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MOST POWERFUL INVARIANT TESTS FOR BINORMALITY

BY ZBIGNIEW SZKUTNIK
University of Mining and Metallurgy, Krakow

We investigate the problem of testing multinormality against alterna-
tives invariant with respect to the affine group of transformations G and
against left-bounded alternatives defined by Szkutnik. The last problem
remains invariant under a suitably chosen subgroup G* of G. Using Wijsman’s
theorem we find general forms of the most powerful G- and G*-invariant
tests for multinormality which opens the way to an extension of the one-
dimensional results of Uthoff to the bivariate case. We find explicit forms of
tests against bivariate exponential and bivariate uniform alternatives. A
Monte Carlo approximation of the power of these tests is given. This provides
us with upper bounds for the power of all invariant tests for binormality
against the alternatives considered. The maximin property of the tests
obtained is also studied.

1. Preliminaries. Let X be a (p, n) random matrix. The columns X; of X
are assumed to be i.i.d. random vectors with a probability distribution absolutely
continuous with respect to Lebesgue measure in R?. Let GL(p), UT(p) and
P(n) denote, respectively, the set of nonsingular ( p, p) matrices, the set of
(p, p) upper triangular matrices with positive diagonal and the set of (n, n)
permutation matrices. G = GL(p) X #(n) X R? denotes the group of transfor-
mations R?" — R?" of the form gX = CXP + b1}, where C = [¢;;] € GL(p),
P& P(n), b=(b,...,b) € R? and 17 =(1,...,1) € R" Similarly, G* =
UT(p) X #(n) X RP denotes the group of transformations of the same form but
with C € UT(p).

Following Szkutnik (1987) we assume:

DEFINITION. The distribution of a random p-vector (Y,,..., Y,) is called
left-bounded if:

1. The marginal distribution of Y, is bounded from the left, i.e., there exists a
such that a < Y, with probability 1.

2. The conditional distributions of Y|Y;,, = a,,,,..., Y, = a, are bounded from
the left for i = 1,..., p — 1 and for any fixed values @ii1renes Qpe

The group G* is shown by Szkutnik (1987) to be the maximal subgroup of G
preserving left-boundedness of distributions of columns of X.

By (A}, #,G) we denote the problem of testing H,: X, ~ Ay (m,Z), i=
1,...,n,against H: X; ~F[U(X; - m)],i=1,...,n,where U € GL(p), m €
R? and # is a distribution function of a random p-vector. (A4, %, G*) denotes
the problem of testing H, against H, which are of the preceding form but with
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U € UT(p) and & being a distribution function of a left-bounded random
vector. Clearly, (A4}, #,G) remains G-invariant, (4, #,G*) remains G*-
invariant and any G- or G*-invariant test does not depend on, commonly
unknown, nuisance parameters m, = under H,,.

In the next section we use two easily verifiable lemmas.

LeEMMA 1. A density of a left-invariant Haar measure ¥"* on G* with
respect to a measure w, which is the product of Lebesgue measure in the space
R P(P*+V/2 containing UT(p), Lebesgue measure in the space R? and counting
measure in the n!-element space #(n), may be expressed as

p
dv*/dp = (nt) "' [1eir? 2
i=1

LEMMA 2. A density of a left-invariant Haar, measure on G with respect
to the product of Lebesgue measure on the space R”* containing GL(p),
Lebesgue measure on R? and counting measure on #(n) may be expressed as
d¥y/du = (n!)"|det C| 7?1

2. General form of the most powerful tests. Wijsman’s theorem [for the
discussion of applicability of the theorem, see Wijsman (1985)] implies the
following form of the most powerful G-invariant test ¢ for (4, #,G):

1, for F/F, <c,

(2.1) o(X) = {0, for F,/F, > ¢,

where

(2.2) F(X)= f pi(CXP + b1T)det C|"d¥"(g), i=0,1,
G

and p;, is the probability density function of X provided H,; is true (i = 0,1).

F(X) has been studied in the context of detection of multivariate outliers and
has been computed by Sinha (1984). However, there is a mistake in his result
caused by an incorrect form of the left-invariant Haar measure on G. The correct
result should have the form

(2.3) Fy(X) o |S] =172,

where n~'S is the sample covariance matrix based on X. For p = 1 we have
Fy(X) @ ¢~ D, which conforms with the result of Uthoff (1970).

