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ESTIMATION OF PARAMETER MATRICES AND
EIGENVALUES IN MANOVA AND CANONICAL
CORRELATION ANALYSIS

By Pui LaM LEUNG AND ROBB J. MUIRHEAD'
University of California at Los Angeles and University of Michigan

We consider the problem of estimating parameter matrices which occur
in the noncentral Wishart, noncentral multivariate F and canonical correla-
tions distributions. A decision-theoretic approach is taken with squared error
as the loss function. In these three settings the eigenvalues of the parameter
matrices are of primary interest. Sensible estimates of these are obtained by
restricting attention to orthogonally invariant estimates of the parameter
matrices, whose eigenvalues are functions only of sample eigenvalues.

1. Introduction. Many classical multivariate procedures revolve around
random and parameter matrices and their eigenstructures. Invariance and other
considerations tend to focus a great deal of attention on the eigenvalues. This
paper is concerned with the estimation of parameter matrices and their eigenval-
ues which occur in the noncentral Wishart, noncentral multivariate F and
canonical correlations distributions. The first two of these distributions occur in
the standard MANOVA and discriminant analysis settings.

The eigenvalue estimation problem may be stated as follows: Given sample
eigenvalues /,,...,I, ({;> -+ > 1, > 0), use these to estimate population
eigenvalues w,,...,w,, (w; = *+ > w,, > 0). In the situations considered, the
usual estimate of w; is either /; or a simple linear function of /. Such an
estimate, however, ignores information about w; in I » for j # i. We are inter-
ested here in a decision-theoretic approach to the estimation problems. Ideally,
such an approach would specify a loss function in terms of the parameters
wy,...,w, and risk calculations would involve expectations of this loss taken
with respect to the joint distribution of /,,..., /,,. Unfortunately, this does not
seem feasible, due primarily to the complexity of the distribution of the ordered
eigenvalues involved [see James (1964) or Muirhead (1982), Sections 10.4 and
11.3.4].

The approach taken in this paper, both in MANOVA and canonical correla-
tions, is to construct a random matrix F whose eigenvalues are [,,...,/,, and a
parameter matrix A whose eigenvalues are w,, ..., w,. In the noncentral Wishart
setting the choice of these matrices is obvious: We take F to be the noncentral
Wishart matrix and A to be the noncentrality matrix. In the two other situa-
tions, the choice is not as clear-cut. There are many ways of choosing the matrix
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1652 P. L. LEUNG AND R. J. MUIRHEAD

F it turns out, however, that the distribution theory and resulting risk calcula-
tions are greatly simplified by the choice of a nonobservable F (with observable
eigenvalues /,, ..., [,,). Our approach may then be summarized as follows: Act as
if F is observable and use it to construct an “estimate” A(F) of A, using the
squared-error loss function

(1.1) L(A,A) = tr(A - &)

The eigenvalues of A(F) may then be regarded as estimates of Wiy ..oy Wy, the
eigenvalues of A. We insist that these be proper estimates in the sense that they
depend on F only through its eigenvalues /,,...,[,, and, hence, are observable.
To this end we consider only orthogonally invariant estimates of A which have
the same eigenvectors as F and whose eigenvalues are functions only of /,, ..
i.e., estimates of the form

ey s

(1.2) A(F) = Hy(L)H',

where H is an m X m orthogonal matrix such that F = HLH’, with L =
diag(l,,...,!,) and ¢(L) = diag(¢,(L),...,¢,(L)). For i =1,..., m, the ob-
servable random variable ¢;(L) may then be regarded as an estimate of w;. In
the two situations considered, A has an orthogonally invariant unbiased esti-
mate AU = aF + BI for certaln constants @ and . Orthogonally invariant
estimates which dominate AU are found having the form ¢, F' + ¢, I + c3(tr ) I
for certain constants c¢;, ¢, and cj; the corresponding estimate of w; is then
ol teyteyXrl)hi=1,...,m

The preceding discussion has emphasized the nonobservability of the matrix
F outside of the noncentral Wishart setting. It should be noted, however, that
this problem arises only in the MANOVA and canonical correlations contexts
because of certain transformations made using parameter matrices (see Sections
3 and 4). The matrix F is, however, observable in the context of other estimation
problems, and the dominance results presented in Sections 3 and 4 pertain to
proper estimation problems when viewed in this context.

