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SEQUENTIAL ESTIMATION OF THE MEAN OF A
FIRST-ORDER STATIONARY AUTOREGRESSIVE PROCESS

By T. N. SRIRAM

Michigan State University

This paper considers the problem of sequential point and fixed-width
confidence interval estimation of the location parameter when the errors form
an autoregressive process with unknown scale and autoregressive parameters.
The sequential point estimator considered here is based on sample mean and
is shown to be asymptotically risk efficient as the cost per observation tends
to zero. The sequential interval estimator is shown to be asymptotically
consistent and the corresponding stopping rule is shown to be asymptotically
efficient as the width of the interval tends to zero.

1. Introduction. The sequential point and fixed-width interval estimation
has seen a proliferation of literature ever since the fundamental papers of
Robbins (1959) and Chow and Robbins (1965). See for example the book by Sen
(1982), the monograph by Woodroofe (1982) and detailed references given in
Chow and Martinsek (1982) and Martinsek (1983, 1984, 1985).

Two basic problems of estimation are the following. The first problem is to
determine the sample size that minimizes the risk for a suitably defined loss
function. The second problem is to construct a confidence interval of prescribed
width and coverage probability for a parameter. In either case, the best fixed
sample size procedure (BFSP), possessing the desired properties, generally de-
pends on the underlying nuisance parameter(s). Therefore, the sample size
cannot be specified in advance to solve these problems. In order to overcome this
dependence on nuisance parameter(s), it is customary to define a stopping rule of
the type considered by Robbins (1959) for sequential estimation of the mean of a
normal population in the presence of a nuisance parameter (the variance). The
previously mentioned problems are then solved using sequential procedures.

The problem of estimating the mean of independent, identically distributed
(ii.d.) observations from an unknown population distribution, with the loss
function equal to the squared error plus the cost per observation, has been
considered by (among others) Ghosh and Mukhopadhyay (1979) and Chow and
Yu (1981). They have proposed sequential procedures using a stopping rule of the
type introduced by Robbins (1959) and have shown, under certain growth rate
assumptions on the initial sample size, that their procedures are “asymptotically
risk efficient” (defined later) as the cost per observation tends to zero. For the
same problem, Chow and Martinsek (1982) have shown that the “regret” of these
procedures is bounded, as the cost of estimation error becomes infinite. Recently,
Martinsek (1983) has also obtained a second-order approximation to the regret.
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In all of these papers the sample mean is used to estimate the population mean
and the latter two papers assume that the unit cost is chosen so that each
observation costs one unit. Results of asymptotic risk efficiency have also been
obtained by Sen and Ghosh (1981) for sequential estimation of estimable para-
metric functions using U-statistics based on i.i.d. observations.

While most of the availahle literature in this area deals with the situation
when observations are independent, there is very little known when the observa-
tions are dependent. This paper considers the problem of sequential point and
interval estimation of the location parameter p, when the errors form a first-order
autoregressive process with unknown scale and autoregressive parameters. More
precisely, consider a stationary process {X;; i > 0} of the form

[oe]
(1.1) X, —n= > Be;_;, 1Bl <1,
j=0
where {...,e_,, €y, &,...} are iid. according to some unknown distribution
function F, with Ee, = 0 and E¢, = 6% € (0, 0).

Point estimation. Given a sample of size n, one wishes to estimate u by the
sample mean X, = n”'L? X, subject to the loss function,

(1.2) L,=a(X,- y)2 +cn, a>0,¢>0,

where c is the cost per observation. The object is to minimize the risk in
estimation by choosing an appropriate sample size. Using the model (1.1) and the
independence of {¢; j > 1} and X, it can be shown that

(1.3) E(X,- p)2 =n"%%/1-B8)+o(n!), asn— .
Therefore, if 6 and B8 are known, the risk,

(1.4) R,=EL,=n"‘ac%/(1-B)’+cn+o(n?)

is approximately minimized by the BFSP

(1.5) no = c™*a'%s /(1 - B),

with corresponding minimum risk

(1.6) R, =2cn,.

