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MAXIMUM LIKELIHOOD ESTIMATION IN THE
MULTIPLICATIVE INTENSITY MODEL VIA SIEVES!

By ALAN F. KARR
The Johns Hopkins University and University of North Carolina

For point processes comprising i.i.d. copies of a multiplicative intensity
process, it is shown that even though log-likelihood functions are unbounded,
consistent maximum likelihood estimators of the unknown function in the
stochastic intensity can be constructed using the method of sieves. Conditions
are given for existence and strong and weak consistency, in the L'-norm, of
suitably defined maximum likelihood estimators. A theorem on local asymp-
totic normality of log-likelihood functions is established, and applied to show
that sieve estimators satisfy the same central limit theorem as do associated
martingale estimators. Examples are presented. Martingale limit theorems
are a principal tool throughout.

1. Introduction. The multiplicative intensity model introduced by Aalen
(1978) has engendered numerous papers on ‘“martingale methods” of estimation
for point processes; Jacobsen (1982) and Karr (1986) contain expository treat-
ments. The martingale method enjoys a number of important advantages: It is
particularly suited (in some ways) for estimation of functions arising in point
process inference problems, martingale estimators and their first and second
moments are equally amenable to calculation and, in the case of the latter,
estimation, and there exist powerful and widely applicable martingale inequali-
ties and central limit theorems [especially those of Liptser and Shiryayev (1980)
and Rebolledo (1980)] that can be used to establish consistency and asymptotic
normality of martingale estimators. However, while the martingale method can
be interpreted as a conditional form of the method of moments, it is not based on
an optimality principle, nor does it estimate the unknown function itself, but
rather indefinite integrals of it. Our purpose in this paper is to pursue some
aspects of maximum likelihood estimation for the multiplicative intensity model.
After describing the model in more detail, along with difficulties arising from
frontal approaches to maximum likelihood estimation, we shall indicate briefly
the nature of the results in the remaining sections.

For a general discussion of point processes on R, with stochastic intensities,
we refer to Brémaud (1981), Gill (1980), Jacobsen (1982), Karr (1986) and Liptser
and Shiryayev (1978). Let (2, #, P) be a probability space over which are
defined a history 5= (#,),,, satisfying the “conditions habituelles” and an
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adapted point process (counting process) N = (N,),. . An predictable, non-
negative process A = (A,) is the (P, #)-stochastic intensity of N if the process

(1.1) Mt=N,—ft)\sds
0

is a (local) s#martingale, which we call the innovation martingale for N.
(Heuristically, A,dt = E[dN,#,_]; for ways of making this precise, see the
references cited above.) If N is integrable in the sense that E[N,] < oo for each
t, then M is a martingale and is square integrable over each bounded time
interval. The predictable variation of M (cf. Section 2) satisfies

(1.2) (M), = fo '\, ds.

(Interpretation: N is, locally and conditionally, a Poisson process in the sense
that the conditional mean A,dt = E[dN,|#,_] equals the conditional variance
d(MY, = E[(dM,)*\¥,_] = E[(dN, - E[dNJ#, )*#,_])

The multiplicative intensity model is a statistical model for point processes on
[0,1] in which the stochastic intensity contains an unknown deterministic
function as a factor; it is formulated as follows. Let (2, %, P), 5, N and A be
as in the preceding paragraph, but defined over [0, 1] rather than R ,. The model
is indexed by the set I of functions a € L% [0,1] that are left-continuous with
right-hand limits, or by a subset. The family of candidate probability laws is
P = {P,: a € I}, where for each a the point process N has (P,, 5#)-stochastic
intensity

(1.3) A(a) = aA,.

Note well that a is deterministic. One observes a single realization of both the
point process N and the baseline stochastic intensity A over [0,1], and the
objective is to draw inferences concerning the unknown function a.

Put succinctly, the martingale method of estimation is based on the dictum
“martingale = noise;” in other words, one can estimate a given unobservable
process by an observable process differing from it by a martingale. For the
multiplicative intensity model, direct estimation of « is usually not attempted,
because of the analogy between a and density or hazard functions; recently,
though, Ramlau-Hansen (1983) has used kernel smoothing methods from density
estimation to convert martingale estimators (see below) to estimators of «a itself.