Eigenvalue estimation problems have been studied in other areas by various
authors. Most have considered the problem of estimating a population covari-
ance matrix 2 given a Wishart matrix; restricting attention to orthogonally
invariant estimates of the type just described reduces the problem to one of
estimating the eigenvalues of 2. The most relevant papers here are those of
Stein (1977), Haff (1980, 1985), Lin and Perlman (1985) and Dey and Srinivasan
(1985). Estimation of the eigenvalues of =,3;, a two sample problem, has also
been studied by Muirhead and Verathaworn (1985) and a start was made in the
canonical correlation setting by Muirhead and Leung (1985).

The present paper is organized as follows. The main results associated with
the noncentral Wishart distribution are given in Section 2, those in the non-
central multivariate F are given in Section 3 and those in canonical correlation
analysis are given in Section 4. The results of Monte Carlo studies also appear in
Sections 3 and 4.
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2. The noncentral Wishart distribution. Suppose the n X m matrix Z is
a matrix of independent normal variables with unit variance and matrix of
means E(Z) = M, so that the m X m matrix A = Z’Z has the noncentral
Wishart distribution A ~ W, (n, I, A), with nonnegative definite noncentrality
matrix A = M'M [see, e.g., Muirhead (1982), Section 10.3]. The problem of
estimating the mean matrix M in a decision-theoretic context has been consid-
ered by various authors, among them Efron and Morris (1972, 1976) and Zidek
(1978). Here we are concerned with estimating the noncentrality matrix A
directly. Given an observation on A, the problem considered is that of estimat-
ing A by A(A) using the loss function (1.1).

Matrices having noncentral Wishart distributions occur in many multivariate
testing problems [see Muirhead (1982), Chapter 10]. In particular, the noncentral
Wishart distribution is important in a MANOVA situation where the covariance
structure of the error matrix is either known or can be estimated accurately.

For example, consider the usual multivariate linear model

Y=XB+E,

where Y is N X m, X is N X p of rank p, B is p X m and the N rows of E
have independent identical m-variate normal distributions with mean zero and
known covariance matrix 2. Without loss of generalify we can take 2 = I. The
likelihood ratio statistic for testing H: B = 0 against K: B # 0 is

A = exp(—1itrA),

where A is the usual regression (or hypothesis) matrix of sums of squares and
sums of products given by

A=YX(X'X)'Xxy.

Here A has the noncentral Wishart distribution W, (n, I, A), with n = p and
A = B’X’XB. The power of this test (and others like it) is determined by the
noncentrality matrix A or, more precisely, by its eigenvalues. In some instances it
may be possible to choose among competing tests by estimating A (or its
eigenvalues) using a preliminary sample. In the univariate setting (m = 1) the
estimation problem reduces to that of estimating the noncentrality parameter in
a noncentral x? distribution, considered earlier by Perlman and Rasmussen
(1975), Saxena and Alam (1982), Chow and Hwang (1982) and Chow '(1987).

Since E(A) = nI + A [see Muirhead (1982), page 442], it follows that an
unbiased estimate of A is

(2.1) Ay=A - nl.
Its risk is given in the following lemma.

LEMMA 2.1. Using the loss function (1.1), the risk of A U is
(2.2) R(Ay, A) =2(m + 1)trA + nm(m + 1).
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Proor. The risk is
23) R(Ay, ) = E[t(3, - a)7]
= E[tr(A?)] — n?m — tr(A?) - 2ntrA,

where we have used the fact that E(A) = nl + A, so that E(tr A) = nm + trA.
Using the standard vector notation, the first term on the right of (2.3) may be
written as

gy El(ad)] - o Elvec(d)ve(4)]

= tr{Cov(vec(A)) + E [vec(A)] E [vec(A)]}.
Now, the covariance matrix of vec(A) is [Magnus and Neudecker (1979)]
(2.5) Cov(vec(A)) = (I,» + K)(nlL, + (I, ® A) + (A® I1,)),

where

K= (H,; ® Hy;),

1

M

i
with H;; being an m X m matrix with the i — j element equal to 1 and all other

elements 0. Using (2.5) and the fact that E[vec(A)] = n vec(I) + vec(d), it
follows easily that

