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STRONG CONSISTENCY OF A NONPARAMETRIC ESTIMATOR
OF THE SURVIVAL FUNCTION WITH DOUBLY
CENSORED DATA!

BY MYRON N. CHANG AND GRACE L. YANG
University of Florida and University of Maryland

A double censoring mechanism is such that each variable X in the
sample is observable if and only if X is within the observation interval
[Z, Y]. Otherwise, we can only determine whether X is less than Z or greater
than Y and observe Z or Y correspondingly. This kind of censoring occurs
often in collecting lifetime data. Our problem is to estimate the survival
function of X, Sy(t) = P[X > t], from a doubly censored sample, where X
is assumed to be independent of the random interval [Z, Y]. We establish
sufficient conditions for which Sy (¢) is identifiable and then prove the strong
consistency of the self-consistent estimator Sy (¢) for Sy (). This investiga-
tion generalizes the results available for the right censored data.

1. Introduction. Due to sampling methods and factors beyond experimen-
tal control, the measurements on lifetime have the possibility of being censored
either from above or below. For example, consider a follow-up study for de-
termining the age (X) at which a child first develops a certain skill [Leiderman,
Babu, Kagia, Kraemer and Leiderman (1973)]. The age X can be determined if
the child develops the skill after he is admitted to the program. However, for
some children in the program, the development may have been completed before
the first survey, and this results in a left censoring of X. On the other hand, a
right censoring may occur when a child either is lost to follow-up before the last
survey or has not developed the skill by the time of the termination of the
program.

Singly censored data, particularly right censored data, have been the subject
of extensive research in the literature, especially in biometry and reliability
theory. Statistical inference for doubly censored data was considered by Gehan
(1965), Mantel (1967), Peto (1973), Turnbull (1974) and Tsai and Crowley (1985).

Let X be a nonnegative random variable denoting the lifetime under investi-
gation. The censoring mechanism is such that X is observable if and only if X
lies in the interval [Z, Y]. The Z and Y are nonnegative random variables and
Z < Y with probability 1. If X is not in [Z, Y], the exact value of X cannot be
determined. We can only know whether X is less than Z or greater than Y and
we can only observe Z or Y correspondingly. The variable X is said to be left
censored if X < Z and right censored if X > Y. The available information on X
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may be expressed by a pair of random variables W and &, where

W = max(min(X,Y), Z),

(1.1) 1, fZ<X<Y,
§d=(2, ifX>Y,
3, ifX<Z.

Our problem is to estimate the survival function of X, Sy(¢) = P[X > ¢], for
all ¢ > 0 from a sample of n independent pairs, (W, §;) for i = 1,..., n, where
(W, §,) is defined as in (1.1).

This problem was considered by Turnbull (1974), who used Efron’s self-con-
sistent criterion to construct an estimator for Sy, commonly called a self-con-
sistent estimator. In this article, we prove that the model (1.1) is identifiable
under a set of sufficient conditions. We then show that the self-consistent
estimator is strongly consistent under an identifiable model. The result is a
generalization of that of the product-limit estimator for singly censored data.

While preparing a revision for this paper, a related paper by Tsai and Crowley
(1985) was brought to our attention by the Editor. In their paper, strong
consistency and asymptotic normality of self-consistent estimators are studied
under various censoring mechanisms. It is stated without proof in their Corollary
5.2 that in the doubly censored model Sy can be uniquely identified by the joint
distribution of W and 8. However, this claim is not true without imposing
appropriate probabilistic assumptions on the model and the proof of identifiabil-
ity is nontrivial. The strong consistency is given in their Theorem 4.1 under the
assumption that the model considered is identifiable in the family £ of all joint
survival functions of X, Y and Z. Thus, their Theorem 4.1 is not applicable to
the doubly censored model since the model is not identifiable in £ but only in a
subfamily 2* of £ as defined in our Assumptions A and B in Section 2. Aside
from these comments, there is a gap in the proof of their Theorem 4.1, namely,
the claim that any solution to H(F)", Gx) = 0 is in the neighborhood N, (in their
notations) does not follow from their proof.