Instead of a, the martingale method estimates indefinite integrals [fa, ds, but
since it is hopeless to ascertain information about « on the (random) set where A
is zero—no points of N occur there—one estimates the stochastic process

(1.4) B,(a) = fO‘asl()\s > 0) ds,

where “1” denotes an indicator function. Under suitable assumptions, the dif-
ference

J1 > ONY(aN, - a,ds) = [1(A, > O, dN, - By(a),
0 0
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as the integral of a predictable process with respect to the innovation martingale,
is itself a martingale, which yields the martingale estimator (a slight misnomer:
the error process, not the estimator, is a martingale)

(1.5) B,= [1(A, > 0)A; " aN,.
0

Throughout, integrals denoted by [ are over [0, ¢].
The following is one set of “suitable assumptions.”

LEMMA 1.6. Assume that there exists 8 >0 such that A, > 8 whenever
A, > 0. Then for each a the error process B — B(a) is a P, > -square integrable
martzngale with predictable variation

(1.7) (B - B(a))t = /:1(}\s > 0)A; la, ds

The proof is given, e.g., in Aalen (1978) or Gill (1980).

In this paper, rather than estimate processes of the form (1.4), we estimate the
unknown function a directly. More specifically, we are concerned with the
following situation: There is a sequence of triples (N, X®, 5 () on [0, 1] that,
under each probability P,, are independent and 1dentlcally distributed (i.i.d.)
with N® having (P, .%”(‘)) stochastic intensity A?(a) = a,A{). Note that «
does not vary with i. Our main results deal with the asymptotxc properties of
appropriately defined maximum likelihood estimators of a and of likelihood
ratios.

Relevant properties of likelihood functions are collected in the following
result. For the proof see Jacod (1975).

ProposITION 1.8. Let P be a probability measure with respect to which the
pairs (N9, X)) are i.i.d. and N has (P, #9)-stochastic intensity X, (One
can take P to correspond to a = 1.) For eachnlet N" = ¥ N, \* = £7 A0,

=V #,9. Then

(a) N" has (P,, #")-stochastic intensity a\*;

(b) each probability P, is absolutely continuous with respect to P on )", with
Radon-Nikodym derivative

(1.9) dP,/dP = exp[le;(l —a,)ds + fl(log a;) st"];

(c) (N™, X"y is a sufficient statistic for a given the data (N®, XD),
., (N A,

We now define the log-likelihood functions
(1.10) L(a) = ['N1 - o) ds + [(toga,) any,
0 0

to whose study most of the paper is devoted. It is apparent from (1.10) that
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L,(«) is unbounded above as a function of a: Its value can be made arbitrarily
large by choosing a to be large at each point of N™ and zero nearly everywhere
else. In Section 3 we show that it is possible, nevertheless, to construct strongly
consistent maximum likelihood estimators & = &, of a by employing the method
of sieves due to Grenander and collaborators [for an application to density
estimation see Geman and Hwang (1982)]. Convergence of & to a takes place in
the L'-norm. In Section 4 we consider local asymptotic normality of differences
of log-likelihood functions viewed as stochastic processes on [0, 1], which leads in
turn to asymptotic normality of the estimators a. Section 5 presents two
examples.

Even for analysis of maximum likelihood estimators and likelihood ratios,
martingale concepts and results remain central to our proofs. Thus, while
maximum likelihood estimators may sometimes supplant martingale estimators,
their respective theories overlap. Therefore in Section 2 we summarize martingale
results needed in later sections. Section 3 also sheds light on the relationship
between martingale and maximum likelihood estimation: The martingale estima-
tor (1.5) is shown to arise by transformation of an estimator & obtained by using
a particular sieve. An alternative approach appears in Johansen (1983), where an
extended model is formulated in which the estimators (1.5) have a direct
maximum likelihood interpretation. Borgan (1984) treats the finite-dimensional
case in detail, while Jacobsen (1984) is a general survey. McKeague (1986)
discusses sieve methods for least-squares estimation in a semimartingale model
incorporating a particular linear structure.

2. Martingale results. First, we summarize relevant results from the the-
ory of martingales; for more detailed exposition we refer to Jacod (1979), where
the setting is general, and to Gill (1980), Karr (1986) and Rebolledo (1980), which
are oriented specifically to point processes. We consider only point processes on
[0,1], defined over a probability space (2, #, P) equipped with a history
H'= (5¢¥,); martingales are always presumed right-continuous with left-hand
limits. (In later sections this is true by construction.)