(2.6) E[tr(A?)] = tr(82) + 2(n + m + DtrA + nm(n + m + 1)

and substitution of (2.6) in (2.3) gives the desired result (2.2) and completes the
proof. O

It is fairly straightforward to show that no linear estimate of the form
aA + BI dominates the unbiased estimate AU using the loss function (1.1). Of
course, A v need not be nonnegative definite, so is itself inadmissible, being
dominated by A}; {» @ matrix with the same eigenvectors as AU but with any
negative eigenvalues of A v being replaced by zero.

We now turn to nonlinear estimates of A of the form

A A [44

(2.7) A, =Ay+ trAI'

In the univariate case (m = 1), Perlman and Rasmussen (1975) gave an empirical
Bayes justification for such estimates. Such a justification can also be given in
the multivariate case, but will not be expanded on here. When m = 1 Perlman
and Rasmussen (1975) demonstrated that for certain values of a, A, dominates
the unbiased estimate A,. A similar result holds when m > 1 and is given in the
following theorem.

THEOREM 2.2. If mn > 4 and 0 < a < [4(mn — 4)]/m, then A dominates
AU for all nonnegative definite A.
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PROOF. The difference between the risks of A, and 4, is
G(8) = R(Ay, 8) - R(R,, 4)
(2.8)

1 1
=2a(mn+trA)E[—] — ma’E 5 | — 2a
trA (trA)
It is easily seen that tr A has the noncentral x? distribution xZ,,(8), where the
noncentrality parameter is § = trA. Using the representation for this distri-
bution as a Poisson mixture of central x? distributions, it follows that

1 1
(2.9) E[H =E[mn+2K—2]
and
1
(2.10) E{W] = E[(mn T 2K — 2)(mn + 2K — 4) ]

where K has a Poisson distribution with mean ;tr A. With the help of (2.9) and
(2.10), G(A) may then be written as

trA — 2K + 2 ma
mn+2K -2 2(mn+2K—2)(mn+2K-4) |

(2.11) G(A) =2aE[

Since the covariance between trA — 2K and (mn + 2K — 2)~! is nonnegative it
follows that

[ trA — 2K ]
>

mn + 2K — 2
and, hence,
[ 4 ma
G(A)ZaE_mn+2K—2 B (mn+2K—2)(mn+2K—4)]
4mn + 8K — 16 — ma
(2.12) =aE_(mn+2K—2)(mn+2K—4)]

> aE

4mn — 16 — ma
| (mn + 2K — 2)(mn + 2K — 4)

and this is positive when mn > 4 and 0 < a < [4(mn — 4)]/m. O

A reasonable way of choosing «a is by maximizing the lower bound for G(A) in
(2.12). The maximizing value is a = [2(mn — 4)]/m and this value satisfies the
inequality in Theorem 2.2. The corresponding nonlinear estimate is

2(mn — 4) I
mtrA

This dominates A, and, of course, is dominated in turn by A%, its truncated
version where any negative eigenvalues of A, are replaced by zero.
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For fixed m and n, the difference between the risks of A, and A, is small
if trA is large. For fixed m and A the difference is about 4/m for large n.
In fact, it is easily seen from (2.11) that, when A = 0, the difference is exactly
[4(mn — 4)]/[m(mn — 2)], with a larger value being obtained by truncation.

A Monte Carlo study was carried out to compare these estimates. The results
indicated that A N represents a substantial improvement over AU when trA is
small or moderate. The differences between A}, and Aj; are much less signifi-
cant.

