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A mixed-Dirichlet prior was previously used to model the hypotheses of
“independence” and “dependence” in contingency tables, thus leading to a
Bayesian test for independence. Each Dirichlet has a main hyperparameter «
and the mixing is attained by assuming a hyperprior for . This hyperparam-
eter can be regarded as a flattening or shrinking constant. We here review the
method, generalize it and check the robustness and sensitivity with respect to
variations in the hyperpriors and in their hyperhyperparameters. The hyper-
priors examined included generalized log-Students with various numbers of
degrees of freedom ». When » is as large as 15 this hyperprior approximates a
log-normal distribution and when » = 1 it is a log-Cauchy. Our experiments
caused us to recommend the log-Cauchy hyperprior (or of course any distri-
bution that closely approximates it). The user needs to judge values for the
upper and lower quartiles, or any two quantiles, of k, but we find that the
outcome is robust with respect to fairly wide variations in these judgments.

1. The hierarchical Bayesian approach to testing “independence” in
contingency tables. Consider a contingency table with r rows and s columns,
with cell or category entries n,i=12,...,r j=12,...,s, row totals n, =
L;n;; column totals n.;=X,n,; and sample size N =T;n;;. Let the corre-
sponding unknown physical (or material) probabilities be denoted by p; j» Pis D.j
and, of course, 1.

Three familiar procedures for sampling a contingency table are as follows:

Procedure 1, or multinomial sampling, where the sampling is from the
population as a whole;

Procedure 2, or product-multinomial sampling, or stratified sampling, where
the row (or column) totals are fixed by the experimenter; and

Procedure 3, where both the row and column totals are fixed.

For some further general discussion of these procedures, with citations, see
Good (1976, page 1161).

A hierarchical Bayesian approach for all three procedures, based on a mixed-
Dirichlet prior, was used or discussed by Good (1965, 1976, 1980a, 1980b and
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1983) and Crook and Good (1980, 1982) for testing the null hypothesis H that
Di; = P;.p.; that is, “independence” of row and column categorizations. [For
unmixed Dirichlet priors see Glinel and Dickey (1974) and references therein.]
We here adopt a more general procedure and provide some new explanations.

Our main aim is to investigate “Bayesian robustness” of a test of the null
hypothesis H when the sampling is by Procedure 1 or 2.

As suggested by a referee, we at once present the results of our calculations
regarding 21 contingency tables. (See Tables 1-20.) These results will not be
immediately intelligible even to those who know our earlier work because our
present model is somewhat different from what we have used in the past. The
full meanings of the results will emerge later. For the present, observe that the
numbers in the body of each table are Bayes factors against H, for a variety of
Bayesian models, and at first the reader should look at the average factor in the
row labelled » = 1. [The Bayes factor against H provided by evidence E is
defined as O(H)/O(H|E), a ratio of odds, and is equal to P(E|H’)/P(E|H)
where H’ denotes the negation of H. We have previously written H for H’.] For
example, in Table 1, this average factor is 64 and it can be compared with the
P-value of 1/2150 obtained by Fisher’s “exact test” for two-by-two contingency
tables. It should be held in mind, for each of the 21 cases, that the Pearson
chi-squared, x2, and also Fisher’s exact test when applicable, are conditional on
all the marginal totals (n;) and (n.;) and so are most appropriate under
sampling Procedure 3. For two-by-two tables, x’? denotes x2 with Yates’
continuity correction, and P(x?) and P(x’?) denote the right-hand P-values for
x2 and x’2.

Each contingency table, except number 20, is denoted by a self-explanatory
abbreviated notation; for example, [10, 3; 2, 15] denotes the criminal two-by-two
table whose rows are [10, 3] and [2,15].

When P(x?) is not close to 1, the Bayes factors (in the row labelled » = 1) are
always smaller than 1/P(x?), and often much smaller. This is a typical and
important relationship or “discrepancy” between Bayes factors and P-values.
[See, for example, Good and Crook (1974), formula (3.1), and Berger and Sellke
(1986).] We were somewhat surprised by the Bayes factors for Table 20, the
horse-kick data. We shall give reasons near the end of the paper why our
assumptions are probably inapplicable in this case.

We now begin to list our assumptions, with special emphasis on where they
differ from those in our earlier work, and we shall return to the discussion of the
numerical results in Section 10.

AsSUMPTION 1 (“Ancillarity” of the row totals). The row totals alone (or the
column totals alone) convey no evidence for or against H under Sampling
Procedure 1.