The first result is not a martingale result per se, but we apply it to the
analysis of martingales.

THEOREM 2.1 [Lenglart (1977)]. Let X,Y be adapted, right-continuous,
nonnegative processes such that Y is predictable and nondecreasing with Y, = 0.
Suppose that Y dominates X in the sense that for every finite stopping time T,

(2.2) E[X;] <E[Y;].

Then for each ¢, > 0, and every finite stopping time T,

(2.3) P{supXt > e} <n/e + P{Y; > n}.
t<T

We will apply Theorem 2.1 to square-integrable martingales: A martingale M
is square integrable if sup,E[ M?] < oo. The predictable variation process (M),
the unique increasing, predictable process such that M? — (M) is a mean zero
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martingale, dominates M? in the sense of (2.2). In particular, if N is a point
process with stochastic intensity A, then the square of the innovation martingale
M, = N, — [¢X is dominated by (M), which is given by (1.2): (M), = [ZA.
Returning to a general square-integrable martingale M, let [M] be the
quadratic variation process
[M]t =(M), + Z AMZ,

8
s<t

where M° is the continuous martingale part of M and AM,= M, — M,_ [see
Jacod (1979)]. The predictable variation (M) is the predictable compensator
(dual predictable projection) of the quadratic variation; in particular, the two
differ by a mean zero martingale. The innovation martingale M engendered by a
point process N is a “compensated sum of jumps,” so that

(24) [M], =N,

for each ¢.
The following inequality will be used as well.

THEOREM 2.5 [Burkholder (1973)]. For each p € (1, w) there exist constants
¢,, C, such that for every martingale M,

(2.6) cpE[[M]lp/Z] < E[sup|Mt|”] < CpE[[M]f’/Zl.
In particular, for p = 2,
(26") E|supM?| < GE[LM] = GEL(M),)

Finally, we require a central limit theorem for sequences of martingales; the
version below, albeit not the most general extant, suffices for this paper. Let
(M™) be a sequence of square-integrable mean zero martingales, with respect to
histories 5", possibly but not necessarily defined over the same probability
space.

THEOREM 2.7 [Rebolledo (1977), (1980)]. Let V be a continuous, nondecreas-
ing function on [0, 1] such that V,, = 0, and suppose that

(a) for eacht, (M™), - V, in probability,
(b) there exist constants b, |0 such that
P{ sup|AM]| < b,,} > 1.

t<1

Then there is a continuous, mean zero Gaussian martingale M with (M), = V,,
such that M"™ -, M on D[0,1], where —, denotes convergence in distribution.

The martingale M is a centered Gaussian process with independent incre-
ments and E[M,M,]=1V,, ..
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3. Consistent maximum likelihood estimation via sieves. The setting
remains as above: With respect to P, the (N, XV) are i.i.d. copies of a pair
(N, M) such that the point process N has stochastic intensity a,A,. The index set
I consists of all (left-continuous, right-hand limited) nonnegative functions
a € L[0,1]. The log-likelihood functions L, («) are given by (1.10), where N =

»  N® and A =L XY, We utilize an indirect approach to maximum likeli-
hood estimation modeled on Grenander (1981, Section 8.1); the basic ideas are:

(1) For each n devise a subset I, of I within which there does exist a maximum
likelihood estimator & = @,,.

(2) Choose the I, to increase as n does, and such that U, I, is a dense subset
of I

(3) Given the appropriate additional assumptions, establish consistency of the
sequence (&,) in the sense that ||&, — af|; = 0.

The family (1,,) is termed a sieve.

Note the resemblance to kernel methods of density estimation [cf.
Ramlau-Hansen (1983)] and, in particular, the two simultaneous limit processes,
as the sample size increases and the sieve mesh decreases. Not only consistency
but also computational tractability is an issue in regard to choice of the sieve; we
examine this issue following Theorem 3.13.

We present two consistency theorems, a strong consistency theorem giving
conditions under which ||& — ||, = 0 almost surely and a theorem providing less
stringent conditions for c,-consistency in the sense of convergence in probability.
It is important to keep in mind that we estimate a itself rather than indefinite
integrals; note also that the L'-convergence is suited exactly to the role of a.