3. The noncentral multivariate F.

3.1. Discussion. The preceding section considered an estimation problem
applicable in MANOVA when the covariance structure of the error matrix is
known. It is more common that this is not known, however, and we now consider
this situation. In the typical MANOVA setting, independent m X m matrices S,
and S, are observed, where S, has a noncentral Wishart distribution with n,
degrees of freedom, covariance matrix ¥ and nonnegative definite noncentrality
matrix £, S; ~ W, (n,, Z,Q), and S, has a central Wishart distribution, S, ~
W, (n, Z). We will assume here that n, > m and n, > m, so that both distri-
butions are nonsingular. A problem of great interest is that of estimating the
eigenvalues w;, wg,..., ®, (w; > w, > ++ > w,, > 0) of the noncentrality ma-
trix Q. These eigenvalues are important in the problem of testing H: © =0
against K: £ # 0 because they form maximal invariants under a natural group
of transformations leaving the testing problem invariant. Any invariant test
depends only on 1,, l,,...,1,, (I, > 1y > --- > [, > 0), the eigenvalues of S,S; *,
and has a power function which depends on 2 and @ only through w,..., w,.
These population eigenvalues also play a major role in discriminant analysis.
Discussions of MANOVA and discriminant analysis may be found in, e.g.,
Anderson [(1985), Chapter 8] and Muirhead [(1982), Chapter 10]. In the uni-
variate setting (m = 1), the estimation problem reduces to that of estimating the
noncentrality parameter in a noncentral F distribution, a problem considered by
Perlman and Rasmussen (1975).

It is convenient to transform S, and S, in a way that greatly simplifies the
relevant distribution theory and the resulting risk calculations. Define m X m
matrices A and B by A = $71/25,271/2 and B = V25,5712 50 that A ~
W, (n,, I, A), with A = Z/2Q3~1/2 and B ~ W, (n,, I). Note that w,,...,w,,
the eigenvalues of (2, are also the eigenvalues of the new noncentrality matrix A
and that [,..., [, the eigenvalues of S,S; !, are also the eigenvalues of the
positive definite random matrix F defined as

F=AY2B7141/2,
We remark that, although F is not observable unless X is known, its eigenvalues
are observable. We overcome this difficulty using the approach outlined in
Section 1, i.e., we estimate A by A(F') using the squared-error loss function (1.1)

and an orthogonally invariant estimate of the form (1.2), so that ¢,(L),..., ¢,,(L),
the eigenvalues of A( F), are observable and may be regarded as estimates of
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®y,..., w,. Note that the observability problem arises because of transforma-
tions made within the MANOVA context. An equivalent, well-posed problem
where it has no bearing is the following: Given an observation F from the
distribution of A'2B~'AY? where A ~ W,(n,, I, A), B~ W, (n2, I)and A and
B are independent, estimate the noncentrality matrix A. The dominance results
in the next section pertain to a proper estimation problem when viewed in this
context.
The expectation of F is

E(F) = E(AY?B7'A'?) = E[E(AY?B~'AV?|A)]

1 1

=——FA)= ———(n I+ A
n,—m-—1 (4) n2—m—1(n1 )

(assuming now that n, > m + 1), so that an unbiased estimate of A is the

orthogonally invariant estimate A v given by

(3.1) Ay=(n,—m—-1)F—n,l.

The corresponding estimate of w; derived from AU is thus (ny, — m — 1), —

The only orthogonally mvanant estimates considered in this paper are ones
which dominate AU and have the form ¢, F + c,I + c4(tr F)~! for certain con-
stants ¢;, ¢, and c,.

3.2. Main results. When m =1, Perlman and Rasmussen (1975) showed
that, for certain values of a, the linear estimate aA,, dominates the unbiased
estimate AU with respect to squared-error loss. A similar result holds when
m > 1 and the loss function (1.1) is used, and is given in the following theorem.
We assume, throughout this section and the next, that n, > m + 3.

THEOREM 3.1. The estimate al,, dominates A;, provided that

ng—m-5
maxO,—1 <a<l.

n2_m_

It is seen from the proof in Section 3.3 that an optimal value of a is a* given
by
ng—m-3

3.2 e
( ) * ng—m—l

assuming n, > m + 3. The corresponding linear estimate A L given by
i ng—m-—3,
L= ng—m-—1 v

3.3) n(ny, — m— 3)

= - m—3)F -
(ny—m—3) ny—m~—1

thus dominates A .
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Two remarks are worth making. First, a consequence of Theorem 3.1 is that, if
ng=m+4 or no=m+5, A, is dominated by the trivial estimate A=o.
Second, 4, need not be nonnegatlve definite, so is itself inadmissible, being
dominated by A} 1, a truncated version of A  which has the same eigenvectors but
with any negative eigenvalues being replaced by zero. It also turns out that A L is
dominated by nonlinear estimates of the form

. A B
(3.4) Aa,ﬂ = aAU + t_l‘-I’_’I.

