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ON THE EFFECT OF SUBSTITUTING PARAMETER
ESTIMATORS IN LIMITING x2 U AND V STATISTICS

By TERTIUS DE WET AND RONALD H. RANDLES
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Consider statistics T,(A) that take the form of limiting chi-square
(degenerate) U or V statistics. Here the phrase “limiting chi-square” means
they have the same asymptotic distribution as a weighted sum of (possibly
infinitely many) independent x? random variables. This paper examines the
limiting distribution of T,,(X) and compares it to that of T,(A), where X
denotes a consistent estimator of A based on the same data. Whether or not
Tn(5\) and T,(A) have the same limiting distribution is primarily a question of
whether or not a certain mean function has a zero derivative. Some statistics
that are appropriate for testing hypotheses are used to illustrate the theory.

1. Introduction. In many hypothesis testing and estimation problems, we
need to know the effects of substituting an estimator of a parameter into a
statistic. Let X|,..., X, denote a random sample and consider statistics of the
form .

T,(N) = T(X,,..., X;sN).

The statistic N\ is a consistent estimator of the parameter . This paper
investigates the limiting distribution of Tn(X) and compares it to the limiting
distribution of T,(\), thus exploring the large sample effect (if any) of substitut-
ing an estimator into T,(\). We shall see how to determine whether Tn(ix) has
the same limiting distribution as T,(\) and, if not, what change results.

Investigations of these questions for particular statistics are common in the
literature. General theorems are available for certain classes of statistics with
asymptotic normal distributions. Sukhatme (1958) and Randles (1982) investi-
gated cases in which T,(\) is a U statistic. Pierce (1982) provides a general
limiting normal distribution theorem for settings in which \ is an efficient
estimator of N. Fligner and Hettmansperger (1979) give a result applicable when
one can obtain the weak convergence of the conditional distribution of T,(N)
given \. For cases in which T,(\) is an L statistic, Parr (1982) and Randles
(1982) have derived limiting normal distribution results. Iverson and Randles
(1983) establish weak and strong consistency and a LIL when T,(\) is either a U
statistic or an L statistic.

The present paper describes the effects of auxiliary estimators on the limiting
distribution for cases in which T)(\) is a U or V statistic with a limiting x>-type
distribution. Gregory (1977) proved a basic limit theorem for limiting x2type
(degenerate) U statistics. Serfling (1980) gives an independent proof. Neuhaus
(1977) proved the two-sample U-statistic analogue to this result. Each of these
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authors discussed the corresponding result for V statistics as well. Examples of
useful limiting x2type U or V statistics are given by de Wet and Venter (1972,
1973, 1976) and de Wet, Venter and Van Wyk (1979).

Several examples of limiting x%type U and V statistics with kernels that
contain an estimator have appeared in the literature. de Wet and Venter (1972)
study a statistic used to test for normality when the mean and variance are
nuisance parameters that must be estimated. Gregory (1977) discusses a
Cramér—von Mises test statistic computed on data that have been standardized
by location and scale estimators. Pearson x? statistics for goodness-of-fit in
which the cell boundaries are functions of estimated parameters have been
described by a number of authors. See the general results of Moore and Spruill
(1975), as well as their references. .

The present paper examines Tn(fx) in situations in which T,(\) is a limiting
x2-type V or U statistic. With kernels of a particular form, general results are
obtained that characterize the distribution of T,(N\) and relate it to that of
T,(N\). Conditions are specified under which these two quantities have the same
limiting x2type distribution (referred to as Case I) and have different x2-type
limiting distributions (Case II). ‘

Section 2 gives the motivation for our approach and statements of the main
theorems. Section 3 contains examples that illustrate applications of the results.
It includes settings in which the estimator changes the limiting distributions and
others in which it does not. Proofs of the theorems are given in Section 4.

2. Motivation and statement of results. Let X, X,,..., X,, possibly
vector valued, be i.i.d. with d.f. F(x). We consider statistics of the form

n n

(2.1) Vn(i\) =n"? Z Z h(Xi’ Xj;S\),

i=1j=1
where the estimator \ is also a function of X 1»+--» X, and consistently estimates
the p-vector parameter N. The kernel A(-) is assumed to satisfy
(2:2) h(x, y;v) = h(y, x;v)
and
(2.3) /h(x, t;N) dF(t) = 0

for every x, y and y € R”. When v is known, V,(y) is a degree-2 V statistic.
Equation (2.3) shows that V,(\) is a member of the (degenerate) class of degree-2
V statistics with x2type limiting distributions. (See, e.g., Theorem 6.4.1B in
Serfling (1980).)