Applying Lemma 2 to (2.2), making use of the equality p,(CXP + b1%) =
p,(CX + b1T) implied by the independence of columns of CX and performing the
integration over #(n), we get

(2.4) F(X)= f ) f p:(CX + b17)|det C|* P~ dbdC.
RP°/RP

In the remaining part of this paper we assume that %, which defines H,, is a
distribution function of a random vector having i.i.d. marginals. Because of the
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invariance the class of distributions constituting H, contains also distributions
with dependent marginals. Under the preceding assumptions we have p,(X) =
f(XD) ... f(XP), where X denotes the ith row of X. Formula (2.4) becomes
then

p
(25) F(X)= fn B fR P]‘[lf(c,.lx<1>+ cor 4 X®) + b7 )|det C|* P~ dbdC
i

and the integration over R?’ may be restricted to the set of C’s for which
c;=0,i=1,...,p. _

Let us introduce in (2.5) new integration variables U = [u;;] by u; =
Cits Uig = Cin/City e ooy Ujp = Cip/Cyy 1 =1,..., p. The Jacobian |0C/d0| =

|y, -+ u,P~' may be found by straightforward calculation. Denote by U
the matrix U in which u,; =1 for i=1,...,p and note that detC =
Uy, - u,det U. After some elementary calculation we get

(26) F(X)= f L{Ux)®] - L[(UX)*®]/det U*-»-* aU,
RP(P-D
where (UX)® is the ith row of the matrix UX and for a vector Y = (y,,..-, %)
L(Y) = /J(uy1 +0,..., uy, + 0)u|" " 2dud.
R N

The integral L(Y) has been analysed in the theory of one-dimensional
invariant tests for hypotheses concerning the shape of distribution and com-
puted for several f (compare Hajek and Sidak [(1967), page 51], Uthoff (1970,
1973) and Franck (1981)). For symmetric f it can be transformed to an integral
over the half-plane u > 0.

Now, let us consider the most powerful G*-invariant test for (/4,, #, G*). As
in the preceding, we have to find

F*(X) =f pi(CXP + b1T)|det C|"d¥"*(g), i=0,L.
G*
Applying Lemma 1 we get, similarly to (2.4),
- j—p—2
2.7 F*(X)= ACX + b1 e P=2dbdC.
(27) w(X) = [ fp(cx ) ITe

For H, we have py(Y) « exp{— Ltr YYT}, Y = CX + b1%. After some standard
transformations [compare Sinha (1984)] we get

p
(2.8) F(X) « |87 ¢=P72 [Tw4 9,
i=1
where W = [w;;] € UT(p) and WWT = S.
We now proceed to calculate F;*( X ). Using (2.7) we write a formula analogous
to (2.5), define V = [v,;] € UT(p) and replace the integration variable C by V
according to ©; = ¢;;, Vi1 = Cii11/Ciss s Vip = Cip/Cyiy i =1,..., p. The
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Jacobian of this transformation is |dC/3V| = [T7_,027". Let V be a matrix V
with v;; =1, i = 1,..., p. After some elementary computations we get

* — * (€3] I (p)
(2.9) F*(X) me_ML [(vx)®)] .- L*[(vx)®)] av,
where (VX)® is the ith row of VX and for a vector Y = (y,,..., ¥,),
L¥Y) = foo fwf(uyl + 0,...,uy, + v)u""%dudp.

The function L*(Y) has been analysed in one-dimensional theory of invariant
tests and computed for the normal and exponential distributions by Uthoff
(1970).

Formulas (2.1)-(2.3), (2.6), (2.8) and (2.9) give the general form of the tests
considered.

3. Testing binormality against bivariate exponential. We assume here
Z to be a probability function of a two-dimensional random vector with a
probability density function of the form (£, &,) = exp{— (&, + §;)} for £, >
0, £, > 0 and find the most powerful G*-invariant test for (45, %, G*).