However, if either o or B8 is unknown the BFSP cannot be used, and there is no

fixed sample size procedure that will achieve the risk R, . For this case, we now

describe a sequential procedure for choosing a sample size whose risk will be close
to R, for small c.

" Let m (= 3) be an initial sample size, 2 (> 0) be a suitable constant to be

defined later on and define the stopping rule N, in analogy with n,, by

(1.7) N =inf(n > m: n > c"2a2[5,/]1 - B,| + n~*]},
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where
n—1 n

(1.8) b= X (X-X)X, - X,) X (X-X,)
i=1 . i=1

and

The proposed sequential point estimator of p is X, and its risk is
(1.9) Ry=aE(Xy—p)’ + cEN.

It will be proved in Section 2 that this sequential:procedure is “asymptoti-
cally risk efficient,” i.e., R ~n/R,, — 1,as¢c—0.

Interval estimation. The problem here is to find a confidence interval for p
of prescribed width 2d and coverage probability 1' — a, 0 < a < 1. In order to
motivate our procedure, recall from Anderson (1971), Theorem 8.4.1, that,

(1.10) (X, - p) =5 N(0,62/(1 - B)°), asn— oo.

Based on this, when o and B are known, if one uses the confidence interval
(1.11) L, = [X,, - d, X, +d],

where

ko= [d%27 0%/~ B)] +1
and z,_, satisfies

(277)—1/2'/21_“ exp(—u2/2)du=1-a,

-
then as d — 0,
ky— o0

and
P[p, S Iko] = P[\/k_olj_(ko —u/y < d\/Z;/Y]
—-1—a (asymptotic consistency),

(1.12)

where y = /(1 — B). Furthermore, %, is (asymptotically) the smallest sample
size that is asymptotically consistent. As in the point estimation case, in practice
one does not know o or 8. However, for

(1.13) T=inf{n>m: n>d %% «82/11 = B2+ n7h]},
it will be proved in Section 2 that, as d — 0,
Plpel;]»1-a
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and
E(T/k,) »1  (asymptotic efficiency).

The following theorems assess the performance of the above sequential proce-
dures.

THEOREM 1 (Risk efficiency). Suppose E|¢,|?? < oo for p > 2, and that h €
0,(p — 2)/4), where h is as in (1.7). Then as ¢ - 0,

(1.14) N/ny—1 a.s,
(1.15) E|N/ny— 1] =0
and

(1.16) Ry/R,, - 1.

THEOREM 2. Under the conditions of Theorem 1, as ¢ — 0,
(1.17) VN (Xy - 1) -5 N(0,0%/(1 - B)%).

THEOREM 3 (Fixed-width interval estimation). Under the conditions of The-
orem1l, asd— 0,

(1.18) T/ky— 1 a.s.,
(1.19) Plpel;]»1-«a
and

(1.20) E(T/k,) - 1,

where k is as in (1.11).

REMARK. The stopping time T also appears in Subramanyam (1984), where
(1.18) and (1.19) are proved, under somewhat different conditions. However,
(1.20) is a new result.

The proofs of Theorems 1 and 2 are given in Section 2. The proof of Theorem
3 will be omitted, as the techniques used are similar to the ones that will be used
for proving Theorem 1.

2. Proofs. The proof of Theorem 1 depends on a series of four lemmas, the
first of which is an elementary lemma and therefore it will be stated without
proof. In the first three lemmas all the limits are taken as n — .

n’ “n

s > 0 be real numbers. If

' Pl|Y,—a| >e]=0(n"%) = P[|Z,— b| >¢], foreverye>0,
then

(2.1) P[|Y,/Z,— a/b| > ¢] = O(n~%), foreverye > 0.

