0,1], there exists an optimal strategy under which arm 1 is never pulled in
the first stage if and only if the distribution discount sequence A is regular.

Theorem 2.2 extends this result to the general case of 0 < 8 < 1. Note that
Lemma 1.1 of Berry and Fristedt (1979) guarantees the existence of an optimal
strategy.

THEOREM 2.2. For all B € [0,1], if the discount sequence A is regular, then,
for all 0, and =, there exists an optimal strategy under which arm 1 is never
pulled in the first stage.
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PrOOF. Let p = E(0,|7). We give the proof for the case 6, > p. The case
0, < p proceeds in the same manner.

Let ¢; equal 1 or 2 according as arm 1 or arm 2 is used on the ith pull when
following a given strategy. Let 2, denote the set of all regular discount se-
quences (a,, a,,...) satisfying the condition vy, ,, = 0. The proof is by induction
on n. Clearly, the result holds for every member of ©,. Assume it holds for every
member of ©,_,. Consider A € Q,. If it is optimal to set ¢, = 2, then, by the
induction hypothesis, it is optimal to not use arm 1 in the first stage. Suppose
then that ¢, = 1 is uniquely optimal. Then, by the induction hypothesis, ¢, = 1
is impossible when K > 2. Furthermore, if ¢, = {, = 1, then setting K =0
dominates setting K = 1, so it must be optimal to take no pulls in the first stage
and to choose arm 1 for the second stage.

The only case remaining is that for some optimal strategy 7* there is a
random L > 1 such that the first stage consists of L + 1 observations, with
t,=1and ¢, = --- =¢;,, =2 We will now show that 7* is not better than
the following modification 7 of 7*: Set ¢, = -+ = ¢, = 2 and make the (L + 1)st
pull in the second stage. To do this, we compare the expected utilities of 7 and
T*,

L
u(r*) = E{ﬂalal +BY Yy, + H(L)YL+2}
i=1

and

L
) = B[R % Vi, + (LYoo
i=1
where H(m) = E[max{0,, E(6,|Y,,...,Y,)}] and, as before, Y, denotés the ith
observation on arm 2.
Let D = u(r) — u(7*). Using the fact that «;, = 1, some algebra will verify
that

L 00
D= B X (8%~ 0)(e - ) + (L) 0] ¥ (@ e
+(1 - B)6,.

Deﬁne Zi = (BY,' - 01)I(iSL) + [H(L) - 01]I(i>L} and let Bi = E(Zt). Then

D= E{ f Z(a;—a;y) + (1 - ﬂ)ol}

i=1
o0
=B,a, + X (Biyy — B))ay,, + (1 - B)6,.
i=1
If we define g, = u(r*) — B0,a; — 0,7, then g, is u(r*) minus the expected
utility for the strategy that takes exactly one first-stage pull on arm 1 and then
chooses arm 1 for the second stage. Since 7* is optimal, g, > 0. However,

[+ e] 0
& = E{ > Ziai+1} =By, + ) (Bir1 = Bi)Yisa-

i=1 i=1
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Now, if a;,, > 0 and if A is regular, then it is easy to show that (a,/y,) <
(a;41/%i+2)- Hence,

0<(ay/7:)8 < By, + ) (B;y;, — B)a;,;, =D - (1-B)#, < D.

i=1
The second inequality follows from the fact that B;,, > B,. To see this, consider
Biyy— Bi= E(Ziy - Z) = E[Ip_y{H(L) - BY} + I > gB{Yr - ¥}].

12

Note that the expected value of the last term is 0. As for the first term,
conditioning on L = i, we have

E[Ijy-n{H(L) - BY)IL = i] = E{max{6,, E(6,]Y,,..., X))} - Y|L = i)
= E{max{#0,, E(6,]Y,,...,Y;)} — 6,|L = i},
which, by Jensen’s inequality, is greater than or equal to
(24) max{E(8,|L =), E[E(6|Y,,..., V)L =i]} — E(6,|L = i).