This assumption goes without saying under Sampling Procedure 2 because in
this case the row totals are fixed before the sample is taken. Another way of
stating Assumption 1 is that the Bayes factor against H provided by (n;;) must
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be unaffected by knowing (n,.) in advance and hence that the Bayes factor will
be the same whether the sampling is by Procedure 1 or Procedure 2. Therefore,
in the following theory, we shall think mainly in terms of Procedure 1 for the
sake of definiteness and because it is less difficult to do so.

Since the Bayes factor against H provided by the row totals (n,.) is equal to
P[(n;)|H’]/P[(n,)|H], we have, under Sampling Procedure 1,

(1.1) P[(n.)H'] = P[(n,)|H].

Under Sampling Procedure 2, this equation is a truism. Similarly (under Sam-
pling Procedure 1), we have

(1.1A) P[(n.,)H’] = P[(n.;)H],

but we do not assume that P[(n,),(n.;)|H'] = P[(n;),(n.;)|H].

For testing the null hypothesis H by a “sharp” Bayesian method (that is,
with sharp or precise priors) we need to assume some definite prior for the p, .
given the nonnull hypothesis H’, and for the p,. and p.; given H.

ASSUMPTION 2 ((n;;) as a multinomial). We regard H’ as the hypothesis
that the frequencies (n,;) have a multinomial distribution with physical cell
probabilities ( p;;), and where ( p;;) has a prior distribution. Of course, under H,
we are not assuming that p,; = p,.p.;.

Given H'’, the prior epistemic (= personal or logical) expectation of p, ;18
called g,;. (We shall usually write “subjective” although “epistemic” would be
more precise.) Of course, given H’, the prior subjective expectations of p,. and
p.; are q;. and q.; where q;.= X ,q,; and q.; = X,q; .

AssUMPTION 3 (The marginal totals as multinomials). Given H, both (n,.)
and (n.;) have multinomial distributions with, of course, physical cell probabili-
ties (p;.) and (p.;), respectively, and where ( p;.) and (p. ;) have prior distribu-
tions. The corresponding property, given H’, follows from Assumption 2.

AssUMPTION 4. Under H, where by definition p,; = p,.p.;, the prior distri-
butions of (p;.) and (p.;) are independent. Therefore,

E(pi-p-jIH) = E(pi-IH)E(p-jIH)’

where the expectations are subjective, and also the prior distributions of (n,.)
and (n.;) are independent given H. (We do not assume this independence given
H’)

From Assumptions 3 and 4, combined with (1.1) and (1.1A), it follows that the
prior subjective expectations of p;. and p.;, given H, being N~! times the prior
expectations of (n,.) and (n.;), must be the same as when H’ is given, that is,
they must be equal to g;. and q.;. Therefore, given H, the prior (subjective))
expectation of p;; which, given H, is the prior expectation of p,.p.; (by the
definition of H), must be q,.9.;.



A BAYESIAN TEST FOR “INDEPENDENCE” 673

AssuMPTION 5 (Making H’ “close” to H). The prior subjective expectation
of p;;, given H’, is also equal to q;q.;, that is, q;; = q,9.;.

In other words, we are assuming that the prior for (p,;), given H’, is in a
sense as close as possible to that given H, subject to certain other natural
assumptions that prevent the two priors from coinciding. This is a standard
policy when nonnull hypotheses are specified in any statistical model although it
is often done ‘“unconsciously.” In short, we choose our model so that it is
difficult to get strong support for the null hypothesis.

Although we have just assumed that g;; = ¢;.q.; we shall usually write g;; for
the sake both of making the formulas a little shorter and for the sake of greater
generality.

We think of (g;)) and (q.;) as the subjective expectations of (p;.) and (p.;)
before the interior (n,;) of the contingency table is known, but after the
marginal totals (n;) and (n.;) are known. This makes sense under Sampling
Procedure 1.

ASSUMPTION 6 (Determination of g;. and q.;). We determine (g;.) and (q.,)
in the manner of Good (1967) (see Section 2 below). That is, we take, for
example,

L9 n,.+ kg
(‘) qi'_N-FrkO’

where &, is a multinomial “flattening constant” that depends on (n,.)) according
to formula (24) of that paper, namely,

fxp(k)F(k)N+ k/f \P(k)F(k)N+ t

in which
F(k) = rNT(rk) (T (n,. + £)} /{[T(R)] T(N + rk)),

while ¢ is a hyperprior, which we take as a log-Cauchy with lower and upper
quartiles as 10/r and 50/r. (A log-Cauchy distribution is determined by its
quartiles: see Section 8.) There is one flattening constant %, for the row totals
and another one for the column totals. These estimates of the g’s are robust,
especially when the frequencies n;. and n.; are not as small as 2.