This result is a consequence of the following theorem, which is a multivariate
generalization of a result of Perlman and Rasmussen (1975).

THEOREM 3.2. The estimate Aa,ﬂ given by (3.4) dominates aAU provided
mn, > 4,

2
O0<a<l+ —————,
m(ny,—m—1)
and
4a(n, + ny, — m—1)(mn, — 4)
m(ny,—m+ 3)(ny,—m+1)

0<B<

If we take the value a* given by (3.2) for a (which corresponds to A L), then
the proof of Theorem 3.2 in Section 3.3 shows that an optimal value for g is B8*
given by
2(ny—m—38)(n, + ny— m—1)(mn, — 4)
m(n,—m-—1)(n,—m+3)(n,—m+1)

(3.5) B =

The corresponding nonlinear estimate Ay, =4, , p» thus dominates A,. It is also
the case that A, is dominated in turn by its truncated version Ax,.

A Monte Carlo study was carried out to compare A} and A, with A}, the
truncated version of the unbiased estimate A, The results indicate that both
A} and A}, represent substantial improvements over A, particularly when n
and n, are small. The study also revealed that, although A vz dominates A, A}
has a tendency to improve on A, \ v In view of this, there seems little to be gained
by using A%, in preference to A} .

3.3. Proofs. To prove Theorem 3.1, we compute the risks of A v and al U
For this we need the expectation of tr(#'2). This is given in the following lemma,
whose proof is reasonably straightforward and is omitted.

LEMMA 3.3.

(3.6) E[tr(F?)] = By[(trA)” + Bitr(A%) + Botrd + By),
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where
_ 1
Bo = (n2—m)(n2—m—1)(n2—m—3)’
(37) Bl =ny,—m-— 1,
By =2[(n, — m)(n, + m+ 1) + (m — 1)(n, — 1)],
1B
Bs = mn2 :

PROOF OF THEOREM 3.1. The difference between the risks of A, and ad; is
G(8) = E[t(8, - )] - E[tr(ady - A),
which, on using the result of Lemma 3.3, may be expressed as
G(A) = a(l — a?)(trA)’ + (1 — a)[b(1 + @) — 1 + a]tr(4A?)
+c(1 — a?)trA + d(1 — a?)

(3.8) =(1-a)[(a+b)1+a)— 1+ a]tr(4?)
+2a(1 - o?) "Zn‘,.wiwj +c(1 — a?)trA + d(1 — &?),
where
ng—m-1
T (- m)(n,—m—-3)’
b= ng—-m+1
- (ny—m)(ny,—m-3)°
2+ ny—m=D[(m+1)(n, —m) - (m - 1)]
‘T (ny—m)(n, —m—3) ’
and
mn,c
=7

Under the conditions stated in Theorem 3.1, the constant term and the coeffi-
cients of trA and L% ;w,w; are positive. The proof is completed by noting that

i<j b
the coefficient of tr(A?) is nonnegative provided
l-a-b ny,—m-5

a > = .
l1+a+d ny,—m-1

It is seen from (3.8) that
G(A) > (1-a)[(a+b)1+a)—1+ altr(A?);

the optimal value a* given by (3.2) is the value of « that maximizes this lower
bound for G(A).
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We turn now to the proof of Theorem 3.2. In this, bounds are used for the first
two moments of (tr F)~! which are expressed in terms of expectations involving
a Poisson random variable K. They are consequences of the following lemma.