But, E[E(6,|Y,,...,Y)|L = i] = E(6,|L = i), since the event L = i is an event
in the o-field generated by Y,,..., Y,. Thus, expression (2.4) is not less than 0,
and, therfore, B;,, > B,.

It follows that u(r) — u(7*) > 0. Hence, for A € Q,, there exists an optimal
strategy under which arm 1 is never pulled in the first stage. This completes the
induction. The result now follows from a suitable modification of Lemma 1.1 of
Berry and Fristedt (1979). O

Note that the effective discount sequence A, will not, in general, be regular,
even if A is. Theorem 2.2 states that even in such cases, for all §, € [0,1] and =,
there exists an optimal strategy under which arm 1 is never pulled in the first
stage as long as the associated distribution discount sequence is regular.

On the surface, it may seem as though Theorem 2.2 contradicts Theorem 2.1.
However, Theorem 2.1 applies to fixed discount sequences, insofar as A is fixed.
Theorem 2.2 applies to discount sequences that are random, in that A, depends
on the (data dependent) random quantity K. The choice of K through an
optimal strategy is such that the result of Theorem 2.2 does indeed hold. [A
discussion of random discount sequences of a different sort appears in Berry
(1983).]

As mentioned, Theorem 2.1 says that when 8 = 1, then regularity of A is both
necessary and sufficient for an optimal strategy to exist that never pulls the first
arm in the first stage. When B < 1, regularity is not necessary: For example, if
B = 0, then for all §,, = and any distribution @ on N, an optimal strategy exists
that never pulls arm 1 in the first stage. A somewhat more elaborate example is
as follows.

ExAMPLE 2.2. Suppose Q is such that P(N =3)=b=1— P(N = 1). This
yields a distribution discount sequence of the form A = (1, b, b,0,0,...), which
is not regular when 0 < b < ;. However, for any given 6, and =, if B <
bE[max{6,, E(6,|Y,)}1/[0, + E(6,)(1 — b)], then there is an optimal strategy
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under which arm 1 is never pulled in the first stage. This may be shown by
evaluating the utility of all possible strategies and eliminating those that are
suboptimal.

3. Additional properties of optimal strategies. In this section we discuss
further the properties of optimal strategies of the two-stage bandit when A is
regular, expecially in relation to similar properties of the “standard” bandit of
Berry and Fristedt (1979). We focus on the optimal first-stage length, K*. A
more detailed discussion of these properties can be found in Clayton and Witmer
(1987).

Consider first the standard bandit, or equivalently, the two-stage bandit with
B = 1. If there exists an n’ such that y, = 0, then the problem is “truncated” in
the sense that P(K* < n’) = 1. If, however, 8 =1 and «, > 0 for all n, then
there exist priors = such that P(K* > n) > 0 for all n.

We seek those situations for which truncation of K* occurs in the two-stage
bandit when B8 < 1. Clearly, this will occur if there exists an n’ such that vy, = 0.
Similarly, if P(8, < 6,) = 0 or P(8, > 6,) = 0, then K* is truncated. The follow-
ing theorem covers less trivial cases.

THEOREM 3.1. If B <1 and if A is'regular such that v, > 0 for all n, then
there exists an n’ < oo such that P(K* < n’) = 1.

Proor. If 8, = 0, then K* = 0, and the assertion holds. Suppose that 6, > 0
and that observations Y},...,Y, have been made on arm 2. If the first stage is
ended immediately, then the utility of doing so is

n
(3'1) EBK‘,“;‘"' Yn+1max{0l’ E(02|Y1’°'-’Y;1)}‘

i=1
If, instead, one additional observation is made on arm 2, and then the first stage
is ended, then the expected utility is, conditional on Y},..., 7Y,

n
(3.2) EleYi“t + Ba, E(Y, 4|7y, Y,)
+Yn+2E{maX{01’ E(02|Y1, ceey Yn+1)}|Y1’ ceey Yn}'

Let A (Y},...,Y,) denote the quantity in (3.2) minus that in (3.1). Theorem 7.2.5
of Ferguson (1967) may be modified to show that if there exists some n’ such
that for all'n > n’, A (Y,,...,Y,) < 0 almost surely, then P(K* < n’) = 1. We
show that such an n’ exists.