Our fixing of (g;.) and (q.;) in this manner combines Bayesian and empirical
Bayesian methods in that (g;.), for example, is the posterior expectation of ( p,.),
given (n;). We then use (g;) and (q.;), in the empirical Bayes spirit, as
hyperparameters in priors for (p;.), (p.;) and (p;;). We could go fully Bayesian
by ascribing hyperpriors to (g;.) and (q.;), but we think this would be too
complicated and would have little effect on the results. In our earlier work we
took q,.=1/r, q.;=1/s and q;; = 1/(rs), but we now believe it is better to
determine (g;.), (¢.;) and (g;,) in the manner just described. Note that we treat
rows and columns on a par as is appropriate under Sampling Procedure 1.



674 I. J. GOOD AND J. F. CROOK

AssUMPTION 7 (No “structure”). Apart from the specification of the prior
expectation of (p,;), H’ asserts no further structure related to the specific
pattern of rows and columns such as, for square contingency tables, symmetry
about the leading diagonal. In other words, we treat (n; i), given H’, as a
multinomial sample having rs categories where each category has its own 1n1t1al
expectation and where the classification into rows and columns is otherwise
irrelevant.

Assumption 7 affects, but does not determine, how we assign a prior distribu-
tion to (p;;), given H’; so far we have specified only the prior expectation of
(pij)-

Ijn any real-life situation we recommend that the statistician and his client
should study their contingency table, or the scientific knowledge underlying it, to
see if it seems to have any clear-cut pattern or patterns. Our advice is only a
special case of the (somewhat controversial) need to examine almost any data in
an exploratory manner to see if it has any interesting features that we had not
taken into account in previous modelling.

In spite of these cautions we shall adopt our “no structure” assumption, given
H’, and even make the following slightly stronger

ASSUMPTION 7’ (Stronger “no structure”). Given the categorization into r
cells corresponding to the sample (n;.), then, for each integer s > 1, the sample
(n;.) could constitute the row totals of some r by s contingency table having
physical probabilities (p;;), for which, under the nonnull hypothesis, the “no--
structure” assumption applies. We may call this our “stronger no-structure”
assumption.

We need now to discuss multinomials before completing the specification of
the Bayesian model.

2. The mixed-Dirichlet Bayesian model. We first discuss multinomials,
partly because this discussion will lead to a constraint on the Bayesian model for
contingency tables. The discussion also leads to a constraint on the model for
multinomials themselves.
 Let (py, Py, ..., p,) be the ¢ physical probabilities corresponding to ¢ cate-
gories, where p, + p, + - -+ +p, = 1. The subjective probability that the next
item sampled will belong to the ith category is equal to the subjective expecta-
tion of p,. Suppose that we have a multinomial sample (m,, m,,..., m,),
denoted by (m;), where ¥m; = M, the sample size. Suppose further that, what-
ever the sample (m;), the subjective expectation of p,, given the data, is
(m; + k;)/(M + «) where k = Lk;, so that the numbers «; can be regarded as
flattening constants. As, for example, in Good (1965, pages 22—-25) this assump-
tion can be seen to be equivalent to assuming the prior Dirichlet density

e Dt = 100 [1{ Fi |

for the p,’s, where p means (p,, p,,..., p,) and k means (k,, k,,..., k,).
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When there is no sample, that is, when M = 0, the initial subjective probabil-
ity of the ith category is k,/xk which we call =;. Thus D(t,p,k) = D(¢,p, k)
where « = (7, 75, ..., ). [Cf. Good (1967), formula (25), where k was called kt
but the misprint of a plus sign for ¢ was undetected.] We may picture the prior
probabilities =; as the lengths of consecutive segments of a unit interval. For the
sake of consistency, that is, invariance under lumping of categories, the flatten-
ing constants must be “additive.” For example, if the first two categories are
combined, thus reducing the number of categories to ¢ — 1, the corresponding
flattening constant is k2, + k,, that is (7; + m,)k. This is an intuitive reason for
the lumping property of the Dirichlet distribution: An analytic proof is given by
Wilks (1962, page 179). Note that it would contradict previous usage to call k a
flattening constant, and we call it a shrinking constant or shrinker because it
shrinks the observed proportions m/M towards . '

Zabell (1982) generalized the argument of W. E. Johnson (1932) to the case
where the prior expectations of the p,’s are unequal, so in this case it is again
natural to use a mixture of general Dirichlet distributions, as proposed for this
case by Good (1967, page 409) without noticing that Johnson’s argument could
be generalized.

We may write our mixed-Dirichlet prior in the form

(2.2) /0 rmn{

where A can be regarded as a hyperprior. We shall now argue that A can be
taken as a function of k alone, that is, that it is mathematically independent of ¢.
The argument will be more general and more rigorous than the one that was
given by Good (1980a) and in more detail by Crook and Good (1980, page 1201).