First, however, we must introduce a sieve. For each a > 0, let I(a) denote the
family of absolutely continuous functions a € I satisfying

(3.1) a<a<al
and
(3.2) la’| /e < a™t,

everywhere on [0,1]. As the sieve mesh a decreases to 0, I(a) increases to a
dense subset of I. We show that for each n and a, there exists a maximum
likelihood estimator &(n, a) relative to I(a), then we choose a = a, converging
to zero sufficiently slowly that &(n, a,) = a in L'[0,1].

Here is the main result.

THEOREM 3.3. Assume that:

(i) The function m (a) = E_[A,] is bounded and bounded away from zero on
[0,1].
(ii) The “entropy”

H(a) = - [ Tt - a, + a,log(a,)] m,() ds

is finite.
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(iii) With Var(A,) denoting the variance of A, under P,,
(3.4) [Var,(A,) ds < w.
0

@iv) Ea[Nf] < 0.
Then:

(a) For each n and each a > 0, there exists a (not necessarily unique)
maximum likelihood estimator &(n, a) € I(a) satisfying

(3.5) L,(&(n,a)) > L,(a),

for all a € I(a).
(b) For a,=n"Y*"" with 0 <n<1/4, and & = é&(n, a,), ||& — a|, = 0,
almost surely with respect to P,.

Proor. We follow the pattern of argument in Grenander (1981, Section 8.2,
Theorem 1). For notational simplicity we omit variables of integration; if no
measure is given an integral is with respect to Lebesgue measure; finally, all
integrals are over [0, 1], but this also is suppressed.

To begin, it is shown in Grenander (1981) that

(i) I(a) is uniformly bounded and equicontinuous;
(ii) {a’: a € I(a)} is uniformly bounded.

With n (and w) fixed and (a(/j)) a sequence in I(a) such that L (a(j)) —
sup{L,(a): a € I(a)}, it follows that there is a subsequence, which we continue
to denote by (a( 7)), such that the derivatives a’(j) converge in L![0,1] and such
that the real sequence (a(j)) converges. Hence there is a(c0) € I(a) such that
a(j) — a(o0) uniformly. Since a(o0) is continuous and bounded away from zero,
(1.10) implies that

Ly(a(e)) = HmL,(a(/)) = sup{L,(a): « < I(a)},

proving (a).

To establish (b), we note first that by reasoning in Grenander (1981), given
a € I and 8 > 0, for sufficiently small a > 0, there exists & € I(a)—depending
on § and a, which we suppress—such that ||« — &, < 8 and

(3.6) fm(a)[l — &+ a(log&)] - fm(a)u - a+ a(loga)]| < 8.

Recalling that (N, A) is a generic copy, let

L(B) = [M1 - B) + [(logB) dN

be the log-likelihood function. By Jensen’s inequality, the expectation of a
log-likelihood function is maximized at the “true” index value; consequently,

(37) H(a) = ~E,[L(a)] < ~E,[L(B)] = - [m(a)[1 - B + a(log B)].
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Suppose now that « € I and § > 0 are fixed and let & = &(n, a) be as in (a),
with n and a variable. Then for n sufficiently large and a sufficiently small,

‘—fm(a)[l —-a+ a(log&)] - H(a)

— [m()[1 - @+ a(log &)] - H(a) (by (3.7))

- fm(a)[1 — &+ a(logd)] + (1/n)[f)\"(1 &)+ /(1og &) dN"]
—(1/n)[f)\"(1 — @) + [(log ) dN”]
+ (l/n)[f)\"(l - &) + /(1og &) dN"]
- (l/n)[/?\"(l — &)+ f(log &) dN"]
+ [m(a)1 - &+ a(log &)]
= [m(@)[1 - & + a(log )] - H(a)

<

jm(a)n — &+ a(log )] — (l/n)[f)\"(l —- &) + f(log &) dNn]

+ ’fm(a)[l — i+ alog &)]

+ 6,

- (l/n)[/)\"(l - &)+ /(1og &) dN"]

where we have used (3.5) and (3.6).
Assuming for the moment that by proper choice of large n and small a, the
first two terms converge to zero almost surely, we will have demonstrated that

—fm(a)[1 — & + a(log &)] - H(a),
almost surely, which is the same as
(3.8) f m(a)[a - a(log @)] > [m(a)[a - a(log@)].