Note that y, > 0 for all n implies a, > 0 for all n. We may therefore write

A, (Y,)/api1 = BE(6,|Y,,...,Y,) — max{6,, E(6,|Yy,..., Y,)}
+ (Yn+2/an+1)(E[max{01’ E(8,)Yy,..., Y )} Yy, Y,]
(3.3) —max{0,, E(6,|Y,,..., Y,)})
‘ < (vo/a)(E [max{8,, E(8,]Y,,..., Y, )} Yy, Y]
—max{0,, E(8,|Y;,...,Y,)}) — (1 - B)6,.
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The preceding inequality results from the fact that, since A is regular, v,.,/
a, .1 < Yo/a,, and from the fact that

BE(6,)Y,,...,Y,) — max{0,, E(0,|Y,,...,Y,)}
= BlE(8,)Y,,...,Y,) - max (6, E(6,|Yy,..., Y,)}]
—(1 - B)max{6,, E(6,|Y;,...,Y,)}
< —(1-B)b,.

It will suffice to show that there exists an n’ such that n > n’ implies that the
right-hand side of inequality (3.3) is less than 0 almost surely. But this is
equivalent to the “binomial sequential test” of Ray (1965), Example 5.2, and
following the discussion preceding equation 5.15 of Ray (1965), it suffices to show
that lim, _, esssup Var(6,|Y,,...,Y,) = 0. This follows from a proof similar to
that of Theorem 4.1.4 of Chung (1974). O .

Note that n’ may be a poor bound on K*. If A is of a special form (say,
geometric), then an approach like that in Ray (1965), Example 5.3, could be used
to provide a better bound.

The previous theorem and the preceding discussion may be put informally as
follows: Except in degenerate situations, -K* is truncated if and only if 8 < 1.
Using this fact and the technique of backward induction [DeGroot (1970), page
277], we can prove Theorems 3.2 and 3.3. Theorem 3.2 extends Theorem 3.1 of
Berry and Fristedt (1979) and establishes a generalized form of monotonicity for
the two-stage bandit, whereas Theorem 3.3 confirms the intuition that we tend
to take more first-stage observations when B is large than when B is small.

THEOREM 3.2. If «’ is strongly to the right of = [as defined in Berry and
Fristedt (1979), Definition 3.2], and if A is regular, then u(«’, 8, 6,) > u(=, 8, 0,),
where u(n,8,0,) denotes the maximal utility for given =, B and 6,. Also,
u(m, B,0,) is an increasing function of B and 6,.

THEOREM 3.3. If B < pB’ <1, then K*(B) < K*(B').

4. Discussion. The ideas presented here can be applied in the setting of a
clinical trial in which two treatments, one standard and one new, are to be
compared. The discount factor 8 quantifies the relative importance of effectively
treating patients in the trial to effectively treating patients after the trial. This
idea is more fully considered in Clayton and Witmer (1986).

In a related work, Chernoff and Petkau (1985) have considered the “ethical
costs” associated with assigning the apparently inferior treatment to a patient
when the treatment responses are normally distributed. In the setting in which
treatment yields dichotomous response and both 6, and 6, are unknown, Simons
(1986) has parameterized such ethical costs. These costs have a similar effect to
that of our B.

When N is unknown, one is tempted to avoid the use of € by replacing N in
(2.1) with E(N|Q) and proceeding as if N were known. In Clayton and Witmer
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(1986), we investigate the effect of such practice in the nonsequential setting (i.e.,
when K is chosen before the first pull). We show that, if @ is regular, then such
a method yields a strategy that is nearly optimal. We conjecture that this is true
in the sequential setting as well.

Acknowledgment. The authors thank the referee for helping to clarify the
exposition.
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