Imagine that, for each i, the ith category is further categorized into s
subcategories having pnor probabilities 7;;, j = 1,2,..., s; X m;; = m,.= m;, where
s is the same for each i. We are, so to speak, treating our one-dimensional
sequence of probabilities #; as the row totals of a “population contingency table”
of s columns. We think of contingency tables as r by s, so we temporarily
replace ¢ by r in this argument.

The physical probabilities p,; in the contingency table, given H’, can also be
thought of as those for a multinomial of rs categories in accordance with
Assumption 2. They have the prior density

~/(;ool)[r's"("”ij)»(pij)] h(rs, k) dx.

Therefore, by the lumping property of the Dirichlet distribution, the prior for
the row totals ( p;.) (the original multinomial) must be

j:oD["» (xm),(p;)] h(rs, x) dx,

because 7, = X 7, . But s could be any integer (in accordance with our stronger
no-structure assumption) so h(rs, k) must be mathematically independent of s,
for each r. Given two values of r, say r; and r,, it follows, by taking s as r, and

Kﬂ,

}h(t k) dk = wa(t,p, km)h(t, k) dx,
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r, in turn, that A(r, k) = h(rr,, k) and h(ry, k) = h(ryry, k). Therefore,
h(ry, k) = h(r,, k); in other words, A(r, k) is mathematically independent of r as
we claimed. Hence, we may now write A(x) instead of A(r, k). Of course, rows
and columns can be interchanged in this discussion. The stronger “no-structure”
assumption thus forces us to conclude that the same function 4 is to be used for
the vectors (p;.) and (p.;), and, given H’, for the “vector” ( p; 7). This property
was assumed by Good (1980a, page 31) and Crook and Good (1980, page 1201)
but with less justification than we have now supplied.

To recapitulate, when we are considering a multinomial of ¢ categories, for
which no structure is assumed beyond the prior expectations «; of the physical
probabilities p;, we take as our prior density for (p,)

(2.3) fo “D(t,p, km)h(x) dx,

for some hyperprior density A(-). We shall use (2.3) with ¢t=r, s and rs
according to context. That is, the prior density of (p,.), given H, is expression
(2.3) with ¢ = r, m = (n;.) and = = (g;.), and similarly for (p.;); and these two
priors are independent by Assumption 4. Again, the prior density of ( p,;), given
H’, is expression (2.3) with ¢ = rs, m = (n;;) and 7 = (q,,). These two sentences,
combined with Assumption 6, complete the description of the Bayesian model
except that the choice of the hyperpriors will be discussed in Section 7.

3. The Dirichlet-multinomial distribution. If the parameters
(P, P2s---» Py) in the multinomial probability M!II( p™/m,!) are assumed to
have the Dirichlet prior D(t,k, p), then the “marginal” probability mass func-
tion of (m;) is the compound Dirichlet-multinomial probability

M!T(k) t T(m,+k;)

Il

T(M+«) =i T(k;)m,!

(kl>0;i= 1,2,...,t)

(3.1)
M!T(x) t T(m,+ km)
(M +«) =1 T(km)m;!
[See for example, Johnson and Kotz (1969), page 309, Good (1957), page 862, and
Mosimann (1962).] We denote this expression by DM][¢, (m,), (km;)] or
DM(t,m, kx]. A four-level apparently non-Bayesian hierarchical model based on
the Dirichlet-multinomial distribution was used recently by Goodhardt,

Ehrenberg and Chatfield (1984). We take a Bayesian point of view and regard «
as a hyperparameter. It acts as a shrinker.

(k > 0).

4. The doubly compounded distributions. Since we are assuming a hy-
perprior density A for «, the frequencies (m;) have a marginal distribution

(4.1) fo “DM(t,m, km)h(x) d.

This can be regarded as a doubly compounded probability mass function which
we call the A-Dirichlet-multinomial or A-DM(¢,m, 7). For example, if A is a
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log-normal density, then (4.1) would define a log-normal-Dirichlet-multinomial
distribution. (A doubly compounded distribution can be “de-Bayesianized” by
saying it is capable of describing data, just as singly compounded distributions
are sometimes so regarded.)

Just as (2.3) expresses the three relevant priors succinctly, (4.1) expresses the
relevant marginal distributions of (n;) and (n.)), given H, and of (n;;), given
H'. The distribution of (n;;) conditional on (n;,) and (n.;), given H, is given by
the Fisher—Yates formula quoted at (5.2) below.

