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THE LENGTH OF THE SHORTH'

BY R. GRUBEL

Imperial College of Science and Technology, University of London

Let IQ,,( a) (0 < a < 1) denote the length of the shortest a-fraction of the
ordered sample X;. ., Xo. ...+, Xpp: 0, 1164,

Hn(a)=min{Xk+j:n—X,,:,,:lsksk+js n; (j+ 1)/nza}.

Such quantities arise in the context of robust scale estimation. Using the
concept of compact derivatives of statistical functionals, the asymptotic
behaviour of Ii,(a) as n — oo is investigated.

1. Introduction. One of the proposals of Andrews, Bickel, Hampel, Huber,
Rogers and Tukey (1972) for the robust estimation of location is the shorth, the
mean of those data points which constitute the shortest half or, more generally,
the shortest a-fraction (0 < a < 1) of the sample. It turned out (Andrews,
Bickel, Hampel, Huber, Rogers and Tukey [(1972), page 50] and Shorack and
Wellner [(1986), page 767)]) that its asymptotic rate is only n~'/? and also that
the limiting distribution is not normal.

In the present paper a similar procedure is investigated in the light of scale
estimation: We consider the length of the shortest interval which contains at
least a fraction a of the sample. Interestingly, the asymptotic rate is n~'/% now
and the limiting distribution is normal. The resulting scale estimators are outlier
resistant and have the desirable invariance and equivariance properties. Dif-
ferences of symmetrically located order statistics are often used as robust scale
estimators. Shortest a-fractions yield estimators with the same asymptotic
behaviour, but with breakdown point twice as high; see Section 4.1 for details.

The length of the shortest a-fraction may be regarded as a functional of the
empirical distribution function; an asymptotic normality result for the latter
exists. We obtain our result by decomposing this functional into two factors
which are sufficiently smooth near the respective limits to permit local replace-
ment by linear operators (Propositions 8 and 9). To make this rigorous we use
the concept of compact differentiation of statistical functionals introduced by
Reeds (1976). Indeed, one motivation for this paper is to give another example of
the simplicity and usefulness of this method; see also Fernholz (1983), Reid
(1981), Esty, Gillette, Hamilton and Taylor (1985) and Gill (1986).

Section 2 introduces the indispensable notation and states the result which is
then proved in Section 3. In the final section we compare our estimators with
established procedures and comment on assumptions and extensions.

2. Notation and the result. Let X,, X,,... be independent and identically
distributed random variables with distribution function F and density f. Further
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620 R. GRUBEL

let 0 < ay, < a; <1 be given. We assume that f satisfies the following condi-
tions:

f > 0, f increasing on (— c0,0) and symmetric about 0,
(1) f’existsand f’ > cyon (a, b), where ¢y;>0and —c0 <a<b<0,

2F(a) <1—-a;,1 — ay <2F(d).

Symmetry about 0 is of course assumed for notational convenience alone. Since
all procedures considered here are shift invariant, 0 can be replaced by an
arbitrary real number without changing the results; see also Section 4.3. Under
these conditions F and the corresponding concentration function G,

G(\) = sup{F(x + ) — F(x): x € R},
have unique inverses, ‘
F Y y)=inf{x: F(x) >y}, O0<y<]l,
G Ya)=inf(A>0:G(A\) 2a}, O<ac<l,
respectively. Let H =G and let F,, G, and H, denote the corresponding
empirical quantities, '
F(x)=n"'#{i:1<i<n, X,<x),
G,(\) = sup{ﬁn(x +A) — F(x): x € R},
H(a) = inf{A > 0: G,(A) > a}.
Thus F, is the empirical distribution function and G, the empirical concentra-

tion function with inverse ﬁn. Obviously ﬁn(a) is the shortest a-part of the
sample X,,..., X,, i.e,

H,(a) = inf{X,

i+j:n

- X, pl<i<i+j<n,(j+1)/n2a},

where X, . ,,..., X,., is the ordered sample. For any closed interval I in the
usual two-point compactification of the real line, let D(I) be the set of all
functions f: I - R which are continuous from the right and possess left limits.
Similarly D,(I) denotes the set of all left continuous functions with right limits.
This implies that, for example, for I = [ — 00, 0], f(x) tends to a finite limit as
x > 00 or x > —oo for all f&€ D(I), D(I). Endow these spaces with the
Skorohod topology; see Billingsley [(1968), Chapter 3] for the case D([0,1]). In
the results given here, weak convergence —, refers to this construction. The
following is a slight reformulation of a by now classical result.