Following Grenander (1981) one final time, we infer from (3.8) that for A(y) =
Yy - IOg(l +y )1

fh(&/a —1)m(a)a - 0,

almost surely, which shows that & - a in LY(m a)ds) and, in view of (i),
suffices to confirm (b).
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Of the two remaining terms we analyze only the first, which is the more
difficult; the second is handled analogously. Using integration by parts, (3.1) and
(3.2), we see that

’fm(a)[l — &+ a(logd)] - (l/n)[f)\"(l — &)+ f(log &) dN"]

< f[l — &+ a(log &)](N/n — m(a))
| |

(3.9) -+

(log &1)(1/n)(N1" -/ la)\")

+‘(1/n) [(aiya)( Nz = [an) dt’

< a_1f|}\"/n —m(a)| + 2(na)™" sup‘N[‘ - /ta)\”
t 0

We consider the terms in order. ‘
For fixed s the random variables AY) — m («) are i.i.d. and by (3.4) have mean
zero and finite second moment; consequently, by the Marcinkiewicz—-Zygmund

strong law of large numbers [Chow and Teicher (1978), page 122], for a = a, =
n- 1/4+ 11,

(3.10) a N /n—mya)| -0,

almost surely. From Fubini’s theorem we infer that almost surely (3.10) holds
almost everywhere on [0, 1] with respect to Lebesgue measure. This last state-
ment, (3.4) and the dominated convergence theorem give that almost surely

a_1f|)\"/n - m(a)| - 0.

By (2.6) applied with p = 4 to the innovation martingale M* = N/ — [fa\",
for each ¢ > 0,

P,{(na) 'suplM| > e} < (nae) *E,[sup|M;*]
= O((nae)*E,[[M"]3]),
while by (2.4) and assumption (iv),
E[[M"] = E[(N")] = nVar (V) + n?E,[N,T.
Thus,
Pa{(na)_lsup|Mt"| > a} = 0(n %a™%1),

and for the prescribed choice a, = n~'/**7 it follows by the usual Borel-Cantelli
argument that

(na) 'sup|N® — fta}\"
0

-0,

almost surely with respect to P,, which completes the proof. O
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The relatively slow rate of convergence in Theorem 3.3 is a disadvantage in
applications since, roughly speaking, the sieve mesh a determines the accuracy of
& as an approximation to a. At the expense of weak rather than strong
consistency, the rate of convergence can be improved significantly; moreover, one
hypothesis from Theorem 3.3 can be eliminated and rates of convergence can be
deduced.

THEOREM 3.11. Suppose that assumptions (i)—(iii) of Theorem 3.3 are fulfilled
and let (c,) be a sequence with c, —» o and c,/n*’?> > 0. Then for a, =

(c,/n"*)/2 and & = &(n, a,) as in Theorem 3.3(a) we have
(3.12) lim limsup sup P,{c,|l&—a'|l;>d} =0,

d=® pnooo (o' —aly<e

for every a € I and ¢ > 0.
That is, the estimators & are c,-consistent; see for example Millar (1983).
Proor. By following the proof of Theorem 3.3 through (3.9), one deduces

that it suffices to show an analogue of (3.12) for each term there. By (3.4), for
each d,

Pa'{cna_lfollk"/n ~ m(a)| > d} < (cn/ad)2Ea,[(/01|}\n/n - m(a)|)2]

< (cn/ad)ZEa'[ [ 0e/n = m(@)]
= 0(c2/na’d?)
= 0(c,/n'/%d?);

uniformity over {a’: ||a’ — af| < &} is straightforward.
By Theorem 2.1 applied to the processes X = (M")? and Y = (M™) and with
n= n3/2/cn’
> d}

= P, {sup(M}")* > (nad)’/c2}
< c,zl(n3/2/cn)/(nad)l2 + P‘JI,{<M">1 > n3/2/cn}

<d?+ Ea,[[)la’}\"]/(n?’/z/cn)
=d?+ (cn/nl/z)fola’m(a'),

for the given choice of a,, and hence (3.12) holds. O

Pa’{cn(na) _lsup

thn _ j:a/}\n

Note that one can come arbitrarily close to n'/?-consistency, but that because
(a,) depends on (c,) to actually attain n!/2-consistency would require that
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a, — 0 arbitrarily slowly. There is one (important) case where this can be
accomplished: When «a is known to belong to the sieve set I(a) for some a > 0,
then I(a) is taken as the parameter space, and the proof of Theorem 3.11 may be
repeated —with a held fixed—to obtain the following result.