5. The Bayes factor against “independence” under sampling proce-
dures 1 and 2. Good (1976) gave formulas, based on symmetric Dirichlets, for
the Bayes factors against H, assuming sampling Procedures 1 and 2, and called
these factors F, and F,. Crook and Good (1980), following a method in Good
(1980a), modified the hyperprior to make F; = F,, because the row totals alone
were assumed to contain no evidence (or at least negligible evidence) for or
against H. Let us verify that this condition is satisfied with our present model,
as defined following formula (2.3). This verification is not strictly necessary but
it might give the reader confidence that no mistakes have occurred.

By (2.3) the prior density of (p;;), given H’, is

fD[rsi(pij)’(inj)] h(x) dx

and that of ( p,.) is, therefore,

Dlr.(p.), (xg.)] Alx) dx,

by the lumping property of Dirichlet distributions. (There is an implicit reversal
of the order of integrations in this argument.) But, again by (2.3), this is the
same as the prior density of ( p,.), given H. Hence,

P[(n.)H] = P[(n,)H'],

so our Assumption 1 is verified. Thus the Bayes factor against H provided by
(n;;), given Sampling Procedure 1, is

F, = P(E,|H')/P(E,|H) (where E, denotes (n;;))
P(E, &E,|H")/P(E, & E,|H) (where E, denotes (n,.))

P(E,|H')P(E,|E, &H’)
P(E,\H)P(E,|E, &H)

P(E,|E, &H’)/P(E,|E, &H) = F,.

Thus Assumption 1, which we have just verified, that the row totals alone give
no evidence for or against H implies that F, = F, in the sense that F, and F,
are the same function of (n,;) and (g;;), that is, of (n,;), (¢;.) and (q.;) because
q:;= 4:49.;
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Given the A-DM distribution for the three relevant frequency counts, (n,;.),
(n.;) and (n;;), we have, when sampling by Procedure 1,

P[(n)H'] = B-DM[rs,(n;), ()]
=waDM[rs,(nU),(xqij)]h(x)d:c,
and
P[(n.)H'] = P[(n;)H]
(because the row totals are assumed to give no evidence for or against H)
= h'DM[ri(ni-)’(qi')]’

In the future we will use the less explicit symbol f (for “friendlier”) in place of
h-DM. We then have

o0 ] - ]

This formula generalizes formula (4.7) of Good (1976). We shall sometimes take
q;. and q.; for granted and omit them from some notations. We determine them
as described in Section 1: see (1.2).

We must now write down the probabilities given H. We recall first the
Fisher-Yates formula [or Fisher-Yates—Irwin-Mood formula: see Good (1984a)
and (1984b) and Barnard (1984) for a historical discussion]

[In !n.;!
N!lln;;!

(5.2) F-Y.= P[(nij)|(ni-)r(n-j):H] =

Now

P[(n)l(n.), H] = P[(ny), (n.))(r..), H] (trivially)
= P[(n.)I(n.), H] P[(n;)I(n..), (n.;), H]
= P[(n.j)lH]F.—Y. (see Assumption 4)

=F.-Y.f[s,(n.;),(a.)].
On taking the ratio of (5.1) to (5.3) we have the Bayes factor against H,
_ f[rs:(nij):(qzj)]
f [ry(ni-)’(qi-)] f [3,(n~j),(q'j)]F-‘Y- ’

which is symmetrical with respect to rows and columns, as it had to be because it
is equal to F). For an algorithm for computing F), see Crook and Good (1985).

It is of interest to generalize the remark made by Good (1976, Section 9). In
fact, F, can be written in the form

F[HOO: (nij)]
F[H,.: (n,-.)]F[H.O: (nj)] ’

(5.3)

(5.4) F, =F,
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where H,, denotes the hypothesis that p,; =gq,q.;, etc, and F[Hy: (n;;)]
denotes the Bayes factor against H,, provided by (7,;), and so on. The three
Bayes factors all refer to multinomial hypotheses.

In the particular case where h(k) is a Dirac function, that is, then « is
assumed to have a specific value, (5.4) reduces to

DM[rs’(nij)’(inj)]
DM[r,(n,-.),(xq,-.)]DM[s,(n.j),(:cq.j)]F.—Y.
T, ITzus (a + kg )TN 0(a + «)
- IG5 (a + in.)ﬂ,-ﬂ;“éal(a + '“I-j) ’

where empty products, if they occur, are interpreted as unity in accordance with
the customary convention. We conjecture that F,(x) is always unimodal (a
property that is useful when we are interested in finding its maximum value).

It is possible to interpret formula (5.5) in a non-Bayesian manner, by regard-
ing the compounded distributions as physical distributions. Then (5.5), for any
fixed k, can be interpreted as a simple likelihood ratio instead of as a Bayes
factor.

Fi(x) = Fy(x) =

(5.5)

6. What we vary in the robustness study. Our robustness study deals
with the variability of F, or F, when the assumptions are varied in two ways:

(i) variations in the choice of the quartiles of «, as in earlier work;
(ii) variations from one hyperprior A to another.