Formulas (2.1), (2.2), (2.8) and (2.9) give for p = 2 the critical regions

n—-2
B1) (661 rg) LYX®) [ LH(XD +sX®)ds > g,
— 00

where 62, 67 and ry, are, respectively, sample variances for the first and for the
second row of X and the sample correlation coefficient. For the sake of simplicity
of further considerations, we replace the matrix X by the matrix Y which results
from X after a permutation of its columns putting the second row in an
increasing sequence. Of course, it does not change the value of the left-hand side
of (3.1). -

Following Uthoff (1970) we have L*(Y®) « (Y® — Y@ )~ (»~D where Y?®
denotes the sample mean and Y@, the minimal element of Y®. Consequently,
L*(Y® + sY®) is proportional to [Y® + sY® — (YO + sY®) , 17D, Let
Y = [y,,). We have (Y + sY®),_,, = v, + sy, if and only if y,, + syp; <y +
sy,; for i # [, which may be expressed in the form s > (y;; — ¥1;)/(¥a; — o) for
i>1land s < (¥ — Y1)/ (Y — ¥o) for i < L. Denote

‘_".l""’?ff(yu_yu)/(yzi—yzl): I=1,...,n-1,

(3.2) _ .
o= If:“,l (yll—yli)/(y2i—y2l)7 l=2,...,n,
and assume a, = — o0, @ = 00 and (+00) ! = 0.

Let further I' = {l: ¢, < @, [=1,...,n}, 2;,= YV — y,and 25, = Y® — y,,
I =1,..., n. The integral in (3.1) is then computed as the sum of integrals over
the intervals (g,, a;), / € T. This leads after some transformations to the follow-
ing formula which is equivalent to (3.1):

7o - Y@ [¢,/1—-r3 [/
(3.3) T = — - i < Cors
6,6y\1 — 1y O2lE
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where Iy = T, r25;'[(21 + 2,25) "7 = (2 + &2;) """ ] and c,, is a suita-
bly chosen constant. This test is analysed in Section 6.

4. G*-invariant testing binormality against bivariate uniformity. In
this section we find the most powerful G*-invariant test for (A5, #,G*), F
being a distribution function of a random vector uniformly distributed over
[0,1]2. In this case we have [see Uthoff (1970)] L*(Y®) « (Y@, — Y@ )~ (»~D
and (3.1) holds. Hence, L*(Y® + sY®) o [(Y® + sY®) .. — (YD +
sY®) . 17D, In Section 3 we have defined a,, & and found that (Y® +
sY®) . =y, + sy, if and only if @, < s < @, Similarly, one can prove that
(YO + sY®) . =y, + sy, if and only if n, < s < 7;, where

m= I?g;((yll_yli)/(yﬁ—yﬂ)’ I=2,...,n,

(4.1) n = ryjt;(yu—yu)/(yzi - %), ~l=1,..,n-1,
N, = 0, M = —o0.

As in the preceding, we assume the conventional equality (+ o0)~! = 0. Let us
further denote :

0y, = max{ny, a;}, 8, = min{7,, a,},
A= {(k, l) le < ékl; k,1l=1,..., n}.

Then the integral in (3.1) becomes the sum of integrals over the intervals
(0415 0,)), (R, 1) € A, and after some transformations we may put (3.1) in the

equivalent form
A 1w 2 |1/ (n—-1)
GyI"—r
< Cery

(4.2)

2 2
Y2, - ¥

(4.3 Ty = —
) v 6,6,)1 — r 6y Iy
where
1 —(n-
Iy = Z —_—{[(ym =) + Or(2ep — yzz)] (="

(k,Dyed Yok — Yau

- [(ylk —yu) + Ekl(y2k - y2z)] —(n—2)}.

For further investigation of this test see Section 6.

5. G-invariant testing binormality against bivariate uniformity. As a
third example we find the most powerful G-invariant test for (A4}, #, G), where
Z is a distribution function of a random vector uniformly distributed over
[0,1]2. Formulas (2.1)-(2.3) and (2.6) give in this case

n—1
(5.1) (861 -1r2) ja L(Y® + oYO)L(YD + (YD)t — 0" dtdv > ¢

and, following Uthoff (1970), we have L(Y®) a L*(Y®) a (YY), — Y2 )~ (=D,
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Applying the results of the previous section and the definitions (4.1) and (4.2) we
may write