THEOREM 3.13. If a € I(a) and if hypotheses (i)-(iii) of Theorem 3.3 are
satisfied, then the maximum likelihood estimators & = &(n, a) are n'/*-con-
sistent: For each ¢ > 0,

(8.14)  lim limsup sup P,{n'?|& - o’||; > d} = 0.
d=®o poe la’ —all, <e, a’€I(a)

In Section 4 we use this result to prove a central limit theorem for &.

Computation of the maximum likelihood estimators & is somewhat difficult.
One must solve the function space optimization problem

(3.15) maximize - flas}\'; ds + Y. (log ar),
0

where the T; are the points of N”, subject to the constraints (3.1) and (3.2).
Similar problems arise in the calculation of nonparametric estimators of density
functions using penalized likelihood functions [see Geman and Hwang (1982),
concerning the relationship to sieve methods], but the presence of A? in (3.15)
and the form of the constraints seem to preclude a closed form solution.
Numerical solution is feasible, of course.

Alternative sieves include the histogram sieve defined via the sieve sets

I(m) = {a: ais constant on ((k — 1)/m, k/m], k = 1,..., m},

which is more convenient computationally. Indeed, in this case the maximum
likelihood estimator in I(m) is

(3.16) a(n,m) = N”(Jk)/fJ)\'; ds,

on J, = ((k — 1)/m, k/m]. If one integrates the estimators (3.16) in order to
estimate indefinite integrals of a, there result the estimators

(/tasl()\'; > 0) ds)A = /’&sl(x; > 0) ds
0 0

[mt]

= (1/m)kz_j [N"(Jk)//JN; ds]

= /‘1()\'; > 0)(A2) ' dN,
0

where [x] denotes the integer part of x. Thus, we obtain a maximum likelihood
interpretation of the martingale estimator B of (1.5); see also Section 4.

4. Asymptotic normality. Likelihood ratio tests are often analyzed in
terms of local asymptotic normality of likelihood ratios [introduced by Le Cam
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(1960)]. In this section we first present such a theorem for the multiplicative
intensity model. It not only is of independent interest but also leads to a central
limit theorem for the estimators Q.

We use martingale methods to examine the behavior of log-likelihood func-
tions as random functions of ¢ and, in particular, describe limit properties of
differences L, (a + n"/2a*) — L (a) as n — oo. The log-likelihood process, in-
dexed by ¢t € [0,1], is

L(a,t) = f’x;(l —a,)ds + f‘(log a,)N™.
0 0
By Theorem 2.7, under the probability P,,

(41) (oo = fax]) (M @oren

0<t<1
where M(a) is a Gaussian martingale with variance function

Vi(a) = lim n"YM"), = ['m(a)a, ds.
0

THEOREM 4.2. Let a and a* be fixed elements of I, and suppose, in addition
to the structure stipulated above, that

(4.3a) _Ll[(a;")z/as]ms(a) ds < o0
and
(4.30) [ 1)/ (@ my() ds < oo.

Then under P, the stochastic processes
(44) (Lolat 72, 0) = L 0) + 3 [(2)/] m,(a) ds)
0

converge in distribution to a Gaussian martingale with variance function

Vi a*) = [{(ar)/a] m (@) ds.

