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ON ESTIMATION OF A REGRESSION MODEL WITH
LONG-MEMORY STATIONARY ERRORS

BY YOSHIHIRO YAJIMA
Tokyo Institute of Technology

We consider estimation of a regression model with long-memory sta-
tionary errors. First, we estimate the regression parameters by the least-
squares estimator (LSE) and, next, those describing the correlation structure
of the error terms by using the residuals obtained from the LSE. Certain
regularity conditions introduced to develop the asymptotic theory no longer
hold in this model. In this situation we derive asymptotic properties of the
preceding estimation procedure. )

1. Introduction. We shall consider the regression model of the form
y.=X/B + ¢,

where {y,} is an observed sequence, X, = (x,..., x,), an l-vector of nonsto-
chastic regressors, {¢,}, a sequence of errors and 8 = (B,,..., 8;) are unknown
regression parameters. {¢,} is usually assumed to be correlated in time series.
Several authors have discussed estimation of the regression parameters 8 and
those which describe the structure of the correlation in the errors {e,}. Most of
them have focused on errors following a stationary ARMA process. Thus the
spectral density is bounded at the frequency A = 0 and the autocorrelation
decays to 0 very rapidly.

Yet in many empirical time series, especially those of economics and geo-
physics, the dependence between distant observations is so strong that ARMA
models are unable to express the spectral density of low frequencies adequately
[Mandelbrot and Wallis (1969) and Granger and Joyeux (1980)]. Models that can
represent such long-range dependence are also needed to deal with the problem
of violation of assumption of independence in robust estimation [Hampel,
Rousseeuw, Ronchetti and Stahel (1986)].

Hence attention has recently been paid to two parametric models that have
unbounded spectral densities at A = 0 and autocorrelations that decay to 0 more
slowly than that of an ARMA model. The first model, called a fractional
Gaussian noise, was introduced by Mandelbrot and Van Ness (1968) and has
been used to:analyze geophysical time series. It is a stationary Gaussian process
with mean 0 and covariance

Vi = Eegyyp = (C/2){Ik + 1177 — 21?7 + |k — 117},
where H is a parameter satisfying ; < H < 1 and C > 0. Hence v, satisfies

Yp ~ CH(2H — 1)k2H-2,
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792 Y. YAJIMA

as kB — oo. The spectral density is given by
f(\; H) = CF(H)fo(A; H),

where

fo(A; H) = (1 — cosA) i I\ + 2ka| "1 2H

k=—o0

and .
F(H) = {f_‘:(l — cosx)|x|"1"2H dx}—l

[Sinai (1976) and Geweke and Porter-Hudak (1983)]. Hence
f(A; H) ~ (CF(H)/2)I\|' 24,

as A = 0. The second model was proposed by Granger and Joyeux (1980) and
Hosking (1981) to analyze a time series that has an unbounded spectral density
at A = 0 but the first difference of which has a spectral density vanishing at
A =0.Let ¢(z) =1 — L2_,¢;2/ and 0(z) = 1 — £9_,0;2’. Suppose that ¢(z) and
0(z) have no zeros on or inside the unit circle and no zeros in common. For
0 < d < 1, we define the spectral density

f(A; d, 6,8) = Clo(e™)[*/]o(e*)(1 - )]

A stationary process with mean 0 and spectral density f(A; d, ¢, ) is called a
fractional ARIMA( p, d, q) process. The covariance satisfies

(1) v ~ 27C|6(1) /6(1) 'T(1 - 2d)/{T(d)T(1 - d)} R,
as & — oo and the spectral density satisfies

f(x; d, ¢,0) ~ Cl6(1)/6(1) A ~2¢,

as A - 0 [Hosking (1981), Theorems 1 and 2]. If we define the backward shift
operator B by Be,=¢,_, and the fractional difference operator v¢ by a
binomial series,
o0
vi-1-B)= T ()",
ok

a fractional ARIMA( p, d, q) process {e,} satisfies
¢(B)v%, = 6(B)a,,

where the white noise {a,} consists of uncorrelated random variables. Hence this

model is a generalization of Box and Jenkins’ ARIMA model [Box and Jenkins

(1976)].