THEOREM 1. [See, e.g., Billingsley (1968), Theorem 16.4.]
n'/*(B, ~ F) -4 Z" onD([ -, x]),
where Z¥ is a Gaussian process with mean EZF = 0 and covariance
cov(Zf, Zf) =F(x Ay)— F(x)F(y).
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We are interested in a similar result for ﬁn, regarded as a random element
with values in Dy([a,, @,]). Choose 0 < A, < A, such that 2F(a) < 2F(-A,/2) <
1—a;, 1—a,<2F(—\,/2) < 2F(b). The following is an intermediate result
which might be of interest in its own right—it implies asymptotic normality for
the largest number of order statistics that can be fitted into an interval of given
length.

THEOREM 2.
n%(G, - G) »5 Z¢ on D[, \,]),
where ZC is a Gaussian process with mean EZ$ = 0 and covariance
cov(Z§, Z8) = 3F(A/2) + 3F(p/2) — 4F(\/2)F(p/2)
+F((A A p)/2) = F(AV p)/2) - 2.

The following is our main result.

THEOREM 3.
n/(H, ~ H) >, 2% on D[, o),
where Z¥ is a Gaussian process with mean EZH = 0 and covariance
a+B—-2aB+aAB—-—aVP
FH((1 + @)/2) f(FH((1 + B)/2))

cov(Zf, Z;’) = 21

3. Proofs.

3.1. We start with a few explanatory comments on the method used; see
Reeds (1976), Fernholz (1983) or Gill (1986) for a detailed account.

We plan to “reduce” Theorem 3 to Theorem 1 via Theorem 2. In the
more familiar real-valued setting, the following could be used. Given random
variables £,, £,,..., a constant @ € R and a measurable function g: R - R
which is differentiable at a, we know that n'/%(§¢, — a) =, §, implies
n'/%(g(¢,) — 8(a)) =4 &'(a)é, An analogue of this in a more abstract setting
requires a suitable differentiation concept first.

Let B,, B, be Banach spaces, a € B, and ®: B, - B, a function.

DEFINITION 4. The function ® is compact (or Hadamard) differentiable at
a if there exists a linear and continuous function ®/: B, — B, such that

1
Z[@(a + hx) — ®(a)] — ®x)|=0

lim sup
h—-0 x€K

for all compact K C B,.

For Proposition 5, let X, X, X,,... be B,-valued random variates, i.e.,
measurable with respect to the o-field generated by the norm topology. Let 7 be
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a second topology on B, with Borel o-field 5# and the properties that every
7-open set is || - |-open and that for fixed a € B,, a € R, the functions

XxX—>x+a, X = ax

are (¢, 5 )-measurable. We further assume that all ® o X,, n € N, are s#mea-
surable; on B,, —, refers to 7.

PROPOSITION 5. Assume that ® is compact differentiable at a and that B, is
separable. Then nV* (X, — a) =4 X implies n*/*[®(X,) — ®(a)] >4 DY X).

PrROOF. On a suitable probability space there exist random variates X,
and X’ with the same distribution as X, and X, respectively, such that
n* (X! — a) - X’ on a set A of probability 1 [this is the Skorohod-Dudley
construction; see, e.g., Pollard (1984), Theorem 4.3.13]. For each w € A the set
{(n"3 (X (w) — a): n €N} U {X'(w)} is compact, therefore the compact dif-
ferentiability of ® at a yields n*/%(®(X(w)) — ®(a)) » P X'(w)) in || - || and
hence also in 7. This implies n'/%(®(X,) — ®(a)) >4 ®.(X’) and the assertion
follows from the equality of the respective distributions. O

32. On C(I)=DJ(I)n Dy(I), the Skorohod topology coincides with the
topology generated by the supremum norm,

IFlleo = sup{| f(x)]: x € I},

which makes C(I) a separable Banach space. We avoid the measurability or
separability problems associated with D(I) by replacing F,, which takes its
values in D(I) — C(I), by a sufficiently close continuous function: Let F, €
C([ — o0, 0]) be such that

