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STOCHASTIC ESTIMATION AND TESTING!

BY R. BERAN AND P. W. MILLAR

University of California, Berkeley

Stochastic procedures are randomized tests, estimates and confidence
sets with two properties:

(i) They are functions of an original sample and one or more artificially
constructed auxiliary samples.

(ii) They become nearly nonrandomized when the auxiliary samples in-
crease in size.

The stochastic procedures of this paper, which arise as approximations to
numerically intractable procedures, involve iterated bootstrap techniques and
random sampling schemes over abstract populations. A general methodology
is applied to the asymptotic study of stochastic minimum distance tests,
stochastic maximum likelihood estimates, stochastic confidence bands and
several other stochastic procedures.

1. Introduction. Stochastic procedures are randomized tests, estimates and
confidence sets with two properties:

(i) They are functions of an original sample and one or more artificially
constructed auxiliary samples.

(ii)) They become nearly nonrandomized when the auxiliary samples are
increased in size.

A simple example is a bootstrap confidence set for a parameter, where the
boundary of the confidence set is determined by Monte Carlo simulations of an
appropriate bootstrap distribution. The stochastic procedures discussed in this
paper are more complex, involving, for example, iterated bootstrap techniques
and randomized sampling schemes over abstract populations. However, like the
bootstrap Monte Carlo just mentioned, they are randomized procedures, in the
sense of decision theory, which arise as useful approximations to numerically
intractable procedures. This paper introduces several new stochastic procedures
(described later on) and develops some asymptotic theory for these which
recognizes the effects of the auxiliary randomization.

1.1. Stochastic minimum distance estimates. Minimum distance estimates
are attractive because of ‘their robustness and good rate-of-convergence in a
relatively wide range of models. Let {Q,, 6 € ®} be a family of cdf’s on RY,
where © is an open subset of R? Let x, = (x,..., x,) be a sample of size n
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from an unknown Q,, let @, be the empirical cdf of x,, and let | - | denote some
norm on bounded real functions of R?, such as the supremum norm. A minimum
distance estimate is any ©-valued random variable that comes within n~! of
minimizing the discrepancy funétion D,(0,x,) = |Q Q| If the dlscrepancy
function has several relative minima, or if the dimension d of © is large,
calculation of a minimum distance estimate can be difficult.

A result from real variables provides another view of the problem. Let u be a
probability measure on ® and suppose s;, Sy, ... are iid. random vectors, each
distributed according to p. Then

(1.1) inf{D,(s;,x,): 1 <j < oo} = essinfD,(4,x,) w.p.l,
p

the essinf notation meaning essential infimum with respect to p. Moreover, if
D,(0,x,) is continuous in § and if p gives positive probability to every open
subset of @, then essinf, D (6, x,) coincides with inf,D,(0,x,).

This viewpoint motlvat% a stochastic approximation to the minimum dis-
tance estimate. Let s, = (sy,... s; ) be a random sample of j, elements in O,
drawn as described prev10usly or in some other manner (see the followmg)
Define the stochastic minimum distance estimate 0 ) ) (X,,,8,,) by the require-
ment that

(1.2) D,(8,,x,) = min{D,(s;,x,): 1 <j <Jj,},

that is, 0 minimizes D,(0,x,) as @ ranges over values in s,. The estimate
b  (X,,,8,) is a stochastic procedure, in the sense described earher since it is a
functmn of the original sample x, and of the auxiliary random search sample s,

The global search strategy takes 8y,... 8; to be iid. p, where p is a ﬁxed
probability on ® with full support. Under the regularity assumptlons of Section
4, the resulting global stochastic minimum distance estimate ) ) (X,,,8,) has the
same asymptot1c distribution as the actual minimum distance estimate, provided
lim, _, j,n~%?= oo, where d is the dimension of ©. The condition on j, has
an intuitive explanation: It ensures that the expected number of search points
{s;: 1 <j < J,} falling within a ball of radius O( n~'/%) about the true parameter
Value tends to infinity as n increases. This is needed because the discrepancy
function D,(6,x,) typically approaches its infimum within such a ball. When
dimension d is large, global search wastes too many observations searching
unimportant parts of the parameter space.

A more sophisticated local search strategy is often available. Suppose f, =
(x,) is a preliminary estimate which is n'/?consistent for the unknown
parameter and takes its values in the parameter space ©. Conditionally on X,
draw j, independent bootstrap samples x},...,x}, each of size n, from the
fitted model Qg ). Let s; =4 (X)), the Value of the preliminary estimate
recalculated from the Jjth parametnc bootstrap sample. Set 8, = (sy,..., s; ) and
determine the stochastic minimum distance estimate as in (1.1). Under the
regularity conditions of Section 4, this local stochastic minimum distance
estimate has the same asymptotic distribution as the actual minimum distance
estimate, provided only lim,, _, ., j, = co. This last condition does not involve the
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dimension d of ©® because the local search described previously automatically
concentrates on balls of radius O(n~1/?) about the true parameter value. Other
ways of constructing local search samples with this key property are, of course,
possible and lead to the same asymptotics. Note, however, that the bootstrap
local search automatically generates points s; in ©, a useful property when the
parameter space is constrained (e.g., when © is a set of positive definite

covariance matrices).

1.2. Stochastic minimum distance tests. Consider the null hypothesis that
the actual cdf of each observation in the i.i.d. sample x,, is @, , where §, € © is
unknown. The minimum distance test for this hypothesis rejects when the test
statistic inf,D,(0,x,,) is sufficiently large. A stochastlc approximation to this
test is based upon the test statistic D [0 (X, 8,),X,] = min{D,(s;,x,): 1 <j <
Jn}» where s, is the local search sample described in Section 1.1 and 9n(xn, 8,)is
the local stochastic minimum distance estimate. An asymptotically valid critical
value for the stochastic test can be obtained as follows, by parametric bootstrap-
ping. Given (x,,s,), let y*,...,y;* be &, bootstrap samples, each of size n,
drawn from the fitted model Q@ (%8, Let ». be a (1 — a)th quantile of the
empirical distribution of the values {D [é (yk ,8,),¥*1]: 1 < k < k,}. The sto-
chastic goodness-of-fit test which rejects whenever D [0 (X, 8,),X,] > 7, has
asymptotic level a (Section 4.2), provided lim,, ,  j, = lim,_ &, = oo. Note
that this test is a function of the original sample x,, and of the aux111ary samples
s, and y*,...,y:*. The approach just described overcomes well-known difficul-
ties in constructing minimum distance goodness-of-fit tests [cf. Durbin (1973)
and Pollard (1980)].

1.3. Stochastic maximum likelihood estimates. Maximum likelihood estima-
tion has a close formal similarity to minimum distance estimation: Instead of
minimizing a discrepancy function D,(6,x,), we seek to maximize the likelihood
function L,(6;x,) =II]_,f(6; x;), where f(f;x) is the density of @,. The
stochastic maximum likelihood estimate 0 =40 ) (X,,, 8,,) is defined by the require-
ment

(1.3) L,(6,;x,) = max{L,(s;x,):1<j<j,},

where s, = (sy,..., s; ) is a random search sample. Under the regularity condi-
tions of Section 3 the stochastic maximum likelihood estimate, like the true
maximum likelihood estimate, is asymptotically efficient and asymptotically
normal, provided lim,_ . j, = o (when s, is a local search sample) or
lim, . j,n~%? = co (when s, is a global search sample).