. These two models are long-memory stationary models since their autocorrela-
tions are not absolutely summable. Throughout the rest of this paper we discuss

estimation of the regression model when {¢,} is a long-memory stationary

process. In our procedure we first estimate the regression parameters 8 by the
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least-squares estimator (LSE) and, next, the parameters that describe ¢, by using
the residuals obtained from the LSE.

Since the spectral density of the errors is unbounded, certain regularity
conditions introduced to develop the asymptotic theory no longer hold. We shall
investigate how our estimation procedure behaves asymptotically in this situa-
tion. In Section 2 we first derive a sufficient condition for the strong consistency
of the LSE of B. Next, we consider a polynomial regression, X, = (1, ¢,..., t'" 1y
and evaluate the limits of the covariance matrices of both the LSE and the best
linear unbiased estimator (BLUE) in order to show how well the LSE works.
Then it is shown that the LSE is not asymptotically efficient but achieves a high
relative efficiency for polynomials of lower order.

In Section 3 we mainly consider an ARIMA(0, d,0) process and discuss the
asymptotic properties of the estimators for the parameters that describe ¢, And
we show that even if B are unknown, the estimators have such properties as
strong consistency and asymptotic normality under some condition on X,.

2. The asymptotic properties of the LSE of the regression parameters.
The strong consistency of the LSE in a regression model has been discussed in
various situations of {¢,} such that {e,} is independently, identically distributed,
a martingale difference and a stationary process with a bounded spectral density.
[See Anderson and Taylor (1976, 1979), Lai and Robbins (1977), Lai, Robbins
and Wei (1978, 1979) and Solo (1981).]

Here we consider a stationary process {¢,} with a spectral density f(A) of the
form
(2) f(A) = f*(A\)/11 e 0<d<y,

where f*(A) is a nonnegative bounded function. If f*(A) is nonzero in some
neighborhood of A = 0, -f()A) is unbounded at A = 0 and behaves like

f(A) = O(A|=%9),
as A — 0. We derive a sufficient condition on X,, which assures the strong
consistency of the LSE by tracing the procedure developed by Solo (1981).

Let Y, = (y,---, yr) be the sequence of observations and ,éT =
(By1s---» By,r) be the LSE of . Then

T
ﬁT = V! Z X, Y

t=1
where

T
Vr= Z XX/
t=1
Assume that V; is positive definite. ,éT can be expressed as

3) Br=PBr_, + Vi'Xrer,

er=Jr— Xf‘ﬁT—v
for T > [ + 1. Here we introduce the notation used throughout this paper. a is a
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vector of an appropriate dimension in each context with llaf] = 1, where |a]|
implies the Euclidean norm. For any matrix A, denote the minimum eigenvalue
of A by A, (A). K stands for general constants being independent of T and d,
but is not always the same one in each context.

Now we have the following result.

THEOREM 2.1. Let {¢,} be a stationary process with the spectral density f(d)
of (2). Assume that f*(\) is a nonnegative bounded function. And assume

@) p,/t?? > 0 ast - oo,
(i) X524 log? - £297 /p, | < oo,
where p, = A . (V,). Then

lim ;=B a.s.
T— o0

PROOF. Noting (3), we have only to show that
(4) p- lim ﬁT = B ’
T—- o0

and the almost sure convergence of X7_,, 1€:¢; as T' - oo, where ¢, = o'V IX,.

Define ¥, by
§, = /’"’ e /|1 — eiN2d g) |

And let R, and RT be the T X T matrices with (i, j)th entry y,_; and ¥,_,,
respectively, and I, be the T X T identity matrix. Then boundedness of f*(A)
* and relation (1) imply
(5) Ry < KR, < KT*,,
where the inequality is defined in the positive definite sense. Hence

Var(a’f;) < KT??/Vy .