We derive, in Section 2, a system of integral equations which relates the
survival functions of X, Y and Z to the joint distribution functions of W and §
in (1.1). This system is fundamental to our investigation. The self-consistent
estimator will be derived from the sample counterpart of the system. In Section
3, the system is used to address the problem of identifying Sy(¢) under the
model (1.1). [Identifiability in right censored data has been studied by Peterson
(1977).] We give an example of a nonidentifiable model, which motivates us to
introduce a set of sufficient conditions for identifiability. In Section 4, we prove
the strong consistency of the estimator. The problem is nontrivial because of the
lack of an explicit form for the estimator.

2. The integral equations relating distributions of X, Y and Z to that of
(W,3) and the self-consistent estimator. As given in (1.1), the information
on random variables (X, Y,, Z;) is available only in a sample of (W, 8), {((W,, §,),
i=1,...,n}. The joint distribution of W and § can be expressed in terms of
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subsurvival functions @,(t), @,(¢) and Q4(¢) defined, for ¢ > 0, as
Qt)=P[W>¢,8=1]=P[X>t,Z<X<Y],

(2.1) Qx(t) =P[W>t,8=2]=P[Y>¢t, X>Y],
Q(t)=P[W>t8=38]=P[Z>t X<Z].

The survival function of W is

(22) Q) = PLW> £ = ¥ Q,(0).

Jj=1

The Q(t)’s are to be estimated by the empirical subsurvival functions Q§")( t)
defined as

1 n
(2.3) Q\(t) = ~ Y Iiw,>¢ 8-y, forj=1,2,3and ¢ > 0.
i=1

The empirical subsurvival functions Q§”), J =1,2,3, contain all the informa-
tion in the sample; they are sufficient statistics for Sy. The estimation problem
for Sy will be investigated in terms of the @{’s and the @ s,

The following probabilistic assumptions for the data (1.1) are imposed
throughout the paper.

ASSUMPTION A.

Al. The random variable X; and the vector (Y;, Z,) are independent for each i
and the vectors (X;,Y,, Z;), i = 1,..., n, are independently and identically
distributed.

A2. P(Z<Y)=1.

A3. Sy, Sy and S, are continuous functions of ¢ on ¢ > 0 and 0 < Sx(t) < 1 for
¢t > 0, where Sy(¢) = P(Y > t) and S,(¢) = P(Z > t).

Under Assumption A, we derive a system of integral equations which relates

the survival functions Sy, Sy and S, to the subsurvival functions Q1 @, and Q.
It follows from (2.1) that

Q(t)=P(X>t,Z<X<Y)
= —fth(Zsus Y) dSy(u)

= = J (S4(w) = 85(w)) dSx(w),
and similarly for @, and @,. The system of integral equations is given by
Q&) = = [ (Sy(w) = Sy(u)) dSx(w),

(25) Qu(t) = = ["Sy(u) dsy(w),
Qu(t) = = [7(1 = Sx(w)) S (w).

(2.4)
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This system is fundamental to our investigation. The integrals considered are
Lebesgue-Stieltjes integrals. From integration by parts, it follows that

(2. 6) (t) = Sz(t) + Sx(t)(SY(t) - Sz(t))

In estlmatmg Sy with the empirical subsurvival functions @{*)(¢), it is reason-
able to require the estimators S{¥, S{ and S{™ to relate to the Qs in a
similar way, i.e.,

Q1) = = [7(8¢(x) - 8°()) dSE(w),
2.7) Q1) = ~ [ 7S (u) dS(w),
Q(1) = = [7(1 ~ 8(w)) dSgP(u).

Imposing the conditions on S{” and S™,
SM0) =1 and S{(w) =0,
system (2.7) implies that
dQ{”(u)

(2.8) S¢(t) =1+ [ S0

o dQ§V(u)
¢ 1-8¢(u)’

(2.10) QU(t) = S(¢) + SP(2)(SY(¢) — 84(¢)).