0<t<1

Proor. Tightness of the sequence (4.4) is an immediate consequence of (4.1)
and (4.5) below, so we need only identify the limit, in view of whose independent
increments it suffices to consider one-dimensional distributions. For each n
and ¢,

L(a+n"%* t)—L(a,t)
| 'Near ds + I log(1 + n~V%*/a,) dN*
0 0
= —pn /2 lt}\"ot*ds
-/(; s

(4.5) +/0‘[n—1/2(a*/a) ~ (2n) '(a*/a)’ + O(n"**(a*/a)’)] AN

— 12 /t(a;"/as)(Ns" —a\ds) — (1/2n)_/‘t(0£;"/¢xs)2 dN}
A 0

sofo o),
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uniformly in ¢ The error converges in probability to zero by the law of large
numbers (cf. the proof of Theorem 3.3) and Slutsky’s theorem. That the error
bound is uniform in ¢ confirms the tightness asserted at the beginning of the
proof. Again by the law of large numbers, the second term converges in probabil-
ity to —(1/2)f{(a*/a,)’m (a)a, ds, while by (4.1) and the continuous mapping
theorem the first term converges in distribution to [{(a*/a,) dM(a). Denoted
by M(a, a*), the limit is the integral of a predictable process with respect to a
Gaussian martingale and is hence a Gaussian martingale [by (1.2)] with variance
function given above. O

Albeit of interest in its own right, Theorem 4.2 leads as well to a central limit
theorem for the maximum likelihood estimators &, provided that the assump-
tions of Theorem 3.13 be fulfilled. Interestingly, this theorem, which applies to
indefinite integrals of the & rather than to the & themselves, is the same central
limit theorem satisfied by the martingale estimators (1.5).

THEOREM 4.6. Suppose that o € I(a) for some fixed a > 0 and that the
assumptions of Theorems 3.13 and 4.2 are fulfilled, and let &(n,a) be as in
Theorem 3.13. Then the stochastic processes Z,(t) = n'/%[{(&, — a,) ds converge
in distribution to a Gaussian martingale with variance function

(47) Wia) = [la/m,(a)] ds.

Proor. With n fixed, define a transformation T of L![0,1] into itself by
T(a) = [ X(1-a) + [ (loga) dN™.
0 0

The first, second and third Fréchet derivatives of T are given, following lengthy
but straightforward computations, by

()8l = - [ BNt ds + [ (B/a) dN™,
T(«)[Allv] = - [ (By/a2) dN™,

and
T ([BILYI[8] = 2 (Bvo/a’) aN",

respectively. See Luenberger (1969) for details.
Then, on the one hand, with n~!/?2 denoting a constant function, by
Luenberger (1969, Section 7.3)

= T(@[n ]+ AT (@) ][0 7)
(08 +O(T 7 (@[n 2 Nn 2 n )
= T(@)[n /2] + AT (@) ][22 + O n72 [alavr/n])

= T[]+ 4T (@0 2100 2] + 0,(1),
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via the law of large numbers [this is essentially the same argument used to derive
(4.5)]. The sense of the convergence in (4.8) is with respect to the norm on
L'[0,1]. Moreover,

3T (@)[n 2 )[n"2] =~ [ a*(dN"/n)

(49) :
= =3[ [m(a)/al ds,

in the sense of convergence in probability. Theorem 4.2, together with (4.8)-(4.9),
implies that T’(a)[n~'/?] >, M, where M is a Gaussian martingale with
variance function

Vda1) = [Im(a)/a] ds.

On the other hand, by the mean value theorem for functionals [Graves (1929)],
for some r € (0,1),

T'(a)[n 2] = T"(& + r(a - &))[a - &][n"2]

- - fo'[(a — &)n V2/(a + r(a — &))" dN"
=0/ [[(& ~ a)/a][dN"/n]
+Op(n‘1/2 fol[(a - a)%/a] dN")

= 22 [ [(& - a)/e?][dN"/n] + Op(1)
0
(by Theorem 3.13 and the law of large numbers)
=n2 [ (&, - a,)[m(a)/a,] ds,
0
from which we infer that
2 [(& - a)[m(a)/a] ds 4 M.
0
From this,
n [(& = a)ds =y [ [a/m(a)]* aM,
0 0

with the limit a Gaussian martingale with variance function W(a). O
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That (4.5) is the same central limit theorem fulfilled by the martingale
estimators (1.5) can be confirmed by Gill (1980), Jacobsen (1982) or Karr (1986,
Theorem 5.16).

5. Examples. In this section we illustrate the results in Sections 3-4 using
two key special cases of the multiplicative intensity model, Poisson processes and
survival analysis.

Poisson processes. Recall that a Poisson process N on [0,1] with intensity
function « is defined by the properties:

(1) For disjoint sets A,,..., A, the random variables N(A,),..., N(A,) are
independent (N has independent increments).
(2) For each A, N(A) has a Poisson distribution with mean [,a, ds.