Then (4) is obtained by condition (i). Next, we shall derive the a.s. convergence of
T ,..C.e,. Define S, » by

n
Sm.,n = Z (P

t=m+1

for any cbnstants {c,}. Using the same method as that of Solo (1981), page 690,
and noting (5), we find

n
©) ES:,<Kn¥ ¥ cif,
t=m+1

where o} = (1 + X,/V,21X,). Next, following the procedure of Stout (1974),
Theorem 2.3.1, page 18, with relation (6) we obtain

m+r
(7) E{ max S2 m,,,-} < K(log4r/log2)’(m + 2r)** ¥ c22.
l<isr t=m+1
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Finally, if
0
(8) Y, log% - t2%%? < o0
t=1+1

is satisfied, S, 5 is shown to converge as. as T - oo by the method of subse-
quence [Stout (1974), page 20] with relation (7). Condition (ii) assures that c,
satisfies (8), completing the proof. O

REMARK 2.1. Theorem 2.1 also holds for a stationary process with y, =
O(|k|?%" 1) as k — oo, as is seen from the proof.

Now we put
T
ml= ) x,x,;.
t=1
The following conditions are often imposed on x,; to investigate the asymptotic
properties of the LSE.
(C,) The limit
piy = Jlim MZ/(lxlrllx)lir)
exists for every i, j, 1 < i, j < [, where ||x||; = (m],)'/2
(C;) p is nonsingular where § = [p;;].

Then we have the following result.

COROLLARY 2.1. Under (C,) and (C,), if
0 < liminf|lx;|2/t8, i=1,2,...,1,

t— o0

for some § > 2d, then

TanzoﬁT =B a.s.

PrOOF. Let

D, = diag(||x,ll,, %2l - - 1,1l
and
~ G,=D/'V,D .
Then for any a,
aVa = X i(G,)a’Dla > A (G,) min [EAFS
1<i<!
which means
Be= A pin(G,) min ||x|2.
1<i<l

Hence

liminfp,/t% > A;.(5) liminf lminl||xi||f/t§ > 0.

<i<

t— o0 t— o0
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Therefore, p, satisfies conditions (i) and (ii) of Theorem 2.1. O

For example, x,; = cos;t, sin »;t or t'"!, 1 < i < [, satisfies the assumptions
of Corollary 2.1. [See Anderson (1971), pages 581-582.] In the special case of a
stationary process with y, = O(|k|~%), § >0, and I=1, x, =1, the strong
consistency of the LSE, that is, the sample mean, is proved by Doob (1953),
Theorem X.6.2, page 492.

Now we turn to the next problem. We pay attention to the polynomial
regression, X, = (X, X;9,...,%X,) = (1, ¢,..., 1Y, namely,

(9) Ye=By+ Bot + - +Bltl_1+8t-

And we assume that f*(\) in (2) is a positive continuous function, a stronger
condition than f*(A) is a nonnegative bounded function. Grenander (1954)
proved the asymptotic efficiency of the LSE relative to the BLUE under some
conditions. One of them is that the spectral density of the errors is positive and
continuous but our spectral density f(A) of ¢, diverges to oo at A = 0 because of
the term, 1/|1 — e™*|2% Hence we shall evaluate the asymptotic covariance
matrices of the LSE and the BLUE and see how the LSE works in our model.
First, we have the result on the LSE.