Finite sample behavior of the local stochastic maximum likelihood estimate
and of a familiar competitor, the method of scoring, were studied numerically in
the Cauchy location model on the real line. The preliminary estimate §, was
taken to be the sample median. The local stochastic maximum hkehhood
estimate 0 (X ,,,8,) was improved by appending 6, to the bootstrap local search
sample s, described in Section 1.1; this change does not affect the asymptotics of
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TaBLE 1
Estimated efficiencies relative to the sample median of the j,-step method of scoring estimate and of
the local stochastic maximum likelihood estimate (SMLE) based on a search sample of size j,. The
data are a sample of size n from the Cauchy location model. The efficiency estimates are based on
1000 Cauchy samples. *Asymptotic relative efficiency is n2/8 = 1.23.

n 5 11 ' 21 41
A Jn-step SMLE Jn-step SMLE J.-step SMLE J.-step SMLE

1 1.05 1.21 1.18 1.20 1.23 1.05 1.20 1.00
2 1.06 1.27 1.23 1.15 1.27 1.20 1.22 1.03
5 1.03 1.28 1.24 1.21 1.29 1.25 1.23 1.12
10 1.03 1.29 1.23 1.27 1.28 1.31 1.22 1.14
25 1.01 1.29 119 1.30 1.29 1.30 1.24 1.21
50 1.02 1.20 1.19 1.28 127 131 1.25 1.22

this paper. The j,-step method of scoring estimate in the Cauchy location model
is 0, ;, where

0,.0= 5n’
(1.4) 0

0n,j=0n,j—l+n_1 Zv(xi_on,j—l)’ 1<j<j,
i=1
and o(x) = 4x/(1 + x2).

For various choices of sample size n and of j,, Table 1 reports the observed
efficiency relative to sample median, in 1000 Monte Carlo trials, of the j,-step
method of scoring estimate 6, ; and of the stochastic MLE based upon a local
search sample of size j, (with sample median appended). The asymptotic relative
efficiency of the local stochastic MLE is «2/8 = 1.23, provided j, = oo as
n — . The asymptotic relative efficiency of the j,-step method of scoring
estimate is also 72/8, if j, is fixed as n - oo [Le Cam (1974)]. The entries in
Table 1 reflect the differing asymptotics clearly: For n = 41, the one-step
method of scoring estimate compares in performance to the stochastic MLE
having a search sample of size 25.

On the other hand, at n = 5, the local stochastic MLE dominates the method
of scoring estimate, no matter how many iterations of the latter are computed.
The ripples in the Cauchy likelihood when n is small confuse the method of
scoring [Barnett (1966)] but do not affect stochastic search techniques.

1.4. Confidence sets for an unknown probability. Let Qn be the empirical
measure of n ii.d. random variables with values in a space S and with common
unknown distribution Q. Let V be a collection of subsets of S. Consider
a confidence set C,, for the unknown Q of the form

G, = {P:sup|Q,(V) — P(V)| < £,},

where the supremum is over all sets V in V. The classical Kolmogorov—Smirnov
confidence sets are of this form. When S is Euclidean, other choices of V include
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the set of all halfspaces or the set of all ellipsoids. In general, construction of C'n
founders on two difficulties: computation of the supremum and suitable choice of
critical value #,. The asymptotic distribution theory is usually too intractable to
give a value for 7,. ,

To construct a stochastic approximation to é’n, pick sets V...,V at random
from V and replace the supremum over V by the supremum over the {V:
1 <j <j,). Estimating the conditional distribution of n'/ 2max{|Qn(V}) - P(V)|:
1 <j <J,)}, given the {V: 1 <j <j,}, by nonparametric bootstrapping yields a
critical value 7, such that the stochastic confidence set

{P: n*? max |Qn(V;) - P(V})| < Fn}
1<j<J,

has the desired asymptotic coverage probability. Section 8 gives details. The
special case when V consists of all halfspaces in an Euclidean space was
discussed by Beran and Millar (1986). The treatment here differs from the earlier
one in three respects: Here the random search extends over all sets in V, V is not
restricted to halfspaces and the effect of approximating the relevant bootstrap
distribution by Monte Carlo methods is analyzed.

1.5. Other stochastic procedures. Several other stochastic procedures are
analyzed in this paper. Section 6 treats stochastic likelihood ratio tests for
composite hypothesis in parametric models. These tests replace the double
maximization of the classical likelihood ratio tests by two local stochastic search
maximizations and replace the chi-squared approximation to the null distri-
bution by a bootstrap estimate. There are heuristic grounds for believing that
the bootstrap approach reduces. the level error of the test.

Section 3.3 discusses confidence sets for a parameter 0 based on
n'/%0 (x,,8,) — 0|, where 8,(x,,s,) is the local stochastic maximum likelihood
estimate. Critical values for the confidence set are obtained from a parametric
bootstrap estimate of the conditional distribution of n'/?f(x,,s,) — 8|, given
the local search sample s,. There is reason to expect that studentizing before
bootstrapping may yield a stochastic confidence set with smaller coverage
probability error. [See the discussion in Abramovitch and Singh (1985) for the
case with j, = c0.] The second-order asymptotics for this problem need further
development.

Section 7 studies a stochastic Bayes estimate in which integration with
respect to a prior distribution is replaced by averaging over a sample drawn from
that prior. The asymptotics for this stochastic procedure are sensitive to the
dimension of the parameter space. This example illustrates that stochastic
procedures are not necessarily linked to resampling methods or to a random
search for an extremum.

We observe that stochastic procedures have a history in statistical practice,
which begins with the use of Monte Carlo methods to approximate critical values
for tests of a simple hypothesis [e.g., Dwass (1957)]. More recent stochastic
procedures include tests and confidence sets based on Monte Carlo approxima-
tions to bootstrap distribution [e.g., Efron (1979) and Beran (1986)],
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approximations to maximum likelihood estimates based on Monte Carlo esti-
mates of the log-likelihood function [Diggle and Gratton (1984)], the stochastic
confidence sets for an unknown probability cited in Section 1.4 [Beran and
Millar (1986)] and stochastic tests for a simple hypothesis which foreshadow the
confidence sets of Section 1.4 [Pyke (1984)]. The present paper goes farther in
two directions: It introduces and studies the method of local stochastic search
and it develops an asymptotic analysis for stochastic procedures which recog-
nizes the effects of the auxiliary randomization. It is ironic that stochastic
procedures— the most practical of randomized procedures—should come to the
fore so late in the story of decision theory.

2. Basic tools. The distribution of a stochastic procedure depends upon the
joint distribution of the augmented sample, which consists of the original sample
and the artificial auxiliary samples. Section 1 described how augmented samples
are constructed in practice. A different mathematical viewpoint is needed for the
asymptotic theory. From now on, we regard a stochastic procedure as a random
variable (that is, a measurable function) defined on a space of elementary events
which consists of all possible values of the augmented sample. The space is
endowed with the probability measure which corresponds to the constructions of
augmented samples in Section 1. This section introduces some notation and
several weak convergence results which will be used repeatedly in the remainder
of the paper.

2.1. Empirical estimates of random probability measures. For each n > 1,
let (X,,F,, P,) be a probability space. Let A be a complete metric space with
Borel o-algebra = and, for each j, > 1, let A/» denote the j,-fold product of A
with product o-algebra =/, Let M be the set of all probability measures on
(A, ), metrized by the Prohorov metric. Let p, be a random probability
measure on X , /A, defined as follows: p, is a real-valued function on X, X 2
such that p,(x,,) is an element of M for each x, € X, and the mapping
X, = kX, ') is measurable. The notation p,(x,, D) then denotes the prob-
ability assigned to the set D € X by the probability measure p,(x,, :)-

Define the random product measure p/» on X ,/A’» by

Jn
(2.1) 3%, B) = [ T1pa(x,, day),
B J=1
where x, € X, a,=(a,...,a;) €A’ and B€ 3/ Let P, ® pj be the
probability measure on X, X A’» given by

(2.2) (P, ® u#)(C) = [pi(x,, da,)B,(dx,),

where x, € X, a, € A’ and C is any set in the product o-algebra F, ® 2/
The probability models (X ,,F,, P,) and (X, X A/~ F, ® 3/ P, ® p/») admit
the following interpretation. The space X , is the set of all possible values for the
original sample and P, is the distribution of the original sample. For each
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X, € X, pir(x,, ) is the distribution of an auxiliary sample of size j, drawn
from the probablhty measure p (X, ‘). The space A/~ is the set of all possible
values for such an auxiliary sample. The space X, X A/~ is the set of all possible
values for the augmented sample and P, ® pir 1s the distribution of the aug-
mented sample.