To provide a general solution for a useful class of statistics without requiring
the kernel & to be differentiable in X, we consider kernels of the form

(24) h(xy, x557) = /

o0

oog(xl, t; v)8&(x,, t;y) dM(t)

for some function g and M a finite positive measure, possibly defined over a



400 T. DE WET AND R. H. RANDLES

vector valued space. In Section 3 a number of examples are discussed for which
this representation holds. Now, using (2.4), (2.1) can be written as

25) v = [ [ £ etz )| aco

Since the term in square brackets is (for each fixed ¢) a degree-1 V statistic
Witl} an estimated parameter, we motivate an asymptotic approximation for
V,(N) by first examining a degree-1 V statistic that has an estimator inserted in

its kernel,
n

Vi(X) =n"" ¥ n(X;X).
i=1
Taking \ = N(F,), a functional of the empirical d.f. F,, V,(\) can be written
functionally as

(2.6) T(F) = [h(x;N\(F)) dF(x).
The first Gateaux differential of T\(-) at F in the direction of F, produces

@) d\T\(F;F, = F) = [h(x;\) d(F, - F)

+d,0,(N) d,\(F;F, — F).

Here d,0,(N\) denotes the vector of partial derivatives of 6,(v) = E\[A(X};Y)]
with respect to y, where the expectation assumes N\ is the actual parameter
value. Also, d,\(F;F, — F) denotes the vector of Gateaux differentials of the
components of N(:) at F in the direction of F,. The differential in (2.7)
motivates the theorems in Sukhatme (1958) and Randles (1982), which asymp-
totically approximate Vln(ix) — 6,(\) with
Vln()\) - 01()\) + dlal()\),()\ - )\)~

This is a useful approximation, because often A(x;y) is not differentiable in y at
Y = N\, but yet 6,(y) is. Note that if §,(y) has a zero derivative at y = \, then
the limiting distribution of V,,(\) is not affected if N\ has to be estimated.

We now apply these ideas to Vn(ix) as given by (2.5). With \ = N(F,), write
(2.5) functionally as

T(F)=f°°

— 0

[f_wwg(x, t;N) dF(x)]2 dM(t).

Taking the first differential of the interior of this square bracket in the fashion
of (2.7), we are motivated to approximate V,(\) with

2

(2.8) f_ww[n-l ¥ g(X,60) + d(tn) (A - x)] am(2),

where d;u(t;N) represents the vector of partial derivatives of p(fy) =
E\[&(X}, t;y)]at y =N\,



SUBSTITUTING ESTIMATORS IN x2 STATISTICS ' 401

REMARK. Note again the fact that the presence of an estimated parameter
inV ()\) has an effect on the limiting distribution if u(¢;y) has a nonzero vector
of derivatives at y = \. Also, if N\ is asymptotically linear in the observations
(see Condition 2.10), (2.8) leads to the integral of the square of a linear statistic,
thus having a x2type limiting distribution. The approximation (2.8) has the
advantage that g(x, £;¥) need not be differentiable in y.

We now state the conditions and the main result showing the validity of the
approximation in (2.8). Condition 2.10 is the usual asymptotic linearity applied
to \. Conditions 2.9 and 2.11 are basically smoothness conditions on the function
g( ) and hence indirectly on the kernel A( ).

CONDITION 2.9. Suppose

p(t;y) = Ex[g(Xy, 7))
exists and satisfies
p(tN) =0
for every ¢ and every y in a neighborhood of y = \. In addition, assume pu(t,y)
has an L,(R, M) differential at y = )\ with partial derivative vector d,u(¢;N),
satisfying

f_woo[dlu(t;)\),]sz(t) <

for r=1,..., p, where d,u( ), is the rth component of the vector d,u( ). The
existence of an L,(R, M) differential means for any & > 0 there is a bounded
sphere € in R” centered at \, such that y € € implies

Iy = kll”f_i[u(kwr) = (BN (v = N)]*aM(e) <.

CONDITION 2.10. Suppose

N=N+n'Y (X)) + op(n_1/2),

=1

where E[{a(X,),] = 0 and E[a(X,),a(X,), ] is finite forall 1 <r <r’ < p.