7. Hints on the choice of the hyperprior or mixing function h. Our
numerical robustness or sensitivity study will involve a number of different
hyperpriors A, and we must consider what kinds are reasonable. In previous
work we assumed that A was a log-Cauchy density and questions of robustness
involved only the variation of its two hyperhyperparameters or equivalently its
two quartiles. For the sake of completeness, we shall redefine the log-Cauchy
distribution later and mention some of its properties.

It needs to be emphasized that the hyperprior is apt to depend on the
application and on the judgment of the statistician and of his client. Much of
the subjectivistic aspect can be taken into account by making judgments of the
upper and lower quartiles, g;; and q;, of the hyperparameter or shrinker . (Any
two quantiles would do and checks for consistency can be obtained by judging
additional quantiles.) Tests for robustness can be performed both by varying g,
and ¢q;, and by varying the functional form of A. In the longer version of this
paper, available from the authors, there are a number of suggestions concerning
judgments about k. We mention here just one idea which we express in terms of
a multinomial population with unknown physical probabilities ( p;) whose prior
subjective expectations are (). Then it can be shown that an approximation to
Kk is

(7.1) Zpi(l _Pi)/

2
Z&—q
;
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so that judgments about the quartiles of k could depend on those judged for this
expression.

We next turn our attention to the functional form for 4. Observe first that A
must be “proper at infinity” otherwise we would find that F, = F, = 1, that is,
the evidence for or against H would be obliterated [cf. Good (1965, pages
38-39)]. To see this, note that when k — o0, DM tends to the multinomial form
M!TI(=™/m,!) (as one would expect) so that, from (5.4), we find that F, = F, = 1
as we just said. On the other hand, we want to be permissive towards large
values of k because they correspond to believing that our initial estimates of the
p;, p.; and p,;; are fairly accurate, and we do not want to eliminate this
possibility by fiat. Hence a hyperprior A(x) that is, for example, exponentially
small for large ¥ would in our opinion be unreasonable. A numerical example
given later, where 4 is taken as a Weibull distribution, will presumably convince
the reader of this point.

To discuss the form of A(«x) for k < 1 note that

T'(m)T ;
(7'2) DM(t,m, ,m)/DM(t,m, ‘ll') ~ Mxt'—lnlf{ (l_n‘;lr)nl(:: :T-i)ﬂz) };

where k — 0, where i runs through the values of i for which m;.> 0, and where
t’ is the number of such i’s. If £’ > 2, which is true in all cases of interest, the
contribution to the integral in (4.1), from k < 1, will be negligible if k! *¢A(k) — 0
when k — 0 for some ¢ > 0. This condition is satisfied for the forms of ~ that we
shall entertain: We allow A(k) to tend to infinity at the origin, but not as fast as
kTLTE

If it were not improper, the Jeffreys—Haldane density 1/« would be a
candidate for being A but we must achieve propriety, and a way to do so, while
approximating proportionality to 1/« almost as much as possible, is to use
distributions asymptotically proportional to 1/[x(log k)] for large k. The log-
Cauchy distribution, used in earlier work, has this property. (The tendency to
infinity when k — 0 is not really desirable but, for the reason just mentioned,
this end of the distribution is unimportant, so we have preferred the elegance of
a simple functional form for 2 having convenient properties.) We shall also
consider generalized log-Student distributions. They raise (logx)~! to higher
powers (than does the log-Cauchy) for large k, and we believe this is a disad-
vantage. We have also considered the log-normal distribution (which is the
limiting form of the generalized log-Students). We next list these distributions
explicitly.

8. The hyperpriors tried. Each of our hyperpriors will have two hyper-
hyperparameters which can be determined if two quantiles are assumed for the
hyperprior.

If the logarithm of a random variable «k has a Cauchy distribution, we say
that the random variable has a log-Cauchy distribution. We slightly generalize
this distribution by giving it an additional parameter, but we continue to refer to
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the distribution as log-Cauchy as in Good (1969, page 45). The density is

A
(8.1) km{ N + [log(k/p,)]"} ,

This distribution has median p,, and upper and lower quartiles

A>0,p, >0

(82) qu = ule)‘, 9. = !-"197)\,
so that
(83) wo=(aray)”?, N =3log(qu/ay).

Let g(a) denote the 100ath percentile. For example, ¢(0) = 0, g¢(5) = g, q¢(3) =
py, ¢(3) = qy and g(1) = co. (8.2) and (8.3) can be generalized corresponding to
any two quantiles q(«) and q(8).