The empirical distribution of f, of an auxiliary sample is defined formally as
the random probability measure on X , X A’»/A given by

(2.3) fin((x,,a,), D) = E Ix(a)),

where x, € X, a,=(ay,...,a;) € A’x and I, is the indicator of the set
De?3. Let p denote Prohorov dlstance on M, the set of all probability measures
on (A, 2).

THEOREM 2.1. Let p, be a nonrandom probability measure in M. Let
{pn: n 21} be a sequence of random probability measures on X ,/A such
that o(p,, o) = 0 in P, probability as n— oo. If lim,_ . j,= oo, then
p(fi s o) = 0 in P, ® pir probabzhty asn — oo.

Note that j, can approach infinity at any rate and that the sequence {F,}
need not converge. In the special nonrandom measure case g, = gy, n > 1, the
theorem is due to Varadarajan (1958). When A is Euclidean, which is the case
needed in this paper, Theorem 2.1 follows from the exponential bound of Kiefer
and Wolfowitz (1958) on the Kolmogorov distance between fi, and p,. The
theorem as stated is proved in Beran, Le Cam and Millar (1987).

2.2. Substitution arguments. Whenever convenient, weak convergence re-
sults will be derived from ordinary pointwise convergence properties, in the
manner of Skorohod. The two lemmas stated below—both consequences of a
theorem due to Wichura (1970)—will be applied repeatedly in the remainder of
the paper.

Let Z,Y, W be metric spaces endowed with their Borel o-algebras. Let {A,:
n > 1)} be a sequence of W-valued functionals defined on Z X Y and let A be a
fixed W-valued functional defined on Z X Y. A first substitution lemma is
obtained under the following hypotheses:

((Z,,Y,): n>1)} and (Z,Y) are Z X Y-valued random vari-
(2.4a) ables; (Z,,Y,) converges weakly in Z X Y to (Z,Y), whose
support is separable; the support of Y lies in Y, C V.

(2.4b) ﬁ‘\(n(zn, %) = A(2, y) in W wherever (2, 3,) = (2, ¥) € Z X

0°

LEMMA 2.1. If (24a) and (2.4b) hold, then A, (Z,,Y,) converges weakly in
W to A(Z,Y).
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REMARKS. A special case of assumption (2.4a), to be used in the sequel, is

Z, converges in probability to z,, a fixed element of Z; Y,
(2.4c) converges weakly in Y to Y, whose support lies in Y, and is
separable. !

There are many variants of Lemma 2.1. Some of these arise because stronger
conditions on the {z,, y,} in hypothesis (2.4b) may be necessary in order to
ensure that A,(z,, y,) converge. For example, let {5,} be a sequence of real
numbers, 8, | 0. Suppose (2.4b) holds but only for sequences {z,} such that for
some ¢, 8, d(z,, 2,) < c; here d is the metric of Z and z, is a fixed element of
Z. If (2.4c) holds and if {8, 'd(Z,,, z,)} is tight, then the conclusion of Lemma 2.1
continues to hold. Another variant arises if A, is real-valued and the first half of
(2.4b) is replaced by (say) limsup,A,(2,, ¥,) < A(2, y), then the conclusion of
Lemma 2.1 can be replaced by lim sup, Ef(A (2, Y,,)) < Ef(A(Z,Y)), where f is
any increasing function for which the expectations exist.

A second substitution lemma is obtained under the following hypotheses:

{(Z,,Y,): n>1} and (Z,Y) are Z X Y-valued random vari-
(2.52) ables; the {Z,} and the {Y,} are independent; Y, converges
weakly in Y to Y, whose support is separable and lies in

Y, C Y.
(2.5b) A, (Z,, y,) converges in probability in W to A(Z, y) whenever

Y, 2> YEY,.
Let L ,(2) denote the distribution of A ,(2,Y,) and L(z) denote the distribution
of A(2,Y).

LEMMA 2.2, If (2.5a) and (2.5b) hold, then

(i) A(Z,,Y,) converges weakly in W to A(Z,Y);
(ii) L,(Z,) converges weakly to L(Z), as random elements of the space of
probability measures on W metrized by Prohorov metric.

Proor. By applying Wichura’s (1970) theorem to the {Y,} and Y, construct
versions of {(Y,, Z,)} and (Y, Z) such that Y, = Y a.s. in addition to (2.5a) and
(2.5b). Assume without loss of generality that the metric d on W is bounded
above by 1. Then, by Fubini’s theorem and dominated convergence,

(2.6) lim Ed[A,(Z,,Y,), A(Z,Y)] =0,
which implies part (i) of the lemma.

Let B denote the bounded Lipschitz metric on the space of all probability
measures on W. For every choice of constants {z,}, z in Z,

(2.7) BIL(2,),1L(2)] < Ed[A,(2,,Y,), A2, Y)].
Since {Y,}, Y are independent of {Z,}, Z,
(2.8) EB[L,(Z,),L(2)] < Ed[A,(Z,,Y,), A(Z,Y)].

Part (ii) of the lemma follows from (2.8) and (2.6). O
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REMARK. Several variants of Lemma 2.2 exist, in which hypothesis (2.5b) is
weakened by imposing more restrictions upon the {y,} (cf. the comments
following Lemma 2.1).

3. Stochastic MLE: Local search.

3.1. Construction. Let {Qy, 6 € ©} be a family of mutually absolutely con-
tinuous probabilities on a space X; for simplicity let ® be R? Let X, be the
n-fold product of X, and Qo the product measure of @,. Let f*(0; -), § € O be
the density of Q,, The maximum likelihood estimator of 6 is a variable that, for
each x,, maximizes f"(6; x,,) as a function of 6. Let 0 = 0 x,) be a pre-
liminary estimate of 4, i.e., 0 is a map from X, to ©. The local stochastic
maximum likelihood estimate is defined to be any measurable function 0
b (x,,t,) on X, X (R%)’ satisfying

(3.1) Fn(b,5x,) = maxf(f,(x,) + n=2;x,),
i<j,

where x,, € X, and t,, = (¢,,..., ;) € (R’
Let D,(6) be the dlstnbutlon of nt/’ 2(6? — 0) under Q7. Define the random
probability measure p, by

(3 2) nu’n(xn’ ') = (5 (x ))
If @, is the true parameter at time n, put the measure @7 ® pin on X, X (R%)’.
The local stochastic maximum likelihood estimate 0n(x,,,t ) defined i 1n (3.1) has

the same distribution as the one defined in Section 1.3. Only the underlying
probability space has been changed for the theoretical development.

3.2. Asymptotic normality. For 6,0, € © and x, € X, define the likelihood
ratio
(8.3) L (01’ 0;x,) =f"(6,,x,)/f*(8,x
Often, L,(6,,8) will be written in place of L, (6,,0; x ) Asymptotlc normality
will be proved under the following hypotheses. Fix 6, in R%. Let C,(R?) denote
the set of all continuous functions on R which vanish at infinity, metrized by
the supremum norm.
(3.4a) Forevery c > 0and every sequence {d,} with n'/20, — 6, < c,
D,(6,) converges to a measure p, that depends only on 6.
For every sequence {f,} as in (3 4a) the processes {L,(6, +
n~%u,0,;x,): u € O} converge in distribution under @7 , as
a random element of Cy(R?), to a process W = {W(u):
(34b) U€ R?), where the distribution of log W(u) is that of
(u, N) -2~ Yu, I(8,)u). Here N is normal with mean 0 and
covariance I(6,), I(8,) is the Fisher information matrix
(assumed nonsingular) and the brackets denote the inner
product in R4

Note that these two hypotheses can hold outside the ii.d. setting we have
chosen.
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THEOREM 3.1. Assume (3.4a) and (3.4b) and {6,} is a sequence satisfying
|6, — 8, < cn~ V2 If j, = oo, then

(35) n'%(8, - 6,) = N(0, I"Y(8;)), under @}, ® pi.