THEOREM 2.2. Let {y,} satisfy (9) and {e,} be a stationary process with the
spectral density f(A) of (2). Assume that f*(\) is a positive continuous function.
Then

lim DrE(fr— B)(Br — B)Dr/T* = 20f*(O)M'H(d)M ",
where the (i, j)th entries of M and H(d) are
my; = {(2i - 12/ - 1)}/ +j - 1)
and
hii(d) = [{(@2i = 1)(2) - 1)}’T(1 - 2d)/{T(d)T(1 - d)}]
11
X./(; ./(;x"‘y"ﬂx — y|2¢ " dxdy.
PROOF. We can assume that f*(A) = (1/27)|0(e™)|% that is, {¢,} is a
fractional ARIMA(O, d, q) process since we can apply the same method as

that of Theorem 2 of Grenander and Rosenblatt (1954) to a general f*(M).
Dy E(Br — B)Br — BYDy/T? is expressed as

(D7'V,D7') (D7 X+ Ry D5/ T} (D7 Ve D7) 7,
where X, is the T X I matrix with (i, J)th entry x;;. Then
lim D;'V,D;! = M.
T— o0
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Next, noting (1), we have
lim D;'XjR; X D7'/T? = |0(1)| H(d). ]

T—o0

Next, we shall consider the BLUE. This is an extension of the corollary of
Theorem 5.1 of Adenstedt (1974), who considered the case I = 1, i.e., estimation
of the mean.

TueoREM 2.3. Let f7.= (B, 1, By, 1s---» B, 1) be the BLUE. Then
Jlim DrE(Br — B)(Br — B)Dy/T* = 21f*()W™X(d),
where W(d) = (w,;(d)) and

[T(i - d)r(j - d){(2i - 1)(2, 1)}
{(TG-2d)I(j-2d)(i+j-1~- 2d)}

wij(d) =

PrROOF. Similar to Theorem 2.2, we can assume that f*(A) = (1/2'/r)|l)(e"")|2
Furthermore, we can assume that x,, = 1 and Xy = [1723(¢ - n),2 <j < I, since
the limit of DTE(BT BXBr — BYDy/T?¢ is the same as that of x,; = t/7,
1 <j < I Define XT_, 7y, by

T
Z'Fj = ZXBI,T’

Jj=1

for any constant x,. And put Pp(z) = _17 7271, Pp(z) = Z0_ 1277}, Sp(z) =
P,(2)6(z) and ST(z) = Pp(2)0(2). Then S;(z) minimizes

(10) (/2m) [ (e [/ = e[ an,

subject to the restraints
k-1

(11) S¢v(1) = ¥ (k - l)x,,ﬂo(k-l-n)(n, 1<k<l
n=0

Condition (11) is equivalent to that ¥7_,7,y; is an unbiased estimator of X}_,x;8;.
Now let n,(2), »=10,1,2,..., be the orthonormal polynormals obtained from
1, 2, 2%,..., by the Gram—Schmldt procedure, where the inner product of two
polynormals 8(2), h(2) is defined by

(g, k) = (1/27) [ g(e™h(e™) /11 - ™2 dA.
And let ¢, be the right-hand side term of (11). Then the minimum of (10) is
EWr(d)é,

where &= (¢, ¢y,...,¢;) and Wp(d) is the ! X I matrix with (i, j)th entry
YT+ aq(~1(1)n/~ V(1) [Grenander and Rosenblatt (1954), Theorem 1]. Put x; =
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[lx;||7w;/T?. Then, using Lemma 2.1 stated in the Appendix,

l
TILIIZQ Var| ), wi”xi”TlBi,T/Td

i=1

= lim T%D;(T*D;'W,(d)D;Y) ' DyleT?

T—
=0%2(1)e'W-Y(d)a,

where & = (w,, wy, ..., w;)’. Hence the proof is complete. O

Hence we see the variances of both estimators become larger by 7'%¢ than
those of a stationary process with a positive continuous spectral density (cf.
Grenander (1954)].

We define the relative efficiency of the LSE by

e(d) = Th;{f:odet[E(ET - B)(ET - B)']/det[E(gT - B)(ﬁ?‘ - B)']
Then Theorems 2.2 and 2.3 give, for example,

(1+2d)T(1 +d)T(2 - 2d)
e(d) = T1=d) -, l=1,

36T%(2 - d)
{1 +2d)%3 +2d)(8—2d)T%(1 + d)T3 - 2d)}’
The actual values of e(d) are listed in Table 1.
The value for d = 0.5 is defined by lim, _, o ;e(d). It is seen from Table 1 that

the LSE is not asymptotically efficient and its performance becomes poorer for
! = 2 than [ = 1 but achieves a high relative efficiency.