Substituting expressions (2.8) and (2.9) in (2.10), we obtain

(2.9) Sy(t) = -

S0 = @(e) - s [T )
(2.11)
o _dQE(u)

+(1 - S{(t)) : 1-89(u)’

which coincides with (5.1) in Tsai and Crowley (1985). Therefore, S{*(t) is
self-consistent and a maximum likelihood estimator for Sy(t). For the algebraic
equation (2.11), the existence and uniqueness of the solution S{*(¢) can be
established by using the convexity of the log-likelihood function [Turnbull
(1974)]. The solution S{*)(¢) can be calculated numerically by using the EM
algorithm [Turnbull (1974) and Tsai and Crowley (1985)] or by the Newton-
Raphson method to find the maximum point of the log-likelihood function.

To study the consistency of the estimator S{”(¢), it is necessary to examine
whether system (2.5) determines Sy(¢) uniquely. The relationship between the
two systems (2.5) and (2.7) will be explored in Sections 3 and 4.

It is worthwhile to note that if S, = 0 in (2.5), then X is subject to right
censoring only. Simple calculations yield the unique solution of (2.5) with initial
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conditions Sx(0) = Sy(0) = 1 given by

t dQ1(u)
Sx(t) = e"p(fo Q) + Qz(u))

and

t dQ2(u)
Syl(t) P(faﬁ‘m)

The corresponding sample equations of (2.7) for right censored data are
Q(t) = — [ 8¢ (u) S (u),
¢

2.12
(21 Q(e) = - [sp(u) dsp(w).

From the first equation in (2.12), we obtain
(2.13) Q(t—) — QM(¢) = 8(¢ —)(S¢(t —) — S¢(¢)).
Adding the two equations in (2.12), we get
SE()S{(¢t) = Q™(¢t) + Q{V(t) for all finite ¢ > 0.
Dividing (2.13) by S{(¢ — )S{(t — ) = Q{™(t — ) + Q§™(t — ) yields
SP(E-) - SP() Q¢ -) - @M(8)
SP-) Qo) + @)

It follows that

o Q(s —) — ()
S¥() = 111t~ oot T+ qes - |

where s’s are jump points of @{™(-). This is the product-limit estimator for Sy
in the right censoring case.

3. Identifiability. The problem of identifiability is to determine under what
conditions system (2.5) has a unique solution for Sx(-), given the @,’s.

We give an example to illustrate that, without additional assumption, Sy(-) is
not identifiable. Suppose that P(1 <Z<3)=0and Y=Z + 1. Let X® and
X® be two random variables whose survival functions coincide on intervals
[0,2] and [3, 0], but differ on (2,3). We further assume that X®, Y and Z,
i = 1,2, satisfy Assumption A. By using the system (2.5), it is easy to verify that
X® Yand Z, i = 1,2, produce the same subsurvival functions @ i J=1,2,3.

In the example, we make certain the observation window [Z, Y] never covers
any part of the interval (2, 3). Thus, there is no chance of observing the actual
value of X if in fact X € (2, 3) and, consequently, we cannot determine Sy(?),
for ¢ € (2,3). To identify Sy(-), we, therefore, require the observation window
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[Z, Y] to cover each ¢ in (0, o) with a positive probability. This condition will be
called

AssUMPTION B.
(3.1) 0<P(Z<t<Y)=Sy(t) —S,(t) foreveryte (0,).

Assumption B requires that the right censoring variable Y is strictly
stochastically larger than the left censoring variable Z. The case where
P[Z = Y] = 1 is studied in Ayer, Brunk, Ewing and Reid (1955).

We shall show that Assumptions A and B are sufficient conditions for
identifying Sy. These conditions are conceivably easy to check in practice.

Let 2 be the class of nonincreasing functions defined on (0, o0) with values in
[0,1]. In 2 we look for solutions S;, i = 1,2,3, to the system (2.5).

LEMMA 3.1. Suppose that the random vector (X, Y, Z) satisfies Assumptions
A and B. Let S(t), for i=1,2,3, belong to 2. If S;, i =1,2,3, satisfy the
system (2.5) for the Q;’s induced by (X, Y, Z), then Sy(0 + ) = 1, Sy(co — ) = 0,
(1= 85,0+ )1 —850+)) =0 and S;(c0 — )Sy(c0 — ) = 0.