L(Y® + oY®)L(Y® + tY®) « [(315 — y11) + 0( 221 — 321)] ~nh

X [(ylm - ylr) + t(y2m - y2r)] ~nmh

for v € (8,,,0,,) and t< (6,,,0,,), (k1) €A, (m,r)eA. It follows from
definitions (4.1) and (4.2) that
U [le!ékl] =R
(k,l)eA
and the intervals [8,,,8,,], (k, [) € A, have only endpoints in common. Let us

order these intervals with respect to increasing values of 8, denote the ith

R2 = U UMij!
i=1j=1

where « is the number of elements of A and M;; = I; X I;. Note further that the
function under the integral in (5.1) is symmetric with respect to the straight line
v = t, define M;; = {(v, ¢): (v, £) € M;; and ¢ > v} and denote by T;; the integral

over M,;, i #j, and by T;; the integral over M;;. We may then rewrite (5.1)
equivalently as

a—-1 a a 1/(n-1)
I o o A

i=1 j=i+1 i=1

To evaluate Tij denote a; = Y153y — Yy b= Yor(i) ~ Youiy & T Qi + Qk(i)l(i)bi’
& =a; + 0,,,bi» x=a;+vb; and y=a,+ tb, Introducing in T}; 1/x and
1/y as new integration variables we get finally

N

53 T 1 1 1\t
53) S ) o e P B
Similarly, for i # j,
—-n E,‘ Ej n—3 —n
T, = (bibj)2 f j; (by — bjx —5;) (xy)' " dydx,

&

where 8;; = b,a; — b;a;. For §;; = 0 this integral may be computed analogously
to T}; as
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For §;; # 0 we introduce new variables, say £ = 6;(bx)™!, n =§; H(b:y) 7,
and use the trinomial theorem on (¢ — 7 — £1)" 2. Then the integral becomes a
sum of products of elementary integrals. Changing summation variables we get
finally

o L (i

k=1 1=0

k k n—1-2 n—1-2
sl B )" _ (B ||| ( B |3

Note that formulas (5.3)-(5.5) remain true for i or j equal to 1 or n under the
convention (£ 00)~! = 0 and for b, < 0. If b, < 0, then ¢; > &,, but the variables
x and y are always positive. The common fa¢tor (n — 2)~! may be omitted.
Formulas (5.2)-(5.5) give the critical regions of the test which will be denoted by
Ty.

(5.5)

6. Properties of the tests and some approximations. As an almost
immediate consequence of the Hunt-Stein theorem, the existence theorem for
maximin tests and the results of Sections 3 and 4, we have the following

THEOREM. The tests Tg¥ and T are maximin tests for testing problems
considered in Sections 3 and 4, respectively.

To show that UT(p) satisfies the assumptions of the Hunt-Stein theorem a
slight modification of considerations from Lehmann (1950) is sufficient. For a
similar result for p = 1 see Hajek and Sidak [(1967), page 80]. It is a well known
fact that GL( p) does not satisfy the Hunt-Stein assumptions and it is not clear
whether Tj; is also a maximin test.

The tests T*, Tf and Ty have rather complicated form and it seems to be
very difficult to find their exact critical points. Instead, a preliminary Monte
Carlo analysis was carried out. Empirical critical points and empirical powers
were found in each case on the basis of 500 generated samples. Table 1 shows the
power of the test T for n = 10 against the bivariate exponential alternative
and, for comparison, the power of the two-dimensional Shapiro-Wilk test W,
derived by Malkovich and Afifi (1973). Table 2 shows, for n = 25, the power of

TABLE 1
expy, n = 10
o
0.05 0.10 0.15 0.20 0.25
T 0.84 0.90 0.95 0.96 0.97

W, 0.41 0.57 0.64 0.70 0.72
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TABLE 2
U,, n=25
a
0.05 0.10 0.15 0.20 0.25
Vi 0.84 0.94 0.98 0.99 0.99

cM 0.50 0.61 0.68 0.75 0.77

TABLE 3
U,, n =10

a
\ 0.05 010 015 0.20 0.25

Ty 0.18 0.33 0.43 0.53 0.59

the test T} and the power of the best of tests studied by Malkovich and Afifi
(1973) against the bivariate uniform alternative described in Section 4.