LEMMA 34. Let K be a Poisson random variable with mean 3tr A. Then, if
mn, > 2,

. 1E2+m(n2—m—1) E[l E ng—m+1
. — < — | < —_—
(39) m mn, + 2K — 2 tr F mn, + 2K — 2

and, if mn, > 4,

~1—E 2+ m(n,—m-1)(4+ m(n,— m—-1))
2 (mn, + 2K — 2)(mn, + 2K — 4)

1
E
[(M)Q]

(ng—m+3)(n,—m+1)
= E[(mnl + 2K — 2)(mn, + 2K — 4)]

m

(3.10)

IA

Proor. To prove (3.9) we begin by conditioning on A. Given A, the condi-
tional distribution of F~! is W, (n,, A™') and the Wishart identity [see Haff
(1980), Equation (2.4)] may be used to show that

(3.11) E[LH LN PP - L Y D 1)}.
tr F trA (trF)2
Using the fact that [see, e.g., Haff (1980), Lemma 5.2]
(3.12) k < trf? <1
m~ («tF)> "

it follows from (3.11) that

2+m(n,—m-—1 -m-1
(s ) op| L|a] gt
mtrA tr F trA

and the desired result now follows on taking expectations with respect to the
W (n,, I, A) distribution of A and using (2.9). To prove (3.10), the Wishart
identity may be used to show that

(3.13)

010 8 ala| - s 18| s - m- 08 5] |
(tr F) tr A (tr F) tr F
The inequality (3.12) guarantees that
—l—E[—l—A]sE —tr—F—z—A sEl—l—A]
m |trF (tr F)> trF| |
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Al

and using these bounds for E[tr F2?/(tr F)3|A] in (3.14) shows that

4 +m(n,—m-—1 1
(n, )E[ ‘A]SE

mtrA tr F

ne—m-+3 1
trA tr F

5 |1A
(tr F)
and hence, using (3.13), that

[4+m(n2—m—1)][2+m(n2—m—1)]<E 1
m*(tr A)? " | (ke F)?
(ng—m+3)(ny,—m+1)

(trA)?

The desired result (3.10) is now immediate on taking expectations with respect to
A and using (2.10). O

It is worth pointing out that the upper and lower bounds in Lemma 3.4 are
identical when m = 1. The resulting identities were utilized in the univariate
setting by Perlman and Rasmussen (1975).

PROOF OF THEOREM 3.2. The difference between the risks of aA, and Aa, 8
is easily seen to be

H(A) = E[tr(ady - A)7] - E[tr(/&ayﬁ - A)2]

= 2B(amn, + trA)E[——l—] - m,BzE[

tr F (tr F)?

Using the upper bound for E[1/tr F] and the lower bound for E[1/(tr F)?]
given in Lemma 3.4, it follows that

} —2aB(n, — m—1).

9 1
H(8) > 2B(amn, + trd){ = + ny = m - I)E[m]
1

—mB%(ny,— m+ 3)(ny— m+1)

1
XE[(mnl T 9K = 2)(mn, + 2K = 4)]
—2aB(ny,—m—-1) |
=2BE[{(2/m + ny— m — 1)trA — 2aK(n, — m — 1)
+2a(n, + ny— m—1)}/{mn, + 2K — 2}]
(ng—m+3)(ny,—m+1) }
(mn, + 2K - 2)(mn, + 2K — 4) |’

—m,B2El

where K has a Poisson distribution with mean jtrA.
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For a > 0, the covariance between (mn, + 2K —2)"! and (2/m + n, +
m — DtrA — 2aK(n, — m — 1) is nonnegative and, hence,

E{(2/m+ ny—m-— 1)trA — 2aK(ny, — m — 1)]

mn, + 2K — 2

2
- (1-a)(ny—m )]1;rAE[mn1 TR = 2] >0,

provided 0 < a < 1 + 2/[m(n, — m — 1)]. It then follows that

da(n, + n,—m—1)
H(a) = BE[ mn, + 2K — 2
mB(ny,—m+ 3)(ny, — m+ 1)
(3.15) "~ (mn, + 2K — 2)(mn, + 2K — 4)

4a(n, + ny— m — 1)(mn, — 4)
—mB(ny,— m+3)(n,—m+1)
(mn, + 2K — 2)(mn, + 2K — 4) |’

> BE

and the proof is completed by noting that the right side is positive when
mn, > 4 and

4a(n, + ny— m—1)(mn, — 4)

0<B< .
A m(n,—m+ 3)(ny,—m+1)

0

When « takes the value a* given by (3.2), the optimal value 8* given by (3.5) is
the value of 8 maximizing the lower bound for H(A) given in (3.15).