REMARK 2.2. The spectral density f(A; d, ¢,8) of a fractional ARIMA
process clearly satisfies the assumptions of Theorems 2.1-2.3. The spectral
density f(A; H) of a fractional Gaussian noise also satisfies these assumptions
since it can be written in the form f(A; H) = f*(A\; H)/|1 — e*?#~! with a
positive continuous function f*(A; H) [cf. Geweke and Porter-Hudak (1983),
Theorem 1].

3. Estimation of the parameters of the errors. In this section for simplic-

ity let {e,} be a fractional ARIMA(O, d,0) process. Then its spectral density

TABLE 1
The relative efficiency e(d) of the LSE

INd 0.0 0.1 0.2 03 04 0.5

1 1.000 0.995 0.987 0.982 0.985 1.000 ‘
1.000 0.986 0.956 0.925 0.901 0.889( = £)
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f(A; d) is written as f(A; d) = 02/(2vr|1 ”‘]2‘1), where o2 is the 1nnovat10n
variance of the white noise, that is, o = Ea?. And we assume that o2 € (0, )
andde D=[6§1/2-8],0<d6< % We shall construct an estimator for (d,e2)
by substituting ﬁT for the unknown parameters 8. Let d be the d that
minimizes

2

Ur(d, Br) = (1/20) [* | T (3~ XiBr)e™| /8(x; d) dA,

bt 4

t=1

where g(A; d) = |1 — e"‘l =24 Define 62 = Up(dy, Br)/T.

In the case that 8 is known, despite ‘the lack of certain regularity conditions
introduced by Walker (1964) and Hannan (1973), we have derived the strong
consistency, the limiting distribution and the rate of convergence of this estima-

tor [cf. Yajima (1985)]. )

Now we shall show that the same asymptotic properties still hold under some
assumptions on X even if B is unknown. Hereafter, let d, and 62, be the true
values of d and o2, respectively. We introduce the following condltlons

(C;) {e,} is an ergodic process.

(C,) E{a)%,_.}), E{a}|%,_1}, E{a}|#,_,} and E{a}|#,_,} are all constants a.s.,
where %,_, is the sub o-field generated by {a,|s <¢— 1} and E{-| -} is
the conditional expectation.

Then we have the strong consistency of (d~T, 6’: r). The key to proving the result
is to derive the rate of a.s. convergence of f;.

THEOREM 3.1. Under (C,)—(C,), if there are 0 < K,, K, < o0 and §;=> 0
such that

Kin% < |lxll, < Kon®,  1<is<l,
then

lim dy=d, a.s. and lim 62;=02, a.s.
T—- oo T— o0

ProoF. First, we show that
Jim {UT(d Br) — Ur(d,B)}/T=0 as.,

and the conv"ergence is uniform in d for d € D. In fact,

{(Ur(d, Br) = Ur(d, B)}/T
T T T .
= ~(7T) " (Br - B)’Drf_ﬂ{ r X e,D;IX,,e‘“-m} /g(x; d) dA

/g()\; d)dA.

Lemmas 3.1 and 3.2 in the Appendix ensure that the first term converges to 0 a.s.

+(2T)" j — B) X,

-m

tm=1
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as T — oo and the convergence is uniform in d for d € D. The second term is
dominated by

K(ﬁT - B)'DTGTDT(ﬁT - B)/T,

which is shown to converge to 0 a.s. as T — oo by Lemma 3.1. Then the result is
obtained by applying the same argument as in Hannan (1973) to Up(d, 8)/T. O

Next, we consider the case of (9), the polynomial regression, and derive the
limiting distribution or the rate of convergence of (dy, 62 7).

THEOREM 3.2. Let {y,} satisfy (9). Assume the same conditions as in
Theorem 3.1.