REMARKs. Hypothesis (3.4b) is satisfied for certain canonical exponential
family models, such as the normal location-scale model, but is too strong
otherwise. It is used here to keep the proof of Theorem 3.1 straightforward. A
more general account of stochastic maximum likelihood estimates would draw on
the more refined hypothesis of Le Cam (1970) and of Ibragimov and Has'minskii
(1981), Chapter 2.

Hypothesis (3.4a) asserts that the prehmmary estimate @, is regular in
Hajek’s sense [Hajek (1970)]. The theorem implies that the local stochastic
maximum likelihood estimate is regular, efficient and locally asymptotically
minimax in the usual framework [Ibraglmov and Has’'minskii (1981), Chapter 2,
and Millar (1983), Chapter 7]. Indeed 0 is very close to the actual maximum
likelihood estimate, as shown by the corollary to the proof given later. An
important problem is to compare the performance of stochastic MLE’s with
other approximate MLE’s, such as those obtained by Le Cam’s method of fitting
parabolas [Le Cam (1974)]. Theoretically, such developments involve second-order
asymptotics and are beyond the scope of this paper. Section 1.3 gives a numerical
comparison for the Cauchy location model. The proof of Theorem 3.1, given
later, also yields

COROLLARY. If 8, is the actual MLE and 0, is the SMLE, then n'/*(8, —
) - 0in QF ® pr pmbabzhty

The proof of Theorem 3.1 depends on a convergence lemma for the esssup
operation. Let Z be the metric space of all probabilities on © with, e.g., the
Prohorov metric. Let Y = C,(R?) and let Y, be those elements of Y with a
unique maximum. For measures m € Z and functions g € Y define the func-
tional A, (m, g) = t*, where ¢* is any point satisfying g(¢*) > esssup, g — n~ %
Define A(g) to be the unique point at which g € Y, achieves its maximum. Let
m be a fixed measure putting positive mass on every open subset of R

CONVERGENCE LEMMA 31. Ifm, > min Z and g, > g € Y,, then

(3.6a) ‘ esssupg, — supg(t),
m, t
(3.6b) A, (m,, g,) > A8).
PROOF OF THEOREM 3 1. Smce the Q,’s are mutually absolutely continuous,
8, satisfies L, (8, ,0,) = max, _ ;. L6, + n~'2,8,). Let W, be the stochastic
process with paths in CO(Rd) given by W (t) =L, (6, + nV %t,6,). Let fi, be
the empirical distribution of (¢,,...,¢; ) viewed as a function of X, X (R%)n,

Let fi,. be the random centering of un given by fi,(A) = (A — Y "), where
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Y, = (4, — 6,)n"/% Then 4, satisfies
(3.7) L,(8,,6,) = esssup W,(-) = W(T,),

n’’n
Bac
where T, = A (R,., W,) = n*/%(8, — 6,).

Note that W, converges in C,(R?) to W [hypothesis (3.4b)] and that W has a

unique maximum at I %(6,)N. Next, let {6;} be any sequence satisfying

n*’2|0, — 6,| < c. By hypothesis (3.4a), p(D,(6,), o) = 0. The tightness of

n*’%(g, — 6,) under Q;, and Lemma 2.1 then imply p(p,, o) = p(ID,,(ﬂ ) o) = 0
in Qg -probability. By Theorem 2.1, P(Bns ko) = 0 in QF ® pj» probability.
Hajek’s (1970) convolution theorem implies that Lo, the limit of nV/ %, - 0,),is
the convolution of some probability with N(0, I~'(6,)); hence, p, gives positive
mass to every open set. Lemma 2.1 implies that fi,., as a random probability
measure, converges in distribution to the random measure py(- — Y), where Y
has distribution p,,.

Each realization of this limit measure gives positive mass to every open set.
The sequence {({,., W,)} is tight; application of Lemma 2.1 and Convergence
Lemma 3.1 to a weakly convergent subsequence of {(fi,., W,)}, indexed by n’,
shows that A ,.(ft,.., W,) converges to I~'(8,)N. Since this limit does not depend
on the subsequence selected, the entire sequence converges. O

PrOOF OF CONVERGENCE LEMMA 3.1. Let [ f], denote esssup,, f. Then by
the triangle inequality

(3.8) Ile.], - [gl.l < [lg.—&ll, < sup l&(t) — g.()| = 0.

If A, ={x: g(x)>supg — ¢}, then A, is open, m(A,) >0 and so
liminf m,(A,) > m(A,) > 0. Hence, [g], > supg — ¢ for all large n, implying
part (a). To prove (b), let B, = {v: g,(v) > [&,], — »~'}. Then for sufficiently
large n,

39) B,c {vig(v) > [g,],—2n"'}, when|lg—g,ll<n?

c {v: g(v) >supg — 3n"'}, using part (a).

This last set shrinks down, as n — o0, to the unique maximizing point of g. O

3.3. Estimated distribution of the stochastic MLE. This subsection analyzes
a bootstrap estimate of the distribution of n'/*(f,(x,,,t,) — 6) under @} ® pJr
when 6 is unknown and where 0 is the local stochastlc MLE. This estimate 7 b,
described later, has the same dlstnbutlon as the estimate of Section 1 5
however, in order to make apparent the application of Theorem 2.1 and the
substitution theorems, it is represented on a more convenient space and its
dependence on various auxiliary empiricals is made explicit.

For § € ® = R x,, € X, and m a probability on R define §,(m,x,) to be
any pointsatisfying L,(6,(m,x,), 0;x,,) > esssup,, L, (0 + n~'/2%(-),0;x,) — n~ .
Let £,(m, 0) be the distribution of n'/%(6,(m,x,) — ) when x,, has distribution
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Qp. For (x,,t,) € X, X (R, let (X, t,), *) = £u(Ba(X s t,),
) ) (X,.,t,,)), where 0 is the stochastic MLE and j,, is the empirical distribution
oft,=(¢,...,¢) v1ewed as a function on X, X (R%)’». Let 7, be the empirical
distribution of u = (uy,...,u ) If x, € Xn, t, € (R%) and u, e (Rd)k
then 7,(x,,t,,u,; ) puts mass k! at each u; If (@ ® u’n) ® vk is the
measure put on the foregoing product space, then given x,, tn, 7, is the empmcal
distribution of a sample of size &, from »,((x,,t,), *).

THEOREM 3.2. Let v, = N(0, I(6,)'). Assume hypotheses (3.4a) and (3.4b)
and let {6,)} satisfy n'/?|0, — 6,| < c. Then, if k,, j, = o,

(3.10) (3, %) = 0, in (QF ® pir) ® v~ probability.

ProOF. By Theorem 2.1 it suffices to show that p(»,,7,) = 0 in @ ® pJr
probability. The argument given in the proof of Theorem 3.1 shows that
whenever {7,} is a sequence of probability measures converging weakly to u,
and whenever {6/} satisfies n'/%|6, — 6| < c, then £,(n,, ;) converges to 7, in
Prohorov distance. Theorem 3.1 also showed that the stochastic maximum
likelihood estimate §, has the property that n'/ 219, — 6| is tight, and that
B, = Mo in probability. By Lemma 2.1, £,(f,, 6,) = », converges to »,. O

Conﬁdence sets. Let |-| denote any norm on RY and let d,, «=
d(x,,t,,u,) be 1 — a)th quantile of the cdf 3{y € R* |y| < r}. Set C
{0: |0 0 (X t,) <d, (X,,t,,u,)}. Theorem 3.2 implies that C Lisa con-
fidence set for 6 having asymptotic level 1 — a. Moreover, the local asymptotlc
minimax property described in Beran and Millar (1985) holds for Cn This
confidence set has the same distribution as the one described in the introduction.
Variants of the method of this section will yield stochastic analogues of con-
fidence ellipsoids of the classical theory as well. The possibility of bootstrapping
a centered statistic in order to produce confidence sets was first pointed out by
Efron (1979). More recent theory for bootstrap procedures can be found in Beran
(1984), Bickel and Freedman (1981) and Singh (1981), for example.