LEMMA 1. LetY,, Z, be any sequence of random variables and a, b # 0 and
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In order to state the next two lemmas, define for 2 = 0,1
n—k

(2:2) Cpn=n"" 21 (X, - X,)(Xisr— X,,)
-
and
n—k
Ck‘:n =n"! Z (Xi - #)(Xi+k - p).
i=1
Note that ‘
(2.3) B,=C../Cy, and &2=C, (1-8,)"

Lemma 2 gives L, rates of convergence of X, to u, and of the autocovariances
Co,, and C, , to 0®/(1 — B?) and Bo®/(1 — B?), respectively. Lemma 3 deals
with rates of convergence in probability of 8, to B and 52 to o2.

LEMMA 2. If Ele,)|?? < oo, then

(2.4) 1 X, = Bllgp = O(r™Y?),  ifp=1,
(2.5) 1Co,n = 0%/ (1 = B*)[|, = O(n™*/), ifp=2
and

(2.6) IC., = Bo?/(1 = B2, = O(n™7%), ifp=2.

Proor. Assume without loss of generality that p = 0. Using (1.1),

_ n o
"Xn“2p = n_l Z Buei—u
i=1u=0 2p
0 n
(2.7) <n7H X I8 X ey

u=0 i=1 2p
0 n

< n_l Z IBIM Z €i—u ’
u=0 i=1 2p

where the monotone convergence theorem and the Minkowski inequality were
used to get the last inequality. Now, observe that for each fixed u > 0, the joint
distributions of

{e1_us--vr€n_y} and {e,...,€,}

are the same. By the Marcinkiewicz—Zygmund (M-Z) inequality [see Chow and
Teicher (1978), Corollary 10.3.2],

Y| =0(n'?).
i=1

2p

(2.8)
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Hence, (2.4) follows from (2.7) and (2.8). As for (2.5), use (2.2) to write
Co,n = 0%/(1 = B*) = Cgtp— 0%/(1 - B*) - X

“n 0 2
=n'Y) {( ,B"si_u) -a2/(1- ,32)] - X2
u=0

i=1

29 ) n
) - 5 g B (o)
u=0 i=1
n —
+2 Z Bu+on—1 Z si—uei—v - X,%.
u<v i=1
As before

n

L (e, - o?)

i=1

1Co,n =0/~ B?)], < X 1BP*n™"
u=0
(2.10)

P

n
Z € u€i—yp

i=1

+ 1 X2 -
P

+92 Z IBIzH-vn—l

u<v

Application of the M-Z inequality yields
n

Y (ef-,— %)

i=1

As for the second expression on the r.h.s. of (2.10), define for each © and v fixed,
where u < v,

= O(n"2).

p

(2.11) n!

n
fn,u,v = Z & uti—, and F_, = O{Sk; k<n- u}‘
i=1

Then, the independence of {¢;} and the assumption that Ee, = 0 yield that
{fn, u,0» Pn—ws 1 =1} is a mean zero martingale. By the Burkholder inequality
[see Chow and Teicher (1978), Theorem 11.2.1], the moment inequality and the
independence of ¢;_, and ¢;_,

n 1/2
-1,,-1/2 -1 2 2
Bp n 1/ "fn,u,o”pS (n Zei—uei—())
i=1

p

2.12 n 1/p
(212 < (n_l ) |8i—u£i—v|p)

= lleall-

The required result now follows from (2.10)—(2.12) and (2.4). In fact, (2.11) and
(2.12) also imply that

(2.13) |G = 0*/(1 = B7)], = O(n™27%).




SEQUENTIAL ESTIMATION 1085

Finally, for (2.6), algebraic manipulations yield

(2.14) C.=C¥,—-X2+n'X,[X,+ X, - X,].
Now use (1.1) to write .
n—1 [}
Ot 8o/~ 87) =1t T | £ i) (X) - Bot/(a - )
i=1 \u=0

S n 1Y X, et BC — 0¥/(1 - B2)]

i=1
_n_‘len_'_an - n_lXoel - n_an+1Xn.
Define D, = X ,X;_.¢; and %, = o{¢,; k < n}. The independence of X; , and
¢, for each i >1 and Ee, = 0 imply that {D,, #,; n>1} is a mean zero

martingale. By the Burkholder and the moment inequalities and the indepen-
dence of ¢; and X;_,,

n 1/2
B Dy, 5[0 £ x|

i=1

P

<

(2.15) n 1/p
(n_l > IXi—leilp)

i=1

- 0(1).