() If 0<dy<1 and {a,) satisfies (C,), TY*dp— dy, 627 — 02,) is
asymptotically normal with zero mean vector and covariance matrix,
6/m? 0

4 bl
0 200’0 + K40

A=

where k,, = Eaj — 30,,.

(i) If dy = 1, then
(dp — do, 627 — 02,) = O,((log T/T)"?).
(iii) If 1< d, < 3, then
(d~7 - do’ ~¢12,T - az,o) = Op(l/Tl—Zdo)-
PrROOF. We shall prove only the properties of (JT — d,) since the results on
(62 7 — o2 ,) are obtained in the same way. We have
0 = UP(dy, Br) + UP(df, Br)(dr - do),

with |dj* — dy| < |dy — d,|, where Uf(d, B), i = 1,2 is the ith partial deriva-
tive with respect to d. Similar to Theorem 3.1, it is enough to show

(12) Jim {(U®(d, ;) - UP(d,B)}/T=0 as,
and the convergence is uniform in d for d € D and
(13) - p— lim {US(do, Br) - UP(do, B)} /T = 0

[cf. Yajima (1985)]. Assertion (12) can be proved in the same way as in Theorem
3.1. Put A(A; d) = g7 (A; d) and let A)(A; d) be its ith partial derivative with
respect to d. Then

{US(dy, Br) — UD(dy, B)} /T?
(14) =7 Y(Br— B)Dy/T*}Z, 1
+(27) {(Br — B)'Dy/T%}Zy 1 {Dr(Br — B)/ T},
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where

2, =T% 2 [

-

T T
{ Y ¥ D;les,ei(“s)"}h<l)()\; d,y) dA,

s=1t=1

and
- T ) T ,
Zyr = T* V2D [ { > Xse”’"}{ r X,’.e“"‘}h(l’(A; dy) d\ D7,
~T\s=1 t=1

Now we shall evaluate the right-hand terms of (14). First, using (5), (C,) and
(C2 )’
(15) Dy(Br— B)/T* = 0,(1).

Next, we evaluate Z,  for each case of d,. Define

w T ) )
§T,t(j) = (2ﬂ)_1f ( Z x,je""‘/||xj||T)h(l)(;‘; dy)e™ dA,
~7\s=1

7 2
Hp (M) =(1/2) > xsje_m /117

s=1

Let Z, 7(j) be the jth component of Z, ;. Then, using (5) and Parseval’s
formula,

T
Var(Z, £(j)) < KT*%' ¥ 8. .(J)

t=1

< KT4do~1g~1 /_"ﬂHT, SN{AO(A; dg))* dA

= KT*%"'Z, r(j), say.
Since Z, (/) is bounded,
(16) lim T4d°_1Z3,T(j) =0,

T-oo

for dy < 1. Next Hy, ()) has the property
ﬂ'_l"]" HT’j(A)dA= 1, HT’]-(A) 20, —ﬂs}\sﬂ,

lim sup Hp ;(A) =0, 1<j<]|,

Tooo g<r<n

for any ¢ > 0, which is the same as that of the Fejér kernel. Hence
. . 2
Jim 2, 7(j) = (A0 dy)}’ =0,

for d, = 1. Finally, we consider the case of < d, < 1. Noting that {AV(}; d,)}?
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satisfies a Lipschitz condition of order 1 and that
Hp i(A) < Ty2, -7<A<m,
Hp (\) <K/(TX), O<A<m,
we have
Z,,7(j) = O(10g T/T)

[Zygmund (1959), Chapter 3, Theorem 3.15]. Thus relation (16) also holds for
1< d, < ;. Hence

(17) p— lim Z =0,
T

for 0 < d, < 3. Now we consider Z, ;. Let Z, T(‘j, k) be the (j, k)th entry of
Z, r and define Z, 1(j) by

Zy 1(j) = 212412 [ " Hy (\)|RO(A; do)| dA.