CoNDITION 2.11. Suppose there is a number M * > 0 and a neighborhood
K(N) of \ such that

(a) if y € K(N\) and D(¥, d) is a sphere centered at y with radius d such that
D(y, d) € K(N\), then

(2.12) foo {El sup [g(X,-,t;y’)—g(Xi,t;Y)l]}2dM(t)sM*dz,

—® Y'€D(y, d)
and
(b) for any & > 0 there is a d* > 0 such that 0 <d <d*, y € K(\) and
D(y, d) c K(N\) imply

1) [TE| wp L 6v) -6 )l o) <

- |y'eD(y,d)
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We now state our first result. To this end, let

(2.14) v = n—2i ih*(Xi’ X)
with
(2.15) hi(x, y) = f_oooo[g(x, tEN) + dip(EN) a(x)]

X [g(y, &N) + dyp(t;N) aly)] dM(2).

THEOREM 2.16. Let X,,..., X, be i.i.d. with d.f. F(x). Suppose Conditions
2.9, 2.10 and 2.11 hold, and

(217) E[h(X,, X)) <0 and E[h(X,, X,)] < 0.
Let {8,) denote the eigenvalues of the operator A defined by

Aq(x) = [7 ha(x, y)a(y) dF(y).

Then
n(V,(\) = V.) =, 0
and
o0
nVn(s\) _)d Z 6kXIZk’
k=1
where x%,, k =1,2,..., are independent x? variates.
REMARK. Note that nV(X) has the same limiting distribution as nV,, the

latter being a degree-2 V statistic with a degenerate kernel 4,. Note also that
the effect of the estimator \ is captured in d,p(t;N). For Case I situations

(2.18) du(tN) = o,

for all ¢ and hence nV()\) and nV,(N\) have the same hmmng distribution.
Thus, the limiting distribution of nV, ()\) is the same as when \ is known. For
Case II situations d,u(t;\) # 0 and the limiting distribution is affected by
substitution of the estimator N\. Examples of both types will be presented in
Section 3.

Next we state a result for U statistics with estimators in their kernel which
corresponds to Theorem 2.16. Define

Un(&)=(”) > 7 e(X., 68)e(X;, 68) am(z)

i<j _°°
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and

U= (5) T f7 (X0 t0) + dp(5N) (X))

i<j T ®
X [g(Xj, tEN) + dlu(t;)\)’a(Xj)] dM(t).
The following theorem establishes the limiting distribution of nUn(X).

THEOREM 2.19. Suppose the assumptions of Theorem 2.16 hold and, in
addition,
E[/ZgZ(XI, t;)\)dM(t)] < .
Then ‘
(220) AU = 5 (O ),

where {8,} are defined in Theorem 2.16, {8}} are the eigenvalues of the operator
A defined by :

Ag(x) = [~ h(x, y:\)a(y) dF(y)
and x%,, k =1,2,..., are independent x? variates.

REMARK. This result shows the peculiar effect that the estimator N\ pro-
duces in degenerate U statistics where the limiting distribution depends on both
the eigenvalues when N is known (8}) and when it is estimated (§,). Of course
these sets of eigenvalues are the same when (2.18) is satisfied. Note also that the
right side of (2.20) is just

E 8k(ka - 1) + Z (8k - 8/@)-
k=1 k=1

The quantity X(68, — 8;) was labelled y in Theorem 4.3 of Gregory (1977) when
he proved a corresponding result for the particular case of a Cramér-von Mises
statistic.

3. Examples. In this section a number of examples to which the theory of
Section 2 applies are discussed. These examples are given for illustrative pur-
poses and we will not strive to give them in their most general form.

3.1. Cramér—von Mises statistic for the regression model with random regres-
sors. Consider the linear regression model with random regressors

(3.1) X_]=C_]IB+EJ’ j=1,2,...,n,

with {C;} ii.d. p-dimensional random vectors with joint d.f. G, B the vector of
unknown regression constants and {E;} i.i.d. with d.f. F. We will assume the C’s
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to be independent of the E’s. We wish to test the hypothesis
H,  F=F,

with F; completely specified. Let B denote a consistent estimator of B satisfying
Condition 2.10. Form the residuals

Y,=X,-C/B, j=12,...,n.
Let F,(¢) be the empirical distribution function of the {Y}, i.e.,

E(t)=n"! zn) I(Y;<t).