4. Stochastic minimum distance procedures.

4.1. Construction and asymptotics. Let {Q,, 0 € O} be a family of cdf’s on

Rq where © is an open subset of Rd Let X, be the n-fold product of RY; if

= (x,...,%,) € X, let Q Q (X *) be the empirical cdf of x,. Let | - |

be a norm on real functions of RY such as LP-norm or a supremum norm

(required properties of | - | are given later). The minimum distance test statistic
for the hypothesis {@,, § € 0} is

(4.1) n'/? inf|Q, — Q|
and a minimum distance estimate 8, is any point in © satisfying
(4.2) infn'/*|Q, — Q| = n'/%1Q, — Qs —n”".
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To define stochastic versions of these quantities, let § = f,(x,,) be a preliminary
estimate of §. The stochastic minimum distance estimate is any random variable
6, on X, X (R%)’» satisfying

(43) min|Q, - Q(4, +'n )| = (@, - Q(4,)],

where t, = (¢,,..., ;) € (R?)’» and we have written @, = Q(6). Then d,=
0,(x,,t,). The stochastic minimum distance test statistic is

(44) n'*Q, - Q(4,)|-

Let D,(0) be the distribution of n'/%(f, — #) when x, has distribution @}
and define the Markov kernel p, by

45 Ha(Xns+) = D,(6,).
If 8, is the true parameter at time 7, put the measure @7 ® pJ» on X, X (R%)/r;
notice that this is exactly the search structure used in the MLE case.
Asymptotics for the stochastic minimum distance estimate and test statistic
will be developed under. the following hypothesis. Fix 6, € © and let B be a
Banach space of real functions with norm | - | such that @, — @, € B for all 6.
Assume:
(4.6a) If @ — Q, converges to 0in B, then 6, — 6.
There is a bounded linear map ! from R¢ to B such that
(4.6b) @, —Q, = U0 — 6,) + 0(10 — G|) and such that [I(8)] = c,ld]
for all @, for some positive c,.
If {6,} is a sequence such that n'/2|6, — 6, < c, then there is
(46c) 4 B.valued r.v. W such that n/ 2(Q, - Q) converges to W,
weakly in B, under Qg .
(4.6d) The preliminary estimator 4, satisfies (3.4a).
Hypotheses (4.6a—4.6¢c) are standard for the minimum distance problem: See,

e.g., Pollard (1980) or Millar (1984). Hypothesis (4.6c) is known to be satisfied if
| - | is supremum norm or an L”-norm relative to a finite measure.

' THEOREM 4.1. Assume (4.6a)—(4.6d), that {6,} satisfies the condition in
(4.6c) and that j, - 0.

(a) Under Q. ® uir,
(4.7) n'|Q, - Q(8,)| = min|W - 1(6)].

(b) Let M be the random set of 0’s that achieve min|W — I(0)|. If A is a
closed set in R® and C is open, then
(4.8) limsup Q7 ® u{;"{(én -0, )n'?c A} <P(MNA+g)

n-—oo

and
(4.9) liminfQ; ® p/+{(8, - 6,)n'2e C} > P(M c C}.
n—oo
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In case M consists of a single random variable 7, the conclusions of (b)
simplify; unfortunately, the existence of asymptotically unique minima appear
easily guaranteed only in the case that | - | is Hilbertian.

COROLLARY. If the random set M consists of a single random variable 7,
then

(4.10) n/%(8, - 6,) =n, underQj ® pir.

REMARKsS. If 5,, is the actual minimum distance estimate, the conclusions (a)
and (b) hold with 8, replacing 9,,. See Pollard (1980) for a formulation related to
(b) but in terms of convergence of random sets. Theorem 4.1 presents only a
relatively simple illustration of the use of stochastic methods in minimum
distance problems. For example, more complicated functionals [such as those in
Millar (1984)] are amenable to similar analysis. Characterization of 7 in the
Hilbert case can be found in Millar (1984); in this case, the stochastic minimum
distance estimate is locally asymptotically minimax and asymptotically normal.
In general M will contain more than one point; it is easy to see, however, that it
is compact and convex. The proof of Theorem 4.1 requires a convergence lemma,
whose proof is similar to that in Section 3.

CONVERGENCE LEMMA 4.1. Let g,, g be nonnegative continuous functions
on R g, converging uniformly to g on balls. Assume that for n > n, thereis a
ball containing all the minima of g,. Let m,, m be probabilities on R% m, = m,
m having full support. Define A, (m,,g,) =tY, where t} is any point sat-
isfying g,(t¥) < essinf,, g, + n~'. Let M be the set of minima of g, and let
AS(m,, g,) = essint,, g,. Then

(4.11a) AS(m,, g,) - ming(¢),
t
(4.11b) d(t*, M) > 0.

PROOF OF THEOREM 4.1. Let W, =(Q, — @, )n'/% Let i, and f,, be
defined as in the proof of Theorem 3 1. Let M, "be the set of 6 such that
n'%|Q, — Q| < min,|Q, — Qn*/% + n~1. The theory of minimum distance
estimators [see Pollard (1980) or Millar (1984)] shows that M, is contained in a
ball about 8, of radius C,n~'/2, where {C,} is a tight sequence. The differentia-
bility hypothesis (4.6b) implies that n'/2[Q, — Qy (0, + vn~'/?)] is approxima-
table by W, + I(v), uniformly in v, for v constrained to balls of fixed radius.
Moreover, the minima of |W, + I(v)| are all contained in a v-ball of random
radius 7, where {n,} is tight. Regard W, + l(v), v € R? as a random element
of C(R?), where the metric is that of uniform convergence on balls. Then the
B-valued random elements W, + I(v) converge weakly to W + l(v), by (4.6¢).
For all large n, therefore n?Q, — Q)| = A%, &,), where 2, =
|W, + I(v)|. The auxiliary empiricals fi,. converge, as in the proof of Theorem
3.1. Part (a) of the theorem now follows from Lemma 2.1, applied to part (a) of
Convergence Lemma 4.1.
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To prove part (b), note that for all large n, nV/%(8, — 6,) = A (1., &,) (this
assertion depends on the lack of uniqueness in the definition of A ). A variant of
Lemma 2.1, mentioned in Section 2, applied to part (b) of Convergence Lemma
4.1, shows that if ¢ > 0, then for any Borel set D

P{M*c D} < liminfQ; ® p/r{n'*(4,-6,) € D}
n—oo

(4.12) < limsupQ; ® pi»{n'/*(, - 6,) € D}

n—oo

<PM:ND+ @},

where M* = {y: d(y, M) < ¢}. Let €0 in (4.12) for D open, closed to complete
the proof. O

4.2. Estimated distribution of the stochastic minimum distance test statistic.
This subsection analyzes a bootstrap estimate of the distribution of the stochas-
tic discrepancy n'/2|Q, — Q(8,)|, where 8, is the stochastic MDE. The develop-
ment closely parallels that of Section 3.3.

For § € © and m a probability on R?, define ¢,(m, 8) to be the distribution
of essinf, n'/%Q,(x,, ) — Q(#)| when x, has distribution Q}. For (x,,t,) €
X, X (R, let v (X,,t,; *) = £(Bn(Xpoty), 0.(X s t,,)- Let 5, be the empirical
distribution of a sample of size k,, from », (cf. Section 3.3), viewed as a function
on [X, X ©/:] X (R%)*~, and let v, be the distribution of min |W + I(v)|. Then
9, is a bootstrap estimate of the distribution of the stochastic minimum distance
test statistic.