The log-Cauchy density is strictly decreasing if A > 1, otherwise it has a local
minimum at p.exp(—1 — V1 — A?) and a local maximum at

pexp(—1+ V1 — A%).
Some other properties of the log-Cauchy distribution are mentioned by Good
(1969, pages 46: a minus sign is omitted in the formula for the first percentile).
We call the density function
K 9 —(v+1)/2
log—]} , v>0,A>0,p, >0,

By

14
7B (3, 10

the generalized log-Student density. When » = 1 it reduces to the log-Cauchy
density. The median of (8.4) is the geometric mean of its upper and lower
quartiles, a property shared by any distribution whose random variable has a
logarithm with a density symmetric about its median. When » — oo, the gener-
alized log-Student distribution tends to the log-normal for x > 0. In our numeri-
cal work we considered the values » = 1, 2 and 15, and regarded the case » = 15
as close enough to being log-normal. In other words, » = 15 is virtually the same
as » = co0. The density function of a log-normal variable goes through the origin
although each log-Student density has the y axis as an asymptote. The apparent
paradox is resolved by a glance at Figure 1.

Finally, we considered the Weibull distribution as our hyperprior although, as
stated in Section 7, it cannot be expected to lead to reasonable results when the
null hypothesis is (approximately) true. The Weibull density is of the form

(8.5) abx® le=b%",

If two quantiles g(«) and q(B) are judged, corresponding to the 100a and 1008
percentiles, then one can compute a and b from the equations

log(1 — @) q(a)
(8.6) a= log[m] + m[ﬁ]

(8.4) {)\2 + 7!

and

(8.7) b=1[a(B)]*/[a(x)]”,
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FIG. 1. The generalized log-Student densities with v = 1 and v = 15, and q; = 10, q;; = 25. The y
axis is an asymptote for all (finite) values of v. The graph is strictly decreasing if 4v)\ > (v + 1)%.
For v = 1 (the log-Cauchy), the condition is A > 1 while if X < 1 the local maxima and minima are
at pymax{ —1 + (1 — A)/2] where p, and X are given by (8.3).

where
= loglog[1/(1 - a)], B’ =loglog[1/(1 - B)].

9. Known marginal probabilities. In census work, one often has large
multinomial samples from which (p;.) and (p.;) can be estimated with consider-
able accuracy, and can be regarded as known, but a much smaller sample for the
corresponding contingency table. See, for example, Deming and Stephan (1940),
Bishop, Fienberg and Holland (1975, page 84ff.) and Pelz (1977, pages 46-54).
Most of the statistical literature dealing with such situations is concerned with
the estimation of the probabilities p;; but we here discuss how it affects the
Bayes factor against H. We assume Sampling Procedure 1 because we already
know that F, = F,.

Since we are now regarding p;. and p.; as known (for all i and j) we have

N!
(9.1) P[(nU)IH] ——————Hp

: n,. n.;
= Tin, PP
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Moreover, g;. and q.; are now equal to p,. and p.; so that
(9.2) P[(nij)|HI] =f [(nij):(pi-pj)]’

and F, is the ratio of the two probabilities (9.2) and (9.1). For Sampling
Procedure 2 we have to divide the probabilities in both (9.1) and (9.2) by the
same expression namely N!II( p+/n;.!). This verifies that F, = F, and we have

f [(nij): (pi-p-j)] Hnij! .

9.3 F, =F =
( ) 1 2 N!len_"l_[p.’-l]'l

If only ( p,.) is known, then

(9.4) P[(n;)H| = f[(n.;),(q.))| N'TI( pl/n, 1 )F.-Y
while
(9-5) P[(nij)lH,] =f [(nij)’(pi-q-j)]

and F, and F, are equal to the ratio of the probabilities given by (9.5) and (9.4).

10. Numerical results and recommendations. We now return to the
numerical results in Tables 1 to 20.

In each example we have eye-balled the contingency table to see if it has any
special structure, and have found none.

Apart from “a priori” arguments for choosing one hyperprior rather than
another (or a prior in other circumstances), it is desirable to look at numerical
results because some implications might seem more reasonable than others. It is
not necessary that the examples should be real ones. When they are not real, the
method is an application of what physicists would call Gedanken experiments,
that is, of the device of imaginary results. They have latterly been given a more
preposterous name. It is also interesting, as in most of the following examples, to
apply the methods to real data.