Proor. Since S;, S, and S; satisfy (2.5), summing over three equations in
(2.5) yields

Q(t) = =8,8,|¥ + 8,851 — Sy(0) + Sy(t).

We do not know the values of S;(), i = 1,2, 3, so (2.6) cannot be applied to the
S;’s. However, we can evaluate the difference of @ at ¢, and ¢,, which is

(3-2) Q(tl) - Q(tz) = [S3 + SI(S2 - S3)](t1) - [S3 + Sl(Sz - S3)](t2)~
Suppose
tlim S;(¢t) = a;

and

lim S;(¢) = B,, i=1,2,3.

t—0+
Under Assumptions B and A3, it is clear, from the first equation of (2.5), that
(3.3) 0 <@ (¢) <@,(0) foranyte (0,0).

We shall prove that a, > a3 and B, > B; by contradiction. If 8, < B,, then
there exists a § > 0 and an ¢ > 0 such that ‘

S,(¢) — Ss(t) < —e forall t € (0,8).
From the first equation of (2.5), for any ¢ € (0, 8),

0< QI(O) —Qy(t) = —j:(S2 - §;)dS, < Ej:dsl = "E(Sl(o +) - Sl(t)) <0,

which is impossible. Similarly we can prove a, > aj.
Letting £, > 0 + and ¢, - o in (3.2), we get

1= B3+ Bi(B, — Bs)] — [ + o (ey — @3)].
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Observe that
ag+ay(ay —ag) >a; 20 and By + By(By— B) < By < 1.
Consequently,
a3 =0, @a,=0, B,=1 and (1-8,)(1-8;)=0. a
THEOREM 3.2. Let the conditions in Lemma 3.1 be satisfied. Assume that S,
and S; are continuous functions on (0, ). Then Sy = S,, Sy = S, and S, = S,
on (0, o).

Note that the continuity condition is not assumed for S, in this theorem.

ProOF. Since {Sy, Sy, Sz} and {S,, S,, S;} satisfy (2.5) for the same @ s, it
follows by subtraction that

(34) 0=~ [7(Sy - S)d(Sx - 8) - [USy =) - (5, - 8] as,,
(35) 0= - ["Syd(sy~8) - [“(sx- 8,) s,

(36) 0=~ ["(1-8y)d(S, - 8) + [ (Sx - 8,) ;.
t t
For easy reference, we shall call the following argument

DERIVATION C. By Assumption B (Assumption A) S, — S,>0(Sy>0,1-—
Sx > 0) on (0, 0). If (Sy = S;) = (S; — 8;) =0 (Sx — S, < 0) on (¢, t”), then
from (3.4)-(3.6), we obtain d(Sy — S,) > 0 (d(Sy—8;) <0, d(S; — S;) = 0) on
(t,, t”).

Note that Sy and S, belong to 2. If Sy # §,, then there are three possible
cases.

Case 1. There exist ¢, and ¢, with 0 <t <, < o such that Sx(t) <
Si(t + )fort € (t,, t,), Sx(t)) = Sy(t, + ) and Sy(t,) > S,(¢, + ), where Sy (c0) =
0 and S(c0 + ) = S)(0).

CasE 2. There exists a ¢, 0 < ¢, < o0, such that Sx(t) < 8y(¢ + ) on (¢, ),
Sx(t;) = Sy(t, + ) and Sy(0) > 0.

Case 3. Sy > S, on (0, w0).
We show that each case leads to a contradiction.

CONTRADICTION OF CAsE 1. If (Sy — S,) — (S, — S;) keeps the same sign on
(41, t5), positive, say, then Derivation C implies that

d(Sx—S;) =0 on(t,¢t,).
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But then
Sx(t) — S,(t+) =f d(Sx—S,) =0 foranyte (t,t,).
(tlrt+]

This contradicts the assumption that Sy < S, on (¢, £,). If (Sy — S,) — (S, — S,)
is negative on (¢,, ¢,), then we can find a § > 0 such that (Sy — S,) — Sz - 8;)
is negative on (¢, ¢, + &) due to the continuity of Sy, S, S, and S;. Derivation
C implies that d(Sy ~ S;) < 0 on (¢,, £, + 8). Then

Se(t) = S(t+) = Sx(ts) =Sty 1) = [ | d(Sx=8) 20

forany t € (t,, t,).