THEOREM 4.2. Assume hypothesis (4.6); let {6,) satisfy n'/%|6, — 6, < c.
Suppose k,, j, = . Then

p(%,,7,) >0, in (Q;‘n ® p,{;") ® v» probability.
The proof is similar to that of Theorem 3.1, and will be omitted.

Testing. Let 7, be a (1 — a)th quantile of the cdf ,. The test which rejects
when |Q, — Q(8,)|n'/? > #, is (by Theorem 4.1) an asymptotically level a test of
the null hypothesis {Qg, § € ©}. This test has the same distribution as the one
described in the introduction; it is just represented on a more convenient space.
Computational feasibility is one of the attractive features of this goodness-of-fit
test. Comparisons of performance with other goodness-of-fit tests would be of
interest; such an undertaking could involve simulated power functions as in
Beran (1986).

5. Stochastic MLE: Global search.
5.1. Asymptotic normality. Let {Q,, 6 € ©}, X, L, and f™(0; -) be as in

Section 3 and take ® = R for convenience. For x,, € X, let T(x,) be a d X d
random matrix and én(xn) an R%valued random variable. The global stochastic
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MLE, 8, is defined by

(5.1) maxf"(L,(x)(2 - ,(x,));x,) = 17(8,:x,),
for z, = (z,,...,2;) € " Then §, = §(x,,2,) is an R%valued random vari-

able on ©/» X X ,,.

Let p, be a probability on ® and put the measure Q7 X pfr on X, ® @n,
Then z, = (z,,..., 2; ) € ©’» is a realized vector of ii.d. (po) random variables,
independent of x,; the search in (5.1) then consists of scanning randomly
centered and scaled z,’s, where the centering and scaling variables can depend on
the original data x .

Make the following assumptions. Fix .

(5.2a) 1T, 1T7Y and C, are tight under @5, whenever {f,} satisfies
16, = 0| < cn™'/2 (Here |T,| is the usual operator norm.)

(5.2b)  Po has a density with respect to Lebesgue measure that is
bounded away from 0 on compacts.

(5.2¢)  Hypothesis (3.4b) holds.

THEOREM 5.1.  Assume (5.2) and suppose lim j,n~%2 = &. For every {6,}
such that n'/?|6, — )| < c,

n'/*(9, - 6,) = N(0, I"(6,)), under Q; ® pfr.

REMARKSs. As in the local case, this result implies that 6, is efficient and
locally asymptotic minimax. Despite the rate requirement on j,, the global
approach may be of use when one does not have a preliminary estimate with
which to begin the local search. Hypotheses can be weakened but at the price of
a much longer proof. The proof depends upon a real variable lemma.

CONVERGENCE LEMMA 5.1. Let &, & be continuous, real, bounded functions
on R, with g, converging to g in Cy(R?). Assume & has a unique maximum at
by. Put the probability measure By on (Zy, Z,,...), where p, satisfies (5.2b). Let
{M,} be a sequence of matrices with |M,|, IM.'| bounded. Let {a,} be a
bounded sequence in R®. Let b, be defined by

(5.3) rirza;xgn(nl/2Mn(zi -a,)) <g(b,) +nL.

If j,n=9% - o, then ’

(5.42) maxg,(n'*(M,(2,— a,))) ~ g(b) a.e. (43),
(5.4b) b, > b, a.e.(p3).

PROOF OF THEOREM 5.1. Using the notation of Convergence Lemma 5.1,
let Z = (2}, 2,,...)and let A (Z; g,, M,, a,) = b,, where Z,, is the r.v. defined
by Z(2) = (2,,..., z;). Define the stochastic process W, by Wy (¢ =
L,(8, + n”'/*,4,). Replace g, in A, by W,, M, by T, and a, by C,, = ¢, +4,
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Take Y, = (W,, T, C’ .) and note that Z,,Y, are independent; Y, can be as-
sumed to converge weakly by passing to a subsequence since {T 1 {C’ } are tight.
By (5.2c), W, converges weakly in Co(R?) to W, which has a unique maximum at
I 00 )N [see 3. 4b) for the definition of N]. Application of Lemma 2.2(i) implies
that b =A(Z,;,W,T, ¢ ') converges in distribution to I7'(6,)N. On the other
hand, since the Qo S are mutually absolutely continuous, the global stochastic

MLE 0 satisfies
(5.5) L,(8,8,) = max(i‘n(z,- -C,).8,) = maxW( 2t (2, - C,.)),

i<j, i<j,

so 8, =46, + n~'/2b_, proving the result. O

5.2. The estimated distribution. Let D, (z,, 0) be the distribution of
n'/2(8(x,,2,) — 0) when z, = (z,.. .,2;) is fixed and x, has distribution
Q7. Let v,(x,,2,; ') be the random probablhty measure on X, X 0//0
given by » (xn,zn, )= ,,(z,,,a X,,Z,)). Let 7, be the dlstnbutlon of u, =
(#y,-.., ) € OFn, viewed as a function on (X X @Jn) X ('-)k If Q7 is ‘the
true distribution of X, and if the measure (Qj ® pd” ® vie s placed on
(X, X ©/r) X @*, then v, is the estimated distribution of the normalized

stochastic MLE. This particular 7, assumes that the search variables are held
fixed throughout the generation of the %, auxiliary variables (cf. Section 1.3).

THEOREM 5.2. Assume the hypothesis of Theorem 5.1, and let v, =
N, I"%(6,)). Then if k,, - oo,

(5.6) (9, %) = 0, in (Q ® pfr) ® vk probability.

Proor. By Theorem 2.1 it suffices to show that p(»,,7,) — 0 in Qi ® pn
probability. Let {6/} be a sequence such that |6/ — 6,| < c¢;'/2 In the proof of
Theorem 5.1 apply Lemma 2.2(ii) instead of Lemma 22(1) ThlS shows that
p(D(z,,0)), vo) — 0 in pf probability. By Theorem 5.1, n/%(f, — 6,) is tight
under Qg ® pi. Therefore, by a variant of Lemma 2 2(1), p(D,(z,, ] ), v) = 0,
which is the desired result. O

5.3. Proof of Convergence Lemma 5.1. Let u(n,i) =n'/2M,(z; — a,). By
the triangle inequality and the definition of supremum norm || - |,

(6.7) |maxg,(u(n, i)) - maxg(u(n, 1))| < lg, = gl ~ 0.
Let g* = g(b,). Then
(5.8) ws{ maxg(u(n, i)) > g" - & =1 - 85,

1<Jp

where 8, = p${g(u(n,1)) < g* — €}, so it suffices to show §J» — 0 to prove (a).
Since g is continuous, A, = {x: g(x) > g* — €} is open and so contains a ball
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B(z,, r) of center z,, radius r. Hence,
1-6,=pef{u(n,1) € B(z,,7)}
= po{x:'x € a, + n7V2M;(B(2p, 1)}

The x-set on the nght side of (5.9) contains a ball with center b, =a, +

n~'2M, 'z,, which is bounded as n — oo, and radius r, > grn 1/2, where
q= mlnn| .| "1 > 0, since |M,|, M, !| are bounded. But p,O(B( qm‘1/2)) >
coLebesgue meas{B(b,, qrn ~1/3 ?} > ¢,n"*/2 for some constants c,, c,, since b, is
bounded and the dens1ty of p, is bounded away from 0 compacts. Hence,
1-8,>¢,n7%?2 and so §» < (1 — ¢,n™*/2)/» - 0, proving (a). Part (b) is
proved much as Lemma 3.1. 0

(5.9)

6. Stochastic likelihood ratio statistic.

6.1. Asymptotic distribution. Let {Q,, 6 € O}, X, f™(0;x,), L,(0,0,;x,),
6,,®,D,(0) and p, be as in Section 3; let 0 be the local stochastic MLE defined
in (3 2). Let d,, d, be integers, d = d, + dl, where d is the dimension of ®. Any
s € RY can be written s — (So; 1), where s, € R%, s, € R%. Fix §,, € R% and
let ® = {6 € ©: 6 = (6y; 6,) for some §, € R4}

Decompose the preliminary estimator 0 into §, = (0n0, 0n1), ; € R%, Define
6° = (84, 0,,) and define 89, the stochastic MLE when § is restricted to 0,, via
the auxiliary sample (¢,,..., ¢;0), t; € R% by

f”(@,?;x ) maxf (00 +nV%;x, )
where x, € X,,.