F(x)=F(X), 1<ix<n.
It may further be assumed that F, is a distribution function and strictly
increasing on {F, < 1}. Put
G,(\) =sup{F(x +A) - F(x): x€R}, Hy((a)=inf{A>0:G,(\) > a}.
Theorem 1 holds with F:, instead of Fn; also D[ — o0; oo]) can then be replaced
by C([— o, ).
LEMMA 6. n||G, — én”oo < 2 on a set of probability 1.

PrROOF. The set of those points in the underlying probability space for which
no two random variables X; coincide has probability 1, and on this set F, and F,
differ by at most 2/n in the mass they give to intervals. O

On D-spaces the || - ||-topology is finer than the Skorohod topology. As
a first consequence of this lemma, it follows that n/%(G, — G,) —»» 0 with
respect to the latter. To prove Theorem 2, it is therefore enough to show
%G, — G) =g Z% in (C[Ag, MD, || - lloo)-
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3.3. We need a technical lemma first. It shows that intervals of a given
length A with almost maximal probability must lie close to the optimal interval
[_ %}" %A]

LEMMA 7. Lete> 0 be such thata + ¢ < — 3A;, — A, < b — ¢ and put

u(A,x) = F(3A + x) — F(— 1A + x).
Then for all A € [Ay, A,] and all x € R, u(A, x) > u(A,0) — Lc,e? implies
2 < [ea™(u(A,0) — u(A, x))] "~

ProoF. Because of u(A,x)=F(GA+x)+ FGGA —x) — 1 =u(A, —x), it

suffices to consider x > 0. Also
(8/9x)u(N, x) = f(3A +x) = f(— A + x) = f(GN + x) = f(3A — x);

thus x — u(A, x) is decreasing on (0, o).
For all x € [0, €], A € [Aq, A4,

u(A,0) — u(A, x)

2 X
(2) —f f(=in+y) — (- é?\—y))dychIZydy=cox2.
Assume now that u(A,x) > u(A,0) — ic,e®. Since u is decreasing in x, the
inequality x > ¢ would imply

u(A, ) > u(A, x) > u(X,0) — cye,
but (2) yields

u(A, e) < u(X,0) — coe?.

So we must have x < ¢, and (2) applies and yields the assertion. O

The modulus of continuity of a function g € C(I) is given by
w(g’ >\) = Sup{lg(x) - g(y)l: x,y€l, lx —y < >‘}'
Define ®: C([ — o0, 0]) = C([A(, A,]) by
(2(g))(A) = w(g,A), Ag<A<A

Obviously ®(F) is the restriction of G to [A,, A,] and, in the same sense, ®
applied to F yields G,. It is easy to show that ® is continuous.

PROPOSITION 8. The function ® is compact differentiable at F and

®4(g)(A) = g(3\) —g(-4) forallg € C([ -0, w]), A € [Ag, \,].

Proor. Givent+ 0, A € [Ay, A,]and g € C([ — o, o0]), there exist x(¢, g, A)
and y(t, g, A) such that
| (¢, 8,A) — ¥(t, &, N)| <A,

O(F +tg) = (F +tg)(x(2,8,1)) — (F + tg)(¥(t, 8, N));
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for fixed g, A and ¢ small enough we must have x(¢, g, A) > ¥(t, &, A). By
definition of T,

®) (F+tg)(3N) — (F + tg)(—3A)
< (F+1g)(x(t, g 7)) — (F+tg)(x(¢,8,0)),

which implies
F(x(t,8,)\)) — F(x(t,8,\) =) = F(x(t,8,1)) - F(5(¢, 8, 1))
2 F(}A) = F(= 1)) - 488,
i.e., in the notation of Lemma 7,
u(A, x(t, 8, A) — 1A) = u(A,0) — 4£)8]l -
Now let K ¢ C([— o, o0]) be compact. Since it is‘bounded, Lemma 7 gives