This again contradicts with the assumption that Sy < S, on (¢,, ¢,). Therefore,
there exists a t* € (¢, ¢,) such that

(Sy(t*) - Sz(t*)) - (Sz(t*) - Ss(t*)) =0.

From Derivation C and the assumption that Sy < S, on (¢, ¢,), we conclude
that

d(Sy—-8,) <0
and
d(S;—S;) 20 on(t,t,).
Therefore,
(Sy(t) - Sz(t)) - (Sz(t) - Ss(t))
- —ftt*[d(Sy - 8,) —d(S; - S;)] 20 on(t,t*).

Again from Derivation C,
d(Sx —S;) 20 on(t,t*)
and, hence,

Sx(t) = Si(t+) = [

(4, t+

d(Sx —S,;) 20 foranyte (t,t*).
]
This contradicts the assumption that Sy — S, < 0 on (¢,, ¢,).

CONTRADICTION OF CASE 2. From Lemma 3.1 and S;(c0 — ) > 0, we have
Si(00 —) = 0 and Sy(c0 — ) = 0. Since Sy < S, on (¢,, ), by Derivation C,

d(Sy-5,) <0
and
d(S;—8;) =0 on(¢,).
It follows that
(Sy(t) = 8,(2)) ~ (Sy(2) — Si(2))
= ~/t°°[d(SY— S,) = d(S; - S;)] =0 on (¢, »).
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Another application of Derivation C gives
d(Sx —S,) =0 on(¢t,0).
As a result,

S,(¢+) — Sy(o0 =) = —/(t sz —/;oodSX=SX(t) on (£, 0).

Letting ¢ | t;, we have
—S,(0 =) > 0.

This is a contradiction.

CONTRADICTION OF CASE 3. The inequality Sy > S; on (0, o) implies that
S;(c0 — ) = 0. An argument similar to that used in Case 1 or in Case 2 would
lead to a contradiction.

Therefore, Sy = S; on (0, 00). To show Sy = S, and S, = S; we note, by (2.5),

+dQ e/
Sz(t)=1+f0 S”‘=1+f0§X—2=Sy(t)
1

and

50 = - [0 = - [ 1o - 5

Here we have used the conditions Sy(0 + ) =1 and Sy(co — ) = 0, which are
proved in Lemma 3.1. O

CoroLLARY 3.3 (Identifiability). Let (X,,Y,, Z,) be a random vector that
satisfies Assumptions A and B and (X,,Y,, Z,) be another random vector that
satisfies Assumption A. If both random vectors produce the same subsurvival
functions @, then Sy = Sy, Sy, = Sy, and S; = S,, on [0, 0).

4. Strong consistency. In this section, we assume that Assumptions A and
B are satisfied. We shall prove that the estimator S{(¢) is uniformly strongly
consistent in the sense that

(4.1) P| sup [S{(t) — Sx(t)|—>0,asn —> o =1.
te[0, o0)

The same holds for S§)(¢) and SgV(t).
We shall use the fact that

(4.2) lim Q{™(¢t) = Q;,(¢) fori=1,2,3,

uniformly for ¢ € [0, o) with probability 1 as ensured by the Glivenko—Cantelli
theorem. In this section, we work with a fixed w € A, where A is a measurable
subset of the underlying sample space, P(A) = 1 and (4.2) holds for all w € A.
The dependence of S{*(¢) and other related functions on w will not be indicated
explicitly.
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The main idea in proving consistency (4.1) is as follows. The sequences
(SL(1)}, (SYV(t)} and {S{”(t)} are uniformly bounded and nonincreasing
functions. By Helly’s theorem, for any subsequence of {S{V(¢), S{™(¢), S§V(¢)},
we can select a further subsequence, indexed by {n,}, {S{**)(¢), SY*(¢), SF™(¢)}
such that, for ¢ € [0, c0),

(43) Jim S(¢) = S3(2),
(4.4) Jim S(e) = 8Y(2),
(4.5) klim Sma(t) = S2(¢).