The Cramér—von Mises statistic for testing H, computed on the residuals is
then given by )

(32) T.(B) =n " (F(t) - (1)) dFy2).
Let Z = (C, E) be (p + 1) dimensional. We can then write
T,(B) =n"! i nZ;,Z;\)

i, Jj=1

with

and

(3.3) h(z1,2557) = [ (2, 17)8(2,, 6v) dFy(2),
where

gz, t;v) = I(e — ¢’y < t) — F(t),

using the notation z = (¢, e). Thus, M(t) = Fy(t).
The mean function is

n(t;y) = E[g(Z, t;v)]
=P(E - C'y < t) — Fy(t)

= [ Fit+ e'v) dG(e) - Fi(t)
= [ (Fi(t + e'v) = Fy1)) d6 ().
This clearly exists and p(;Q) = 0, for all ¢. Direct partial differentiation gives
i ¢ ‘ ¢ dGg
- . = . + ¢’
aylp‘( ’Y) /I;pc]f()( c Y) (c)’

and therefore
d,u(£0) = fo(£)(ECy, EC,,..., EC,)’,

P
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provided that these moments are finite. Applying Theorem 2.16, we see that if
E[C]]=0for j=1,..., p, then estimating the parameters has no influence on
the null limiting dlstrlbutlon of the test statistic. Otherwise, we can always take
E[C]=0forj=2,...,pand C, = 1 so that the first term is the mean of the Y
responses. From dp,(- ) we see that the asymptotic distribution is only affected
by the estimator of the mean and not by the other estimators in the B vector.
This is the same conclusion reached by Pierce and Kopecky (1979) for a very
broad class of test statistics but with stronger conditions on the estimators B.
The exact nature of the change is determined by comparing the eigenvalues of
h.(x, y) in (2.15) to those of A(x, y;\) as in (2.4) and will be a function of the
intercept estimator used.
To verify the conditions of Theorem 2.16, we need to make further assump-
tions about the underlying population. Details of the verification are available
from the authors.

3.2. Cramér—von Mises statistic for the location scale case. In this case we
have X, X,,..., X, iid. F((x — p)/o) and we wish to test
H,: F(t) = Fy(¢)

with F, completely specified. Let N\ = (f§,6) be a consistent estimator for
N\ = (pu, o) satisfying Condition 2.10. Let F,(t) be the empirical distribution
function of X, X,,..., X,,. Then the Cramér-von Mises statistic is given by
(see, e.g., Durbin (1973))

T(\) =n[” (B +6t) - Fy(t))" dFy(t)

(3.4) L
o Y h(X;, X;N),
Do
where

h(x,, x57) = /_O;(I(xl <1+ v.t) — Fy(2))

X(I(xy < v, + Vo) — Fy(t)) dF(2).
In showing that the conditions of Theorem 2.16 hold, we use
g(x, t;y) = I(x < v, + vat) — Fy(¢)

and
M(t) = Fy(¢).
Thus,
p(t;y) = Eg(X, t;v) = Fo((v, + 2t — 1) /o) — Fo(t)
and

d,p(tN) = o7 fo(£)(1 )
and the function A, of (2.15) can be written easily (depending of course on which
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estimators fi, 6 we use). See also Gregory (1977) for more general results along
these lines.

3.3. x2 goodness-of-fit test statistic. As another example consider the follow-
ing x? statistic which is a special case of statistics considered by Moore and
Spruill (1975). Let X, X,,..., X, again be ii.d. F((x — p)/6) and suppose we
wish to test

H, F=F,

with F, completely specified. Let N\ = (4, 6) be a consistent estimator for
N = (p, o) satisfying Condition 2.10 and let F,(t) be the empirical distribution
function of X, X,,..., X,. Put

p;= Fo( bj) - Fo( bj—l)
and
ﬁj = Fn(ﬁ‘ + bjé) - Fn(ﬁ + bj—lé)

for j=1,..., k, where —00 = b, < b, < :-- < b, = 0. Form the x? goodness-
of-fit test statistic

k
(3.5) T(\) = X o (np; — np;)".
j=1
This is easily seen to be equal to

nt Y r(X;, X;\)
i, j=1

with
k
R(x, y;v) = X 0 (I(v, + vab_y <x < v, + 120,) — p;)
j=1
X(I(Yl +¥b <ysm+ Yzbj) _Pj)