4) lim sup sup |x(¢, g, A) — A|=0.
t—0 geK N\g<A<A,

The same arguments yield

(5) lim sup sup |¥(¢, & A)+ 3A[=0.
t—0 geK Ag<A<A

Using the definition of ® again, we see
F(3\) - F(—=1A) > F(x(t, 8,0) - F(5(t, 1)),
which, together with (3), gives
[1/e[(F(x(t, 8, 1)) = F(= 1)) = (F(a(t, 8, 1)) = F(A))]|
<|g(x(t,8,1)) - &(=3)| +|a(x(2, 8, 1)) - g(3M)]-
Therefore
[1/t[@(F + 1) - @(F)](N) - (2(31) — &(—1A))]
<|g(x(t,8,1)) — (30| +|g(x(2, 8. 1)) — (3|
+[1/¢[(F(x(t, 8, 1) ~ F(-10)) - (F(x(z, 8, 1)) = F(A))]|
< 2|g(x(t, 8 1)) — 8(3N)| + 2|8(x(t, 8, 1)) — &(=3A)].
Now the following property of compact subsets of (C(I), || - ||,,) is decisive:

lim sup w(g,8) = 0;
8-0g€kK

see, for example, Billingsley [(1968), page 221]. Because of (4) and (5), we can use
this to obtain from the preceding estimate

lim sup sup |1/t[®(F+ tg) — ®(F)I(A) - (8(A/2) - &(-A/2))| =0,

t—0geK Ag<A<)A,
which is the assertion of the proposition. O
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PROOF OF THEOREM 2. A linear transformation of a Gaussian process is
Gaussian again; Theorem 2 now follows on combining Theorem 1, Proposition 5
(7 is taken to be the norm topology) and Proposition 8. O

3.4. We have G(A,) < a, < a; < G(A,); note that G has a strictly positive
derivative on (A, A,). Define ¥: C([A, A,]) = D,([ay, a,]) by
_ [inf{A: g(A) 2@}, if{---}+* 2,
‘I'(g)(“)‘{xl, . ()= 2.
The Skorohod o-field 5 on D,(I) is generated by the projections =, t € I,
where 7,(h) = h(t) [Billingsley (1968), Theorem 14.5]. Since
V(g)(a) >N e g(p) <a foral p <A,

the sets (m,o¥) Y (A, 0)) are open in (C([Ag,’A\]), ||l *|l); hence ¥ is
J#measurable.

PROPOSITION 9. The function ¥ is compact differentiable at G and
¥5(8)(a) = —g(G(@))/G'(G (@) forallg € C([Ap,A]), @ € [ag, & ].

A similar result for a fixed and G(x) = x has already been given by Reeds
[(1976), Section 6.2.4]; see Gill (1986) for more general G. In a slightly different
framework this result has been obtained by Esty, Gillette, Hamilton and Taylor
(1985), so we omit the proof of Proposition 9.

ProoF oF THEOREM 3. Using Proposition 5 with B, = Dy([a,, a,]), 7 the
Skorohod topology, we obtain

nl/z(ﬁn - H) 9 ‘I’é(ZG)’

This limit is easily seen to have the structure displayed in Theorem 3.
Using Theorem 4.1 of Billingsley (1968), we see that it remains to show

o(n2(H, - H,),0) >0,

where p is a metric for 7; we may assume p(f, 8) < ||f — &l -

Let &, 8 > 0 be given. Since F', is strictly increasing on {¥, < 1}, G, is strictly
increasing and H, thereby continuous; thus, n'/?(H, — H) takes its values in
C = C([ag, a,]). We can therefore find a compact set K = K(8) in (C, || - ||,,)
such that

P(n'?(H,-H)€K)>1-8 forallneN.

Further there exists an 1 = n(¢, K ) such that «(f,27) < jeforall f € K. H is
continuously differentiable in some open interval containing [a,, a,], so there
exists an n, = ny(n, &) such that n,>1/n and n'%w(H,2/n) < 3¢ for all
‘n > n,. Lemma 6, together with some elementary manipulations, yields

|28, - B,)|_ < o(n2(H, - H),2/n) + 0% (H,2/n);



626 R. GRUBEL

hence choosing n as described, we obtain for all n > n,,

P(p(n?(H, - H,),0) > ¢) <. O
4. Comparisons and extensions.