Then '

(18) |Zo,2(Js )" = 2o, 2(5) 2, 2 (k)
and

(19) " Zy7(§) = 0(1/T"?)

[Zygmund (1959), Chapter 3, Theorem 3.15]. Noting (15)-(19), we complete the
proof of (13). O

REMARK 3.1. Theorems 3.1 and 3.2 can be easily extended to the estimation
of (d,¢l, &,,..., ¢y, 0y,...,0,) of a general fractional ARIMA(p, d, q) model
with 0 < d < 1. And as is seen from its proof, if 0 < d, < %, Theorem 3.2 still
holds for {X,} satisfying the assumptions of Theorem 3.1.

REMARK 3.2. Fox and Taqqu (1986) recently considered the model,
=B +¢,

where {¢,} is a stationary Gaussian process and its spectral density f(A; )
satisfies f(A; 8) ~ |A|"*®Ly(\) as A > 0 with 0 < a(f) <1 and L)) varies
slowly at A = 0 and 6 is a vector of unknown parameters. f(A; @) includes the
spectral densities of a fractional Gaussian noise and a fractional ARIMA process.
They proved the strong consistency and the asymptotic normality of the same
estimator for @ as ours. Herce, combining their results with our consideration,
we can show that Theorems 3.1 and 3.2 also hold for a stationary process with
- spectral density f(A; §). Furthermore, if we assume that {e,} is Gaussian, a
stronger condition than (C,) and (C,), the estimator is asymptotically normally
distributed.
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APPENDIX

LEMMA 2.1.
Tli_xgz:° T2D;'W(d)Dg;! = W(d).

ProoF. We have

T’,,(Z) == z "lu,;;—jzj/"v(d)’
Jj=0

where
M, ;= -(f)l‘(f— d)I(k—d—j+1)/{I(-d)T(k - d+1)}

and
(A1) 02(d)=T(»+ 1)I(»+1-2d)/T*(v+1-4d)
[Hosking (1981), page 168, and Yajima (1985), Lemma 3.2]. Hence

i—1

,q(yi—l)(l) = kz §kL(i—l)—l;(v +1,d)/0,(d),
=0

where {§,} are the constants with §, = —1 and

v—1

Lm(V, d) = Z nv—l,v—l—j(j + l)m.
Jj=0

Then, using (A.1) and the relation
(A.2) (n+1)"'<T(n+t)/T(n+1) <nt}
for 0<t<1, n=123,..., and applying Lemma A.l in the following to
L, (v, d), we have the result. O
LeEmMaA Al
Irl-2d)r'(m+1-4d)

LM(Vz’ d) =~ F(l _ d)I‘(m +1-— Zd) Pmc,,_l(d) + O(Vm—d)’

where

¢
c(d)=1- % N, j*

j=1
ProOF. We only sketch the outline. Since
(A.3) N, ;= MNe—1,j ~ Me, eMe—1,¢—)> J=1..,t-1,
(A4) ct(d) = (1 - nt,t)ct—l(d)-
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Hence
F1-d)T(t+1-2d)
(A.5) D) = T era e 1o g =t
Next, let
Mm(”’ d) = E ny—l,kkm,
k=0
‘Ibm(”’ d) = Lm(”’ d) + Mm("’ d)’
$m(v,d) =L, (v,d) — M,(v,d).
Then, using (A.3),

Ym(v +1,d) = (1=, ,)¢(v, d)

T (N + (59, 500 ) 2,
tulv +1,d) = (147, )8(v, )

+ mE( A= )00, d) + (14 m,,)0,(0, ) 2.

Solving these difference equations with the help of (A.2), (A4) and (A.5), we have

IT(1 - 2d)T(m — d
Vm(?,d) = - mrfl(l— d?l‘()m(’—n2d) ! (m)er-s(d) + o(3m=9),

m!I'(1 — 2d)T(m - d)

gm("’ d) = - (
I'1-d)I'(m+1-2d)

Finally, we evaluate the term of the highest order, completing the proof. O

;l;l__]i)(l’ - Zd)C,,_l(d) + O(Vm_d).