4. Canonical correlation coefficients.
4.1. Discussion and main results. Suppose the (p + q) X (p + q) positive

definite matrix S has the Wishart W, (n,ZX) distribution, n > p + g, and
partition S and = as

S S 3 >
g=|°n 12]’ o { 11 12]’
[Szl So g 2y

where S;, and Z,, are p X p and S,, and Z,, are g X g, with p < q. The

population canonical correlation coefficients are py,...,p, (12p, 2 -+ =
p, = 0), where p},..., p2 are the eigenvalues of =,,'2,,5,,'S,. The positive
square roots ry,...,7, 1 >r, > --- >r,>0) of r,..., r2, the eigenvalues of

871%S,5555'S,,, are the sample canonical correlation coefficients. Discussions of
canonical correlation analysis may be found in, e.g., Anderson [(1985), Chapter
12] and Muirhead [(1982), Chapter 11]. These eigenvalues are also important in
the problem of testing independence of two sets of jointly normally distributed
variables, i.e., in testing H: 2, = 0 against K: 2, # 0, as they form maximal
invariants under a natural group of transformations leaving the testing problem
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invariant. Any invariant test statistic is a function of r?,..., r,? and has a power
function which depends on = only through e}, ..., p2.

In an earlier paper, Muirhead and Leung (1985) considered the problem of
estimating the parameter w; = p?/(1 — p?) using linear functions of 7, = r?/(1 —
r?) (i=1,..., p). Here we extend this work by considering certain nonlinear
estimates. It is worth noting that, when estimating correlation coefficients, the
choice of scale is an important consideration. Transforming from r,..., r, to
l;,..., 1, changes the support from 1 > r, > r, > .- > r, > 0, where the distri-
butions can be highly skewed, to co > 1, > 1, > --- > [, > 0, with more sym-
metric distributions and should allow more stable estimation in view of the fact
that the transformed parameters w; act much more like location parameters. It is
interesting to note that Fisher (1915) first suggested making such a transforma-
tion in connection with an ordinary correlation coefficient.

The random variables /,, ..., [, are the eigenvalues of the random matrix

F= AI/ZB—I A1/2
where A = 2,14%S,,5;,15,,3,1%¢* and B = 2,'4°S,,.,2,'%%, with 2}, , = 5,; -
2252, and S, = 8, — 815555, Put X = 2,1/25,,5.12; from standard
distribution theory [see, e.g., Muirhead (1985), Theorem 3.2.10 and Section 10.3],
it follows that B ~ W(n — g, I)) and is independent of X and A, that X ~
W(n, I,) and that, conditional on X, the distribution of A is noncentral
Wishart W (q, I, ), where the noncentrality matrix Q is

Q= 2141%22122'2A21/2X22_21/222121_1%2-

It is not difficult to show that the distribution of F depends on X only through
the parameter matrix A given by
(4-1) A= 2:1_1%221222_212212171%2’
which has as its eigenvalues the parameters we wish to estimate, namely
w;,=p?/(1 — p%), i =1,..., p. Note that, as in the MANOVA situation consid-
ered in Section 3, we have cast the estimation problem in terms of a random
matrix F which is not observable unless =, ., is known. However, the eigenval-
ues [y, ..., [, of this matrix are observable. Exactly as in Section 3, we overcome
the nonobservability difficulty by estimating A by A(F) using the loss function
(1.1) and an orthogonally invariant estimate of the form (1.2), so that the
eigenvalues of A(F), which are observable, may be regarded as estimates of
Wpyeeey Wy

It is shown in Muirhead and Leung (1985) (and easily verified directly) that

1
E(F)= — (nA + ql),
(F) n_p_q_l( ql,)
(assuming now that n > p + ¢ + 1) so that an unbiased estimate of A is
A n—-p-q-1

(4.2) Ay= ————F - 2I .