= fg(x,t;Y)g(y,t;Y)dM(t),
with M a discrete measure placing mass p; ! on the point t = (bj_1, b)),
Jj=12,...,k, and
g(x’tj;Y) = I(Yl +¥9bj, <x <7y + Yzbj) — pj-

Take p = 0 and o = 1 without loss of generality. The conditions of Theorem 2.16
can be shown to hold with

N fo(bj) - fo('bj—l) .
d,p(t;N) = [bjfo(bj) B bj—lf()(bj—l) ) J=2,...,k—1,

fo(By) ]

dlp‘(tl’)\) = [bl f()(bl)
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and

Dl = [—z:i(z'(eil)_o]'

The function A, for this case can easily be written as

k
hy(x, y) = Z pj_l[I(bj_1 <x<b)-p+ dlu(tj;)\)'a(x)]

x[I(b;., <y=<b)—p; + d,p(t;N) a(y)],

which clearly satisfies the degeneracy condition. For given F, and a, the
eigenvalues of A, can be found and the limiting distribution of 7, ()\) written.

REMARK. In the preceding examples the emphasis was on Case II statistics,
the case most often encountered. The next two examples give Case I situations,
i.e., where estimating the parameter does not change the limiting distribution.

3.4. Test for independence in two-sample regression with random regressors.
Consider the model

X,i=CiB + Ey;,
21=CézB+E2i’ =12
with {(C,;,Cy;)} ii.d. 2 p-dimensional random vectors w1th joint distribution G
and B, the vector of unknown regression constants. Assume (E,;, E,;) are i.i.d.
with distribution F(¢,, t,) and marginals F,, F,. We assume the C’s are indepen-
dent of the E,’s and E,’s. Suppose we wish to test the independence of E, and
E,, e,
Hy: F(t, ty) = Fi(t,)Fy(ty), allty,¢,.
Estimate B consistently by B, assumed to satisfy Condition 2.10, and form the
residuals
Y, = X, - CiiB, Yo =Xy — Céié'
As a test statistic for H, we can use the Cramér—von Mises-type statistic

T.(B) = n [ [F(t; t2) = Funl6)Fon(t:)] dFru(1) dFo(£2),

with F,, F,, and F,,, respectively, the empirical distribution functions of
{(Yy;, Y2,)} {Yh} and {Y,}. (See, e.g., de Wet (1980) and Randles (1984), where
statistics of this nature were previously studied.)

Assume throughout that H, is true. As in de Wet (1980) one can show that

Tn(ﬁ) - Tln(ﬁ) —)pO asn—> o,

where

Tln(ﬁ) = n/;zz[Fn(tl’ tz) - Fl(tl)F2n(t2) - Fln(tl)FZ(tZ)

+F(8)Fy(t,)]” dFy(8,) dFy(t,).
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Substituting for the empirical distribution functions and changing the order
of integration and summation, we get

Tln(é) =n"! Z h(ziazj;é)’
where

Z-= (CI’C2’ El’ E2) = (C’E)

and
h(zpzz;Y) = /;ezg(zl’t;Y)g(zz’t;Y) dFl(tl) dF2(t2)’

with t = (¢, ¢,)’ and
2
&(z,t;v) = kl_=11[I(ek —cp(y = B) < t,) — Fi(2)].
The conditions of Theorem 2.16 can be shown to hold in this case using
halan,25) = [ [8(21,t, B) + diu(t;8) a(z,)]

x[g(z3,t, B) + d;pu(t, B) a(z,)] dM(t)
and

n(t;y) = Eg[2(Z,t;v)]

= _/;221,,}:[1 [Fu(t, + ey — B)) — Fu(t,)] dG(c).

From this it follows directly that
dl"‘ (t’ B) =0

and thus A, = h, giving the same limiting distribution whether the parameter is
known or estimated.