More to the point of this paper, among point processes admitting stochastic
intensities, Poisson processes are characterized by their having deterministic
stochastic intensities: The baseline intensity A is identically equal to one, so that
A(a) = a, for each ¢

The method presented in Section 3 can be used to derive consistent maximum
likelihood estimators relative to the sieves there, but to illustrate the breadth of
the method of sieves we describe briefly the use of histogram sieves. Moreover,
we peed no longer be confined to [0,1], and work instead in a compact metric
space E.

Given a finite measure p on E, a point process N is a Poisson process with
mean measure p if N has independent increments and if for each A, N(A) has a
Poisson distribution with mean p(A). Now let p, be a fixed, finite measure on E;
we consider the statistical model # = {P,: a € L'(p,)}, where under P,, the
data are i.i.d. Poisson processes N, each with mean measure a(x)uq(dx).

For each m e N let E = Zi!';,lAm ; be a partition of E into sets A,,; with
po(A,,;) > 0, and assume that max;py(4,,;) = 0. For each m let I(m) be the
set of functions a that are constant over each partition set A,,;. Then by (3.16)
the maximum likelihood estimator &(n, m) relative to sample size n and the set
I(m) is

Ly,
(51) &(n’ m) = Z [Nn(Amj)/np'O(Amj)]lAmj’

J=1

‘

where N = ¥  N®, For suitable choice of (m,) these estimators are strongly
consistent.

THEOREM 5.2. If m = m, is chosen in such a manner that, with [, = L

0

(5.9) T (i /n?) < o,

n=1

then for & = &(n, m,), ||& — af|; = 0, P,-almost surely.
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PrROOF. Let n and m both be variable; then by (5.1)

In

E:IL |Nn(Amj)/nl'L0(Amj) - a(x)'”o(dx)

la(n, m) - af,

~

m

Z /:4 |Nn(Amj)/nI‘L0(Amj) —nu‘O(a; Amj)/nu‘O(Amj)ldp‘O
Jj=1

my

IA

Ln
+ 2 [, lnolas 4n)/no(An,) = al) ol o)

j=

IA

L [N"(4,)/m = E[N(4,)]]

b
+ ; /A |,u0(a; Amj)/nuO(Amj) - a(x)l,uo(dx),

where po(a; A,,;) = [4, adp,. That the second term converges to zero provided

only that m — oo can be shown by a variety of techniques; see for example
Grenander (1981, pages 419-420).
In regard to the first, for ¢ > 0,

P,,{jlgml IN"(A,,;)/n— E,[N(A,,)]|> e}

<e¢‘E, {};1|N”(Amj)/n—Ea[N(Amj)H} .

With n and m fixed the random variables N"(A,;)/n — E[N(A,,;)] are
independent in ;j and by expansion of the fourth power of the summation
followed by repeated application of the Cauchy-Schwarz inequality,

Pa{ }é |N"(A,,,)/n - E,[N(A,,)]|> e} =0(e*n2L);

the dominant term comes from the (i) ~ 14, summands with all indices distinct.
Thus (5.3) suffices to give

LP,

n

gllN”(Amj)/n - E,[N(4,,)]] > e} < o0,

for every ¢ > 0, which completes the proof. O

Survival analysis. Let X, X,,... beii.d. random variables whose unknown
distribution function F admits hazard function A = F’/(1 — F), which is to be
estimated from the X,. Substitution methods based on empirical distribution
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functions are not effective, since the latter do not admit hazard functions. To
estimate A from the counting process viewpoint, one observes that for each n the
point process N,* = X7_1(X; < t) has P,-stochastic intensity

Ni(h) = h(t) ¥ 1(X; = 0);

i=1

thus we have a multiplicative intensity model with baseline stochastic intensity
n
M= Y 1(X;>t)=n— Nr.
i=1

The methods described above apply, as do results in Sections 3 and 4. The
central limit theorem implied by Theorem 4.5 is the same as that described, e.g.,
in Gill (1980), Jacobsen (1982) and Karr (1986) for the martingale estimators
B, = [{(n — N)"'dN/; the Gaussian limit martingale has variance function

F(t)/1 — F(t))

Acknowledgments. It is a pleasure to thank the referees and Associate
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