4.1. A common class of scale estimates in the symmetric case is based on
X,—r:in— X, 1. n the difference of two “symmetrically located” order statistics
[Mosteller (1946), Section 3.B]; the semiinterquartile range, for example, is often
used in connection with Cauchy distributions. It turns out that this procedure is
asymptotically equivalent to our method in the sense that the limiting Gaussian
distributions are the same if r depends on n such that r/n - (1 — a)/2,
0<a<1, as n— oo. This seems to indicate that, for example, the right
endpoint of the shorth and the upper quartile differ only by op(n~1/%). However
the center of the shorth has rate n~'/3 [Rousseeuw (1983)], whereas the upper
quartile behaves as n=1/2,

Using this asymptotic equivalence and the results of Mosteller (1946), we
obtain the behaviour of our estimators in the case of normal distributions: As an
estimator for o an appropriately scaled shortest a-fraction has asymptotic
relative efficiency 0.37 with respect to the sample standard deviation if a = 0.5;
the best a is 0.86 with efficiency about 0.65. Linear combinations of these
estimators with different a’s yield even better values. The functional character
of our limit result is important in this context; see Chernoff, Gastwirth and
Johns [(1967), Section 3]. For the Cauchy family a = 0.5 is optimal, with
efficiency of 0.81 [use Haas, Bain and Antle (1970), Section 8].

Given an estimator T and a sample x = (x,,..., x,), let B(T, x, p) denote the
supremum of all distances ||T(x) — T(y)|, where the “corrupted” sample y =
(Y5---» ¥,) is obtained from x by changing at most a proportion p of the values
Xy,..., X,. The (finite sample) breakdown point of T at x is defined by

eX(T,x) = inf{p: B(T,x, p) = »}.

This notion is due to Hampel (1971) and has received some interest recently [see,
for example, Rousseeuw (1983), Huber (1984) and Davies (1987)].

Scale estimators based on X, _,., — X,.,., with r ~ gn have ¢} ~ q. Our
corresponding (i.e., same asymptotic variance) estimator is based on the length of
the shortest a-fraction with « = 1 — 24, its breakdown point being 2¢q [see also
Rousseeuw and Leroy (1988)]. For scale estimation a realistic notion of finite
sample breakdown should also include the possibility of “implosions,” i.e., of
T(x) becoming too small [Davies (1987), Section 4]; this means that we should
take g < 1/4 or equivalently a > 1/2.

4.2. Gill’s concept of compact differentiation tangentially to a subspace [Gill
~ (1986)] and a suitable modification of the notion of weak convergence [Pollard

(1984)] can be used to avoid the introduction of the Skorohod topology. In this
setting it is also possible to tackle the compound functional ¥ o @ directly.
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4.3. Our approach also carries over to nonsymmetric situations. Technically
we only have to assume that the location of (x(A), ¥(A)) is marked enough
(Section 3.3). Consider the following example: X, ..., X, are independent with
common density

f(x; 1, 0) = o7 "exp[ 07 (x — )] L, ),

where ¢ > 0 and p € R are unknown and ¢ is the parameter of interest. The
maximum likelihood estimator is

n
6,(xy,...,%,) =n"' Y x;, — min{x,,...,x,},
1

n'/%(6, — o) >4 N(0,02?) and {4,} is asymptotically efficient; see Lehmann
(1983), Example 6.6.10. The robustness performance of this estimator is devastat-
ing; it is even more sensitive to outliers than the notoriously nonrobust location
estimator, the mean.

The family { f(-; u, 0)} arises via affine transformations from a fixed density f
which vanishes on (—0,0) and is strictly decreasing on (0, ). Our approach
applies to this situation as well, resultmg in nV¥H, — H) >, ZH, where ZH is
Gaussian with mean 0 and cov(Z7, Z§') = (a A B — aB)/[ f(F l(oz))f(F“(,B))]
In the preceding shifted exponentlal case the best asymptotic relative efficiency
with respect to {6,} is obtained for a = 0.795; it is 0.65 and the corresponding
breakdown point is 0.205.

Acknowledgments. I would like to thank Laurie Davies for many interest-
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and a referee provided helpful comments on the first draft of the paper.
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