Numerical analysis of the test T}, caused some trouble. Formula (5.5) proved
to be numerically very unstable and even for n = 10 double precision had to be
used. The powers of the test T, for n = 10 against bivariate uniformity are
given in Table 3. For n = 25 even double precision was insufficient to compute
T;; according to (5.5) properly and we had to look for an approximate version of
Ty

Let us transform the matrix X and define a new observation matrix B, =
ML (X — X), where L, € UT(p) is the matrix defined by LTL, = nS~%, nX =
X1,17 and M, is an orthogonal matrix defined in Szkutnik (1987). The ap-
proximate test statistic will be based on B, which is affine invariant [compare
Szkutnik (1987)]. Hence, it will be G-invariant. Because of the invariance the
values of the test statistic computed for X and for B, are equal. Note that for B,
we have 6, = 6, = 1, r;, = 0 and the formula (5.2) becomes simpler. We omit the
details here and mention only that the approximate equality a* — b* =
k[(a + b)/2)* Y(a — b) is used for different a, b and % and, for large n, we
assume that (af + -+ +@})/" =max;_, ,a;fora;>0, j=1,..., k.

The statistic of the approximate version of the test T}, is found to be
W= W, = 8,/2 .

W s 8, J 1,...,aandj>z},

v ji

Ty, = max{Vi,

where
W, =b/(1/¢e + 1/%,), Vi=(Q1/¢e - 1/%,)/b;

are computed for the matrix B,. The powers of this approximate test are given
in Table 4.

; Comparing the first row of Table 4 with Table 3 we see that our approxima-
tion performs very well even for n = 10.
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TABLE 4
Uy, test T,
o
n 0.05 0.10 0.15 0.20 0.25
10 0.19 0.32 041 0.52 0.59
15 0.32 0.51 0.62 0.70 0.76

20 0.60 0.75 0.85 0.90 0.92
25 0.83 0.92 0.96 0.97 0.98

Some approximations of the tests T and T, similar to T}, may also be
constructed and show in simulation practically the same power as original tests.
Their critical regions have the form

Ty = yymax{y,; + a,3; L€ T} <,

where o, = a,, @, = @, and o, = (¢, + @;)/2 in the remaining cases and

Tz}k = (yZn - yzl)min{ylk —Yut akl(ka - yzz); (k, l) € A} < Cq»

where 6,, = 8,,, 6,, = 0,; and 6,, = (8,, + 8,,)/2 in the remaining cases. Both
these statistics are based on the matrix B, = L (X — X) and, hence, they are
G*-invariant [compare Szkutnik (1987)]. The matrix Y and all notation are the
same as in Sections 3-5.

7. Final remarks. The powers of the tests T*, T;f and T, presented in
this paper are approximate upper bounds for the power of any G*- or G-
invariant test for binormality against the alternatives studied. Tables 1 and 2
show a great difference, in small samples, between the power of some known
tests and of optimal ones.

Since G* is a subgroup of G, the upper bounds for the power of G*-invariant
tests are, at the same time, upper bounds for G-invariant tests although, in this
case, they may be inaccessible. On the other hand, the group G* itself is of
interest. If we are looking for a test which would be sensitive against some
specific types of nonnormality, the G-invariance may not always be desired
[compare Szkutnik (1987)]. From this point of view the test TF* may be
considered as a test directed to strongly asymmetric alternatives and some
results of our simulations, not presented here, support this thesis. In some cases
protection against such kinds of nonnormality is highly desirable. It is known,
for example, that the size of the Hotelling T'? test is much influenced by the
asymmetry of the parent distribution while symmetric departures from normal-
ity are not so crucial [Mardia (1970)].

There were two reasons for choosing the uniform and exponential alternatives.
First, they may be considered examples of, respectively, symmetric and nonsym-
metric alternatives and second, expressing in an exact form the most powerful
invariant tests against other alternatives is a very difficult task. Formulas (2.6)
and (2.9) show that we have to find the tests for p = 1 first [or, equivalently,
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compute the function L*(Y) or L(Y)] and then be able to perform the integra-
tion in (2.6) or (2.9). For p = 1 only two other alternatives have been successfully
analysed, namely the Cauchy and Laplace [Franck (1981) and Uthoff (1973)],
leading to L*(Y') functions which prove to be practically intractable in (2.6) or
2.9).

Similarly, formula (2.9) shows, after simple transformation, that calculation of
F*(X) for, e.g., p =3 is, in fact, equivalent to the integration with respect to,
say, u of the “two-dimensional” F*(Y) with X® + uX® as the first and X®
as the second row of Y. The “two-dimensional” F;* functions are, however, too
complicated to admit such an operation.

Though the test statistics obtained in this paper seem to be complicated, the
algorithms for computing their values are, save T¢;, simple and fast.
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