LemMA 3.1. Under (C,) and (C,), if ||x;||, satisfies the same condition as
that of Theorem 3.1, then

Tlim (Dr/TY?)(Br— B) =0 a.s.

Proor. _\Let

S, = (I%l./n)(8;,. - 8;)-
Then (C,), (C,) and relation (5) imply
ES? < K/n'~2d,
Choosing » and n(m) so that (1 — 2d,)» > 1 and n(m) is the smallest integer
that satisfies n(m) > m’, we have

o0 o0
Y ESZ, <K Y m -2 < o,

m=1 m=1
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Hence
(A.6) lim S,,,,=0 as.

m— oo

Next, we show that max,, ) < » < n(m+1)/Sp — Su(myl cOnverges to 0 a.s. as m — o.
We have

max S,— S
n(m)sn<n(m+l)l " n(m)l '
= . max S —|lx: . — B8.)/n'/2
oy 92X 1S, = (B ey = )/
+ max X . —B8.)/n\72 -8
n(m)$n<n(m+1)|” J"n(ﬁj,n(m) ﬂj)/ "(m)l

Z,(1) + Z,(2), say.

Let V;1X,(j) be the jth component of V;"'X;. Then, noting V;"! = D;'G;'D;!
and the assumption, we have, with the help of (3) and (7),

|

< K{log4(n(m + 1) — n(m))/log2}*{2n(m + 1) — n(m)}*®

Y IV X (e /n'?

Jj=n(m)+1

E{Z,(1)}’ = E{ max

n(m+1)

X {12 2men/n(m)}) L (VX)) 0

i=n(m)+1

< K(log m)?/m»@~2do),

Hence
00
Z E{Zm(l)}2 < 0,
m=1

which implies lim,, _, ,Z,(1) = 0 a.s. On the other hand,

1Z,.2) | < (12l mem+ /1%l ngmy + 1)|Snmy |-

Hence it follows from the assumption and (A.6) that Z,(2) converges to 0 a.s. as
T — co. Thus the proof is complete. O

LEMMA 3.2. Under (C,)—(Cs), if ||x;||,, satisfies the same conditions as those
of Theorem 3.1, then

T T
{ >y ) e,D‘leei(“‘)"}/g(}\; d)dA=0 a.s,

t=1s=1

Tlgrr;o(l/Tl/z)f

-m

and the convergence is uniform in d for d € D.
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PROOF. Let

zp= (1) [ { ,é é e,xsje"“"“/nx,-nr} / &g(A; d) dA
and
8.(d) = (1/27) [* e~ /g(A; d) an.
Also let |

M
/' (Nid) = X (1= |nl/M)§,(d)e™.

n=-M
Since g7Y(A; d) is continuous with respect to (A; d'), we can choose M so that
187 (A d) = 83 (A; d)| < ¢ uniformly on —7 < A < 7, d€D. Then Z, is
bounded by

T 172 M
s“( )y e?/T) +127 X §,(d) - Inl/M)rp(n)|,

t=1 n=-M

where '
T-n

rr(n) = Z etxt+n,j/(”xj"TT1/2), nx>0,

t=1
T+n

=X et—nxtj/("xj"TTl/2), n<o0
t=1

[cf. Hannan (1971), page 774]. Hence it suffices to show that lim,_,  rp(n) =0
a.s. for any n. Define S,, , by

n
Sm,n = Z Ci&y,s

t=m+1

for any constants {c,}. Then, similar to (6) and (7), we have

ES: ,<K(n-m)’ Y ¢2

m,n =

t=m+1
and, hence,
2 m+r
E{ max S2 m+i} < K(log4r/log2)*(2r)’® Y ¢2.
l<i<sr t=m+1

Then we can show that lim,_, _r(n) = 0 a.s. in the same way as in Lemma 3.1.
O
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