Let p(x,, - ) = (00) Note that, for each x,,, p%(x,, ) is a probability on
{0}% X R%. If p ) is the conditional distribution put upon the ¢;, then §? is
of the form §° = (000, 89)) for some §°, € R,

If 6, is true at time n, put the measure Q; ® [(12)’" X (p,)")] on X, X
(Rd)fn X (R?)’», Then conditional on x ,, the search samples for constructmg b,
and 00 are 1ndependent The stochastic likelihood ratio statistic for the null
hypothes1s 0, is

(6.1) T, =f"(6,;x,)/f(8%x,).

Fix 6, = (04p; 05,) and let 6, =0,(h)=0,+n""2h= (0, + n"2hg 0, +
n~'2h)). Let J(6,) = I"%(8,), where I(6,) is the information matrix defined in
(3.4b), and let Jy(f,) be the upper left d, X d, submatrix of J(8,). Let »,(h) be
the chi-squared distribution with d, degrees of freedom and noncentrality
pe}irameter (hos Jio'(6p)hy), where the brackets denote the inner product for
R %o,

THEOREM 6.1. Assume h_)potheszs (34a) and (3.4b) and that n, j,, j° all
tend to co. Then, under QF ® [(2)% X (r,)’»] and with 0, = 6,(h) as above,
2log T, = vy(h).
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PROOF Since the @,’s are mutually absolutely continuous, 7, =

L,8,,6, x)/Ly 828, x). Let Wy(h) =L, (6, +n"2h,0 ,). Let i, be the
empmcal distribution of the J, auxiliary variables used to construct 0 (same fi,,
as in Section 3) and let p% be the empirical of the j° auxiliary varlables used to
construct 00 For real functions f and a measure m, let [ f ],, denote esssup,, f.
Then

2log T, = 216g L,(8,,6,) — 2log L,(82,6,)
= 2log[W, (- + Y,)] 4, — 210g[W,((—Ro; ¥,2) + -)] 50,

where Y, = n'/%(8, — 6,), Y, = n*/%(8% — 6,,). By Section 3, }i, converges to a
measure that puts positive mass m on every open set in R% the same argument
shows that % has the same property on R%. Also,” W, converges weakly in

Co(R?) to W and (Y,},{Y,} are tight. A simple variant of part (a) of Conver-
gence Lemma 3.1 together with Lemma 2.1, now shows that 2log 7, converges
weakly to

max log W(¢) — max log W((—h,; t)).
teRdg() teRdlg((O))

Since log W(t) = t’N — 27'¢'1(6,)¢, one may compute these maxima explicitly;
simplification of their difference by standard matrix identities eventually yields
the desired result. O

6.2. Estimated distribution. For § € ® and m a probability on R, define
0,(m,x,) by f™(6,(m,x,);x,) = esssup,, { *(6 + n~*/%(-); x,,). Decompose the
0 just given into 8 = (6,; 0,) (cf. Section 6.1) and set §° = (8,,; 0,). For m° a
probability on R% define 2(m®% x,) by

f(82(m,x,);x,) = esssupf"(8° + n~/%(0; -); x,,).
mO

Let £,(m, m% @) be the distribution of
2log[ f "(8,(m,x,); x,)/f "(62(m°,x,); x,)]

if x,, has distribution @}. For u € U, = X X (R%)’ X (R?%)’» and h, a fixed
vector in R%, define

(6.2) v, ) = £(Bn, BO; 82 + n71/%(Ry; 0)).

Let 7, be the empirical distribution of &, observations from »,, viewed as a
function on U, X R*». Then %, is the estimated distribution of the stochastic
likelihood ratio statistic under the hypothesis (8, + n~'/2h,; ,), the second
component #; being fixed but unknown.

Let P, = Qo ® [(pn)fn X (r,)»], and let vy(h) be the chi-squared distri-
bution given in Section 6.1.

THEOREM 6.2. Assume the hypothesis of Theorem 6.1. If k, — oo, then
p(¥,,7o(h)) = 0 in P, ® v* probability.
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ProoF. By Theorem 2.1, it suffices to show that p(»,,7,) = 0 in P, prob-
ability. The argument for Theorem 6.1 shows that £&(m,, m?, 8/) = », whenever
m,, m% converge to measures with full support and when {6;} satisfies 6, =
(6pp + n~Y2hy; 0y, + n~2h,,), where |h,,| < c. Since analogous stochastic
properties hold for i, % and §° + n='/%(h,; 0) by the proof of Theorem 6.1, we
may apply Lemma 2.2(i) to complete the proof. O

REMARKSs. Specialized to A, = 0, Theorem 6.2 implies that the (1 — a)th
quantile of 7, (i.e., the bootstrap critical value of the stochastic likelihood ratio
test) converges in P, ® p*» probability to the (1 — a)th quantile of the chi-
squared distribution with d, degrees of freedom. It also implies that the
asymptotic power of the stochastic likelihood ratio test against any sequence of
alternatives of the form (8, + n~'/2h,, 6y, + n~'/2h,) is the same as that of the
classical likelihood ratio test.

7. Stochastic Bayes estimates. Let {Q,, 0 € ©} be a family of probabili-
ties on a space X, with ® = R% Assume the Q,’s are mutually absolutely
continuous and each @, is absolutely continuous with respect to Lebesgue
measure. For 6,,0 € ® and x,€ X,= X" let L,(04,0;x,)=
dQj(x,)/dQg(x,), let f™(8,x,) = dQg(x,)/d\(x,), where A is Lebesgue mea-
sure. For x, € X, and t, = (¢,,...,¢; ) € O’ define §,, the stochastic Bayes
estimate, by

jn jn
(7’1) én(xn’tn) = E t;fn(tz; xn) Z fn(tz; xn)’ ‘
i=1 i=1

See Section 1.5 for the motivation.
Fix 6, € © and let m be a probability on ©. Assume

(7.2a) ™ has a density g with respect to Lebesgue measure which is
bounded, continuous and positive;

for every sequence {0,}, where n'/2|6, — 6,| < ¢ for some c,
(7.2b) (L0, + n"%,8,;x,), tL (0, + n"/%,6,;x,)) converges

» Ynr

weakly under @7, as random elements of
(Ly(R*) N Ly(B*)) x (Ly(R*) N Ly(R*)),
to (W(?), tW(t)), where W(¢t) was defined in (3.4).

THEOREM 7.1. Suppose lim, , . j,n"%?%= o and (7.2a) and (7.2b) hold.
Let {0,} be any sequence such that n'/?|0, — 6, < c. Then, as n— oo,

n'/%(6, - 6,) = N©, I"\(6,)) under @} X m*.
The proof requires a lemma.

CONVERGENCE LEMMA 7.1. Let {h,} be a sequence of real functions such
that h, = h in L(R*) N L(R*). Let Z,,...,Z, be i.i.d. m. Suppose (7.2a)

n
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holds and hm,,_m,j,, = o0. Then
(7.3) nk/2 i (e 0,,)/;7)]

n

- g(6,) f h(t)dt, inm’» probability.