Also, by the Minkowski and the Schwarz inequalities, the independence of X,
and ¢,,, and the stationarity of X,

(2.16) 1 Xoe, + 170y 1 Xy — 07X, X, 4], = O(n772).

Therefore, the required result follows from (2.13)—(2.16), the Minkowski and the
Schwarz inequalities and (2.4). O

LEMMA 3. If E|¢,|?? < o0, for p > 2, then for every ¢ > 0,

(2.17) P[ 6:/(1 _ Bn)2 _ 02/(1 _ B)zl > s] — O(n"’/z).
ProoF. By Lemma 2 and the Markov inequality, for every & > 0,

(2.18) P[|c,, - Bo*/(1 - B?)| > ¢] = O(nP/%)

and

(2.19) P[|Co, . — 0%/(1 - B?)| > ¢| = O(n72).

From this, Lemma 1 and (2.3)
(2.20) P[|B, - Bl > ] = O(n7P72).
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This, in turn, yields

(2.21) P[IB% - B? > ¢| = O(n~?72).
Hence, by (2.3) .
(2.22) P12 - 0% > ¢] = O(n~?72).

The required result now follows from Lemma 1. O

The next lemma gives a rate on the tail behavior of the stopping rule N,
which is crucial for the proof of Theorem 1.
Before we state the lemma we need to introduce the following notation. Let

(2.23) =(a/e)'”,  n =[0Y0*P],  ny=[ny(1-¢)]
and

ny=[ny1+e)], for0<e<1.
Henceforth, all unidentified limits are taken as ¢ — 0.

LEMMA 4. Assume the moment conditions in Theorem 1. Then for every
e> 0, and for s =p/2

(2.24) P[N < n,] = O(cs-/21+m)

and

(2.25) Y. P[N > n] = 0(c¢-v/2),
nxng

ProoF. From (1.7), N > n,. Also
P[N <n,] <P[8,/]1 - B, <b 'nforsomen, <n < n,|

(2.26) <P[ 2/(1-B,)" < (1 - &)*6%/(1 - B)*forsome n, < n < n,

< ¥ Pla2/(1-B) - o2/ - BY| 2 o2 - )o>/1 - BY].

n=n1

Now use Lemma 3 and (2.23) to get (2.24). As for (2.25), it follows from (1.7) that,
for n > ng,

A _ N -1, _ ,,—h
2.27) P[N>n]<P[s,/11 - B, >b"'n-n""*

< P[8,/11 - B — o/I1 = B| > b~ (ng — o) — nz™].
Choose ¢ small enough so that
eo/(1— B) — {(1 — B)c2/[0a'2(1 + ¢)]}" > 0e/2(1 - B).
Then
P[N > ] < P[8,/]1 = B, = o/I1 = Bl > oe/2(1 - B)]
< P[[s2/11 - B,” - 0*/(1 - BY| > o%e>/4(1 — B)7].
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Now argue as for (2.24) to conclude (2.25). O

In what follows A = [n, < N < ng], B=[N <n,]and D =[N 2 n,]. Also
I, and F denote the indicator and the complement of a set F, respectively.
PROOF OF THEOREM 1. From (2.18), (2.19) and the Borel-Cantelli lemma
C,,— Bo?/(1-B%) as. and C,—o?/(1—B*) as,asn— o.
From this and (2.3)
(2.28) B,—» B as. and 82— 2 as,asn— co.