3.5. A multivariate sign test. Suppose we observe
X;=pt+Z;
where Z,,...,Z, areii.d. p vectors, each with an elliptically symmetric distribu-
tion with mean vector 0 and variance—covariance matrix 2. Suppose also that

E[Z}] < oo for j = 1,..., p where Z, is the jth component of Z,. The p-vector
p is a location parameter. Without loss of generality we test

Hy:p=0 versus H,:p+#0.
Let S denote the sample variance—covariance matrix and form
S '=AA,,

where A, is a lower triangular p X p matrix with positive diagonal elements.
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Letting A ,, denote the ¢th row of A, a possible sign test statistic is

p n 2
Vn(An) = Z n_l Z Sgn(AtnXi)
t=1 i=1
(3’6) n n P
=n? Y ¥ Y sen(A,X;)sen(A,,X;).
i=1j=11¢=1
Therefore,

g(x, t;v) =sgn(yx),  w(tY) = E[sgn(v,X,)]

and M(t) is the measure that places mass 1 on each of the integers 1,..., p. Here
y denotes a p X p matrix with ¢th row y,. For example, when p =3, V(A,)
examines each pair of transformed observations (A, X;, A,X;) and contributes
+ 6 to the sum in V(A ) if these two vectors are in the same octant, +2 if they
are in adjacent octants (ones which share a common face), —6 if they are in
opposite octants and —2 otherwise. We view nV,(A,) as a sign test statistic
analogue to Hotelling’s 7'2, which may be written

p . n 2
T?=n}, [n_l Y Amx,.] .
t=1 i=1

Theorem 2.16 will be used to establish the null hypothesis limiting distribu-
tion of nV,(A,). Under H,, the mean function

n(t;y) = E[sgn(v,2,)] = 0
for every y and £ =1,..., p, and hence
d,u(0) =0.

We also note that yn (A, — A) is bounded in probability, where A is the lower
triangular factor satisfying A’A = £~'. Theorem 2.16 shows that nV,(A,) has
the same null limiting distribution as nV,(A). From this it readily follows that

nVn(An) —d Xfp
under H,. For other multivariate sign tests see Killeen and Hettmansperger
(1972), Dietz (1982) and their references.

4. Proofs of the results. We now sketch the pr(;ofs of the results stated in
Section 2. More detailed proofs are available from the authors. For this we need
the following lemma, the proof of which is straightforward.

LEmMMA 4.1. Let X,,..., X, be i.i.d. and suppose k,(x, y) = k,(y,x) for
every x, y and n. In addition, assume for every x and n that
E[kn(x, X2)] =0
and
(42) E[}(X,,X,)] = o(n®)
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fori =1 and 2, as n - . Then

— -2
W,=n

n
1=

Y kX, X)) —,0.

1/=1

Proor oF THEOREM 2.16. First note that nV, is a degenerate degree-2 V
statistic and Theorem 6.4.1B in Serfling shows

(4.3) nV, >4 2 Spxie-
k=1

Define
Y, = f_ww[n—l/z -2:11 {8(X;, ;N) + p(t;%)}] dM(t).

By applying Holder’s and Jensen’s inequalities one can show that
(4.4) Y, - nV, -, 0.

Now

nVn(X) -Y,= f:o[n—l/z i {g(Xi, t;i) —g(X;, EN) — (e, X)}]2 dM(t)

= [n‘l/2 i {8(X;, 6N) + u(t;i\)}]

3

» [n_l/z Y {e(X:, 68) - g(Xi 5N) - u(t;%)}] dM(t)

=1

=T;, + 2T,,.
But Holder’s inequality shows that
T42n < YnT3n

and hence

(4.5) nV(\) - Y, -,0,
provided

(4.6) T;, =, 0.

To consider Tj,, we define

Q) = [ {n‘”z > {a(X;, N+ n7%s)
— o i=1

2

—g(X;, t;N) — (BN + n7%)} | dM(2)

and seek to show @, (Vn ( A=) —, 0. This last step follows from Lemma 4.1 in
much the same fashion as Theorem 3.1 of Sukhatme (1958). O
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PrOOF OF THEOREM 2.19. Write

n[Un(i\) - Un] n2(n - 1)-1[Vn($\) - ‘/;t] + (n - 1)-1

« B 7 (6% 60) + (N (X))’

‘gZ(Xi,t§$\)] dM(t)

Il

n(n - 1)-1{n[Vn($\) - Vn] + Uln - UZn(X)}'

Theorem 2.16 shows that n[V,,(X) — V,]1 -, 0. Condition 2.17 and the SLLN
show that U,, —, X%_,8;. Theorem 2.11 in Iverson and Randles (1983) shows
that U, (\) - » Li-104. The degenerate U-statistic limit theorem in Gregory
(1977) or Theorem 5.5.2 in Serfling (1980) shows that nU, —, L2_,8,(x%, — 1),
and hence the conclusion follows. O
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