We present the values of F, (= F,) for 21 contingency tables of which 7 are
artificial. The meanings of P(x?), P(x’?) and P(“exact”) were mentioned in
Section 1 where it was also mentioned that these are most appropriate under
Sampling Procedure 3. The rows labelled 1, 2 and 15 correspond to the gener-
alized log-Student hyperprior for k with » =1, 2 and 15. When » = 15 the
hyperprior is a very close approximation to a log-normal distribution and we
could have written co in place of 15. The first nine columns of values of F; are
headed by the corresponding values of q; and g, the judged lower and upper
quartiles of k. We have selected the nine pairs (gq;, q;;) to give adequate variety.
The tenth column gives the average F, for these nine cases, or, as one might say,
the average over nine Bayesians. This tenth column gives a rough idea of what
F, might be if we had gone up another level in the hierarchy, and put a bivariate
hyperhyperprior on (q;, q;;)- The three values of these averages, corresponding
to » = 1, 2 and 15 (or o0), agree with one another within a factor of 2 except for
cases where P(x%) =1 or P(x%) <1074 or for the 14 X 20 horse-kick data
(where the ratio is about 3; corresponding to » = 1 and » = 15). Thus it seems
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fair to say that these average values of F; have Bayesian robustness except in
extreme circumstances.

The last (eleventh) column gives the ratio of the largest to the smallest value
of F, corresponding to each value of ». This is a measure of the Bayesian
sensitivity or robustness for that value of ». Where the ratio is large there is low
robustness. The greater sensitivity for » = 15 (or ¥ = o0) (see especially Tables 7
and 20) is because the log-normal hyperprior has an upper tail that is too thin
and is therefore too committal (too “informative”). The upper tail of the
log-Cauchy is about as thick as any tail can be for a proper distribution. For this
hyperprior, the ratios of the largest to smallest values of F;, when the quartiles
are varied widely (as shown), are, for the 21 tables, nearly always smaller than
for » = 2 or » = 15, so v = 1 gives results that are the most robust. We therefore
recommend the use of » = 1, the log-Cauchy hyperprior. Furthermore, if the
statistician and his client have difficulty in choosing g, and gq,;, we suggest that
they should report the values of F, for about nine pairs (g, q;), and the
average, as we have done, though not necessarily for the pairs we have chosen.

In Table 20, the Weibull hyperprior gave such absurd results that we decided,
for the other tables, not to report the results of this assumption although it did
give reasonable results for most of the tables. The Weibull hyperprior has a very
thin right tail, far thinner than any sensible person could judge; but, when the
maximum of Fj(«) does not occur for a large value of k, the Weibull’s tail does
not wag the dog.

For the artificial contingency Table 12, where n,; = 6 for all i and J, so that
x2 = 0, most of the Bayes factors favor the nonnull hypothesis. The intuitive
explanation is that the data suggest that the two-way categorization is irrele-
vant: all 9! permutations of the interior of the table are the same.

For Mendel’s data on garden peas (Table 7), and for Bortkiewicz’s data on
horse-kicks (Table 20), x? is again less than the number of degrees of freedom,
whereas our model supports H’. Both cases can be better understood when we
recall that x2 depends on Sampling Procedure 3. Unfortunately, the sample sizes
of both tables preclude known methods for the accurate computation of the
Bayes factor F;. Our guess is that they would both “subceed” 1. We have the
following further thoughts about Table 20.

The unbiased estimate of the “repeat rate” ¥ p? is Ln;(n, — )N (N — 1)7},
which is equal to 1.0733/14 and that for ¥ p?; is 1.0947 /20. Hence (n;.) and (n. i)
are both rather “flat” (although both differ significantly from complete flatness,
having chi-squared values of 27.3 and 37.5 with 13 and 19 degrees of freedom,
respectively). In accordance with Crook and Good (1980, page 1214), in these
circumstances the row and column totals jointly “somewhat undermine” H.
Although that conclusion was based on small values of r and s, it helps to
explain why the Bayes factors against H are appreciable in Table 20. But one
could have guessed in advance, in this example, that (n;.)) and (n.;) would both
be fairly flat so the marginal totals cannot contain much evidence for or against
H; in other words F, would be more relevant than F,. The ability to guess, from
exogenous knowledge, that the margins would be flat was not built in to our
model.
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Leaving aside Mendel and Bortkiewicz, we conclude by emphasizing what we
said earlier; that if F) is large we can reject H without necessarily accepting the
particular form of H’ assumed in the model. If H can be clearly rejected as
compared with a noncomplicated and reasonable hypothesis H’ that is “close”
to it, then surely H can be rejected, “period,” even if H’ also comes under
suspicion. Indeed, if there is a discrepancy (in ratio) between F, and 1/P(x?) of
as much as 1000, as in Table 10 where the ratio is 10,000, or in Table 19 which is
a highly extreme case, then perhaps H’ (as formulated with its “ priors”) is ruled
out in addition to H. This comment assumes that the chi-squared approximation
to P(x?) is adequate for such large values of x2. The Bayes factors do not
depend on asymptotic theory.
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