This is dominated by estimates of the form aA,,. The following theorem is a
slight modification of Theorem 3 in Muirhead and Leung (1985).
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THEOREM 4.1. The estimate ol dominates Ay, providedn —p —q—1> 0
and

n—-n(p+q+7)+2(p+qg+1)

a<1.
(n+2)(n—-p-qg-1)

max| 0,

An optimal value of a is
_ nln-p-q-3)
(n+2)(n-p-g-1)°

assuming n > p + g + 3. (This value of a maximizes a lower bound for the
difference between the risks of A;; and aA;.) The corresponding linear estimate

(4.3) a*

. nln-p-qg-38)
(04) L (n+2)(n-p-q-1)"°
' _n-p-gq-1_  qg(rn-p-g-3)
B n+2 (n+2)(n-p-q-1)7

thus dominates A,. Comments similar to those made after Theorem 3.1 are
applicable here as well, and will not be repeated.
We turn now to nonlinear estimates of the form

o A B
(4.5) Aa,B = aAU + ﬁ].

When p = 1 (the multiple cox;relation setting), Muirhead (1985) showed that, for
certain values of a and B, A, s dominates aA;. A similar result holds when
p > 1 as the following theorem, whose proof follows, shows.

THEOREM 4.2. The estimate Aa,ﬂ given by (4.5) dominates aﬁu provided
pq > 4,
2

p(n-p-q-1)’

O0<a<l+

and
4a(n—p - 1)(pg — 4)

0<B8< .
np(n—-p-q+3)(n—p-q+1)

Taking the value a* given by (4.3) for a, the proof of Theorem 4.2 shows that
an optimal value for 8 is 8* given by

2(n-p-q-38)(n-p-1)(pg—4)
p(n+2)(n-p-q-1)(n-p-q+3)(n—-p—-—qg+1)’

The corresponding nonlinear estimate A, = A,,g g+ thus dominates A, and, of
course, is dominated in turn by its truncated version Ajy;.

(4.6) B* =



ESTIMATION OF PARAMETER MATRICES AND EIGENVALUES 1665

A Monte Carlo study was carried out to compare A} and A}, with Af. The
results indicated that both give substantial gains over Aj;, especially when n is
small or moderate. The differences between A7 and Ay, are slight, however.

PROOF OF THEOREM 4.2. The difference between the risks of aA;, and 4, 4
is

J(8) = E[tx(ady - A)"] - E[tr(B, - 8)]

~—(-p-g-1).

2 1 2
= TB(apq+ntrA)E[¥r—F;] —pB2E[ ] B

(tr F)?
Using an almost identical argument to that used in the proof of Theorem 3.2 it
may be shown that
2/p+n—-p—-—qg—1)ntrA
28 | —2aK(n—-p—-q—-1)+2a(n—p—-1)

J(4) = TE pq +2K —2
(n-p—q+3)(n-p-q+1)
—p,B2E[ (pq + 2K — 2)(pq + 2K — 4) ]

with the expectations on the right being taken with respect to the joint
distribution of K and X, where X has the W (n, I) distribution and where,
conditional on X, K has a Poisson distribution with mean jtrQ =
Lr 31,2 ,35V2X35123, . Note that E(K) = jntrA, where A is given by
(4.1). Since the covariance between (pg + 2K —2)"' and (2/q+n—p—
q — DntrA — 2aK(n — p — g — 1) is nonnegative when a > 0, it follows that

2/p+n-p—qg—-1)ntrA—2aK(n—p—-q—1)
E
pqg+2K -2

1
>[2/p+(Q—-a)(n—p—q- 1)]ntrAE[m] >0,

provided 0 < a <1+ 2/[ p(n — p — ¢ — 1)]. It then follows that
4a(n—-p-1)
pqg+ 2K —2
_mpB(n—p-g+3)(n-p-qg+1)

(pq + 2K — 2)(pq + 2K — 4)
L Bo[ten—p-1)(pg-4) —rpB(n—p-q+3)(n-p-q+1)
n (pq + 2K — 2)(pq + 2K — 4)

and the proof is completed by noting that the right side is positive when pq > 4
and

J(A) > gE[

(4.7)

4a(n—p—1)(pg — 4)
np(n—p—-—q+3)(n-p-q+1)’

0<B<
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With a taking the value a* given by (4.3), the optimal value 8* given by (4.6)
is the value of 8 maximizing the lower bound for J(A) given in (4.7).
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