Proor. The expectation of the quantity in question converges to the desired
limit, while the variance of this quantity goes to 0; this last convergence uses
Jan -d/z 00.0

ProOF OF THEOREM 7.1. Let W(t) = L6, + n~/%,6,) and W (¢)=
tW,(t). Because the @,’s are mutually absolutely continuous,

Lt Lt 0,) _ Zt:Lo(6, + (4~ 6,),6,)

(74) 0n(x"’t") - ZJ"L (tw n) z:Ln(en-i- (t‘i_ 0”)’0”) ’
so that

W, (n'%(¢t;, - 6
o9 (0~ 0) = S

W, (n'2(t; - 6,))
Assumption (7.2), Lemma 7.1 and Lemma 2.2(i) immediately give

n [tW(¢) dt
7. 1/2(6, — o ——— =T1"%6,)N. O
( 6) n ( n n) = fW(t) dt ( 0)
To estimate the distribution of n'/%(8, — 6,), define functionals F,, by
Xt L,(t;,0;%,) d\J
(7.7)  F,(t,,0,x,) = SRL(t,0,5) " x,€X,, t,<(RY)".

Let D,(t,, 6) be the distribution of n'/%(F(t,,0,x,) — 0) when x, has distri-
bution @; and t,,0 are fixed. Define a random probability measure », on
xn X (Rd)j"/Rk by g ((Xn,t ), ) n(tmo (X )) Let Vo = N(O I_l(ao)) Let
7, be the empirical on [X , X (R%)’»] X R*» of a sample of size k, from ,. O

THEOREM 7.2. If k, - oo, j,n~%? - oo and (7.2a), (7.2b) hold, then
p(¥,,7) >0, in [Q,’,’n X mj"] ® vk probability.

Proor. By Theorem 2.1, it suffices to show that p(»,, »,) converges to 0 in
Q7 X m’» probability. For this, apply Lemma 2.2(ii) instead of Lemma 2.2(i) to
the arguments in the proof of Theorem 7.1; this shows that whenever {6}
satisfies n!/ 2|67’ — 0| < c, then p(D,(t,, 6,),»,) > 0in m/n-probablhty By The-
orem 7.1, n*/%(8, — 8,) is tight under Q7 X m’». Hence, p(D,(t,, b.), v,) = 0 by
Lemma 2.2(i). O

REMARK. Theorems 7.1 and 7.2 with their required rate on the search
sample size, are reminiscent of the global stochastic MLE. To deal with this
drawback, one can let the measure m depend on the original sample. One
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possibility is to use the posterior distribution of a diffuse prior for m; another is
to let t, be a local search sample, constructed as in Section 3 by bootstrapping a
preliminary estimate of 6.

L]

8. Stochastically normed empirical process. Let (£,F) be a measure
space, and V a Vapnik—Cervaonenkis class of subsets of Q satisfying the measura-
bility conditions of Dudley (1978). Let (7, T) be a measure space and ¢ a
mapping of V to T which is 1-1 and onto. Any probability P on F is an element
of L (V) by identifying P with the map V — P(V). Such a probability is also an
element of L _(T') by identifying P with the map ¢t - P{¢~(¢)}. If P, @ are two
probabilities, then evidently the supremum norm of P — @ in L_(V) is the same
as the supremum norm of P — @ in L _(T). :

For convenience, call (T, ¢) a parametrization of V. A simple example of a
parametrization is the representation of half spaces of R* by A(s,u) =
{x € R* x’s < u}, where s € R% |s| =1 and u € R', then T = {s: |s| = 1} X
R!. Assume from now on that, for each probability P on F, the mapping
t > P{¢~'(t)} is T-measurable.

Let m be a o-finite measure on T, and let L,, denote the Banach space of all
real, essentially bounded (m) functions on T, with the esssup norm denoted by
| - |,n- Then each probability P on F can be identified with an element of L,,.

Let X, be the n-fold product of © and let @, = Q. (x,, ") be the empirical
measure of x, € X,. If @ is a probability on F, define the T-parametrized
empirical process by

81)  W(@x,,t) =n2[Q,(x,,974(t) - Qe7 ()], teT.
Ift,=(4,...,t) € T/=, the stochastically normed empirical process is

(8°2) ma?‘[W;z(Q,xm ti)|°
1<),

If Q" X m’» is the measure on X, X 7=, then the stochastic norm is computed
as the maximum over j, sets ¢~X(¢;), chosen at random by taking the ¢; i.i.d. m.

A bootstrap estimate of the distribution of the stochastically normal empirical
process can be obtained as follows. If t, € T/», let £,(t,, @) be the distribution
of max;_;|W,(@,x,,¢)| when x, has distribution @". Let »,(x,t, )=
£,.(t,., Qn(xn, -)). Let #, be the empirical distribution of a sample of size %, from
v,, viewed as a function on [X, X TV»] X R*~. Then 7, is the estimated distri-
bution of the stochastically normal empirical process.

Fix @,, a probability on (,F). Let {W(t),t € T} be the mean 0 Gaussian
process on L,, having covariance

EW(t)W(s) = Qo{¢7'(2) N ¢7'(s)} — Qo{97(¢)}Qo{9 ()}

Let », be the distribution of |W(-)|,,. Define a pseudometric d on probabilities
by specifying d(P, Q) to be the larger of sup{|P(V) - Q(V)|: V&€ V} and
sup{|P(V) - Q(V)|: VeV NV}
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THEOREM 8.1. Suppose j,, k, = o and that d(Q,, Q,) — 0. Then

(a) maxlg] |W(men, t; )l = IWIm under m-"‘ X Q
(b) p(3,, %) = 0 in [Q X m’"] ® vk probability.

REMARK. This theorem is related to, but different from, Theorem 3 in Beran
and Millar (1986), which deals with empirical processes indexed by halfspaces.
Because of the special structure of V, there, the stochastic search was taken over
only part of the parametrizing set T and it was possible to dispense with
“esssup” in the final statement. It is an open question, in general, whether the
search measure m can be made dependent on the original sample so as to reduce
the computation needed. The proof of Theorem 8 depends on a simple lemma
whose proof is omitted. .

CONVERGENCE LEMMA 8.1. Let g,,8 be elements of L,, such that g,
converges to g in the esssup,, norm. Let Z,,..., Z; bei.i.d. m. Then, if j, — o,

(8.3) max|g,(Z;)| > lgln a.e. m”.

n

ProoF oF THEOREM 8.1. Building on the triangular array central limit
theorem for empirical processes in Le Cam (1983), one may show that
W, (Q,,x,, ) converges weakly in L,, to W; this requires the hypothesis that
d(Q,,Q,) — 0. Taking g, in the lemma to be W,(Q,,Xx,, ) one may now
employ Lemma 2.2(i) to deduce part (a) of Theorem 8.

To prove part (b), it suffices to show p(», VO) — 0 in m/» X Q" probability,
by Theorem 2.1. By a tnangular array version of the general Glivenko—
Cantelli theorem, d(Q,,, Q,) — 0 in QI probability. On the other hand, if
(Qy} is any sequence satisfying d(Q, Qo) —> 0, then p(£,(t,, Q2), %) - 0 in
m’= probability by the argument for (a) and Lemma 2.2(ii). It follows that
(£t > @u(X,)), %) = 0 in Q7 X m/» probability by Lemma 2.2(i). O

Confidence bands. Let 7, be a (1 — a)th quantile of 7,. Theorem 8.1(b) and
the fact that », hasa contmuous dlstnbutlon [cf. Beran and Millar (1986)] imply
that {@: max, _; |Q, — QIn"/% < #,} is a confidence band with asymptotic cover-
age probability equal to 1 — a. Bootstrapping a (nonstochastic) sup normed
empirical process with the goal of obtaining confidence bands, has been consid-
ered by Bickel and Freedman (1981), Shorack (1982) and Beran (1984), all in the
special case where V consisted of the quadrants in RY. Using a stochastic version
of sup norm resolves computational difficulties for other choices of V. Pyke
(1984) makes a similar point in discussing tests for a simple hypothesis.
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