We then prove that the cluster point {S2, S9, S2} is actually the limit of the
original sequence {S{", Sy, S{}. The proof involves showing the limit
(S2, 89, S2) satisfies the system of integral equations (2.5) and the continuity
condition (Lemma 4.1). According to Theorem 3.2, system (2.5) has a unique
solution, {Sy, Sy, S;}. Hence, we conclude in Theorem 4.2 that

S)? = SX, S?’E SYs SZO = SZ
and {S{, S{™, S§™} converges to {Sx, Sy, Sz}

LEMMA 4.1. S?, SY and S belong to class 9 and satisfy the system (2.5).
Moreover, SY and S? are continuous functions on (0, o).

ProoF. By the self-consistent estimator criterion [Turnbull (1974)], the
estimator S{) is a nonincreasing function with values in [0, 1]. This implies that

0
SXFEoli)'wing from the structure of the self-consistent estimator again, we have
(4.6) S¢(t) = Q4™(¢)

and

(4.7) 1 —S{M(¢) = Q™(0) — Q™(¢t) forte (0,0).

The equality (2.8) gives that, for ¢, and ¢,, 0 < ¢; < ¢,,
ty ngn) < an)(tl) - an)(tz)
S Qi™(2,)

0. 8¢(8) - SP(t) = -

Letting n, — oo, we obtain
Qz(t1) - Qz(tz)
Qu(¢,)

The continuity of S on (0, c0) follows from the continuity of @, and clearly S
is nonincreasing. The continuity and the nonincreasing property of S? can be
proved in a similar way. O

0 < Sy(ty) — Sy(¢,) <

Since S{ and S are continuous, S{"*’ and S§™ converge, respectively, to S9

and S? uniformly on any closed interval [#’, "] C (0, c0). Passing to the limit as
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n; — o0 in
Q(8) = @M (t;) = = [(S¢ - 8¢) dsgw
yields
Ll qo 0 0
(48) Qu(t) - Quta) = — [*(87 - 82) asy.

As t, > oo in (4.8), we see that S2, SY and Sy satisfy the first equation in (2.5).
Similarly, we can prove that S?, SY and S satisfy the second and the third
equations in (2.5).

According to (2.8) and (2.9), S{® and S{™ are nonincreasing, Sy < 1 and
S§™ > 0, which imply that S? and S are nonincreasing, Sy < 1 and SJ > 0. It
remains to show that S > 0 and S? < 1. The first equation in (2.5) is

Qut) = - ["(s3 - s¢) asg,

where 0 < @, < 1 for ¢ € (0, o) as established in (3.3). Consequently,
S%(0+)—-S2(0+) =0

and
S%(c0 —) — 82(00 —) > 0.
Therefore,
1>8%¢t) = S%o0) =80) =0
and

1>8%0+)>820+) =82(¢t) > 0.
Thus SY and S belong to class 2.

THEOREM 4.2 (Strong consistency). If (X,Y, Z) satisfies Assumptions A and
B, then

(49) lim S{() = Sy(2),
(4.10) lim S((2) = 8,(1),
(4.11) lim S§(¢) = S,(2)

uniformly for t € [0, c0) with probability 1.

ProoF. According to Lemma 4.1 and Theorem 3.2,
Sy=Sy, S¥=Sy and S=S, on(0,x).
This proves that (4.9)-(4.11) hold for every fixed ¢ in (0, o) almost surely. Since
Sy, Sy and S, are continuous, nonincreasing on [0, c0), Sx(0) = Sy(0) = S;(0) =
1, Sy(0) = Sy(00) = S;(c0) = 0 and S, S{™ and S§™ are nonincreasing with
values between 0 and 1, (4.9)-(4.11) hold uniformly for ¢ € [0, o) with probabil-
ity 1.0
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