Therefore, it follows that N < oo a.s. Also, since N > n,, N — oo. Hence, from
(2.28) ’

(2.29) By— B as. and 6% - o? as.
But
¢ V2% %y/|11 - Byl < N
and
N <c2a2[6y_ /1L = Byl + (N = 1) 7*] + ny.
Therefore, from (2.29)
N/n,—1 as.
As for the L,-convergence (1.15), write
N/ny—1=(N/no)Ip+ (N/no— 1)I, + (N/no)Ip = Iy p,
so that
E|IN/ny— 1| <(2-¢)P[N<n,]+e+ns* ), P[N>n]+ P(N > ny).

nxng

The required result follows from Lemma 4, since ¢ is arbitrary.
It remains to show that N is asymptotically risk efficient. Assume without
loss of generality that p = 0 and o2 = 1. Write

Ry/R, = {aEX} + cEN}/2cn,.
From (1.15), it suffices to show that

(2.30) aEXZ/cn, - 1.
To establish (2.30) it suffices to show that

(2.31) aEX2Iz/cny— 0
and

(2.32) aE(Xy - X, ) L /cny - 0.
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Consider (2.31). From (1.1)
EX2I, <E max XZI,

n <n<n,
*

o0 n
(2.33) <E| Y IB* max n7' Ve ,| Iy
u=0 . i=1

n<n<ng

)
< Z |B|2UEMri,uIB +2 Z |B|u+vEMnl,uMnl,vIB’
u=0

u<vo

where Mn u maxnl<n<n2|n—lz":t 16— uI

Now, observe that for each fixed u > 0, (n 'L’ 1e;_,, n =1} is a reverse
martingale. Therefore, by this fact, the Schwarz inequality, the maximal in-
equality for reverse submartingales [see Sen (1982), (2.2.6), page 13], (2.8) and
(2.24)

EM? I, < E'’M; (P(B)} 172

(2.34) < ($)EV? {P(B)}

n
-1
n, Z €y
i=1

= O(n7Y){O(ctP-2/8a+m)),

Since h < [(p — 2)/4], we have
EM? ,Ip/cn,— 0.

Therefore, || < 1 and the Schwarz inequality yield

(2.35) EXZ2I,/cn,— 0.
Similar arguments yield
(2.36) EXZI,/cn, — 0.
This proves (2.31). As for (2.32), it follows from (1.1) that
E(Xy-X,) I, <E max |X,- X, |,
ny<n<ng
0 n no 2
< E{ YIA* max |n7'Ye ,—ng'Ye, }
(2.37) u=0  N2=nsng i=1 i=1
= E IB*E max W2,
u=0 ng<n<ng
+2 ) |B***E max W, , , max W, .,
u<ov ng<n<ng ng<n<ng

= p—1lyn =1y 'n,
where W, ,, , =n" L&, — ng L8y
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Observe that for each fixed u >0, (W, , ., no<n<n;} is a reserve
martingale. By the maximal inequality for reverse submartingales -

E max W2, ,<2E max W2

s o, U — n,ng, u
nog<n<ng Nosnsng
ng no 2
-1 -1
+2E|ng' Y &, — 05t Y&y,
(2.38) i=1 =0
g o 2
<10E|n;' Y &, —ng' Y&y
i=1 i=1
= 108/n3.
Since ¢ is arbitrary,
(2.39) E max W2, ,/en,— 0.
no<n<n, "

Similar arguments yield
(2.40) E max W7, ./cn,— 0.

ny<n<ng

The required result now follows from the Schwarz inequality. Hence the theo-
rem. O

PROOF OoF THEOREM 2. Write

(= 1) = (W g g (, ~ X)) + W/ g (%, — ).

By (2.31), (2.32) and since cn2 = ao?/(1 — B)*

(2.41) noE(Xy - X, )" - 0.
Therefore,
(2.42) ol Xy ~ X, | =50.

Hence, Theorem 2 follows from (1.10), (1.14) and the Slutsky theorem. O
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