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AN EXTENSION OF PARTIAL LIKELIHOOD METHODS FOR
PROPORTIONAL HAZARD MODELS TO GENERAL
TRANSFORMATION MODELS!

By KJELL A. DOKSUM

University of California, Berkeley

Estimates of the linear model parameters in a linear transformation
model with unknown increasing transformation are obtained by maximizing a
partial likelihood. A resampling scheme (likelihood sampler) is used to com-
pute the maximum partial likelihood estimates. It is shown that for a certain
“local” parameter set where the ‘“signal to noise ratio” is small, it is
asymptotically possible to estimate the linear model parameters using the
partial likelihood as well as if the transformation were known. In the case of
the power transformation model with symmetric error distribution, this
result is shown to also hold when the distribution of the error in the
transformed linear model is unknown and is estimated. Monte Carlo results
are used to show that for moderate sample size and small to moderate signal
to noise ratio, the asymptotic results are approximately in effect and thus the
partial likelihood estimates perform very well. Estimates of the transforma-
tion are introduced and it is shown that the estimates, when centered at the
transformation and multiplied by V7, converge weakly to Gaussian processes.

1. Introduction. Consider the transformation model where an unknown
increasing transformation h(Y) of the response variable Y follows a linear model
with p covariates x,,...,x,. Since the Cox (1972, 1975) proportional hazard
model with time independent covariates is a special case of such a transforma-
tion model, and since partial (marginal) likelihood methods have proven so useful
in the proportional hazard model, we investigate properties of partial likelihood
methods in the transformation model.

In the preceding model the partial likelihood is proportional to the projection
of the standardized likelihood onto the space of rank statistics and it is
proportional to the distribution of the ranks. Thus it could be called the rank
likelihood or marginal likelihood. Starting with Hoeffding (1951), this rank
likelihood has been used very successfully to generate test statistics, e.g., Terry
(1952), Lehmann (1953, 1959), Savage (1956, 1957), Hajek and Sidak (1967) and
Kalbfleisch and Prentice (1973).

In estimation, it has been used in the proportional hazard case by Cox (1972,
1975). A local approximation to the partial likelihood has been used by Pettitt
(1982, 1983, 1984), but otherwise its use in estimation has been limited
by computational difficulties. In this paper, a resampling scheme called the
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326 K. A. DOKSUM

likelihood sampler is introduced to compute the partial (marginal, rank) likeli-
hood and the maximum partial likelihood estimates (MPLE’s). Monte Carlo
techniques are used to show that the estimates perform very well for moderate
sample sizes and a certain range of parameter values.

When the results of this paper are applied to parameters that have interpreta-
tions unrelated to A and to prediction, there is no controversy as to the relevance
and interpretation of the results. However, for parameters defined in terms of A,
the interpretation and properties of the linear model parameters and their
estimates is a sticky problem full of controversies, interesting questions, and
different approaches (see Hinkley and Runger and discussants (1984)). We
consider a parameter space for which the various different approaches asymptot-
ically coincide and the parameters and their estimates have simple slope inter-
pretations. This parameter set can be regarded as a domain of adaptability, i.e.,
a space on which the linear model parameters can be estimated as well as if A
were known. It is a local parameter set that can be described as the set of
parameter values for which the probability distribution of the data is contiguous
to a power probability measure (Le Cam (1960), Hajek (1962), Hajek and Sidak
(1967)).

This local parameter set is the one that has been used successfully in testing
problems to obtain approximations to the power of tests. Here it is being used to
obtain useful approximations to the biases and mean squared errors of estimates
of the linear model parameters in the transformed linear regression model.
Monte Carlo results show that the approximations are surprisingly accurate for
moderate sample sizes and a range of parameter values with small to moderate
signal to noise ratio.

The finding that for the local parameter set, parameters can be estimated as
well as if A is known is consistent with the findings of Doksum and Wong (1983)
and Carroll (1982) for testing problems. It is different from the results of Bickel
and Doksum (1981), who considered nonlocal alternatives and found a severe
increase in variability of the estimates of the linear model parameters relative to
the h-known case when Var(A(Y)) is small. Carroll and Ruppert (1981) and
Taylor (1986) also considered nonlocal alternatives. They found a moderate
increase in variability for prediction problems relative to the A-known case.

In Section 5 we combine results of Hajek (1962) and Hinkley (1975) to
construct estimates that, in the case of power transformations and the local
parameter set, are adaptive when both the transformation and the distribution
of the error in the transformed linear model are unknown.

The problem of estimating a nonparametric transformation 4 has been
considered by Fisher (1946), Kruskal (1965) and Breiman and Friedman (1985),
among others. In Section 6 we introduce estimates A with the property that
Vn (h — h) converges weakly to Gaussian processes.

2. Preliminaries.

2.1. Transformation models. The independent random variables Y),...,Y,
are said to follow a linear transformation model if for some increasing transfor-
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mation A,

(2.1) hY)=a+Bx;+0g, i=1,...,n,

where x| = (x;1,...,%;,), i = 1,..., n, are known constants, B = (B;,...,8,)is a
vector of regression parameters, « is an intercept parameter and ¢,,..., ¢, are

ii.d. with distribution F. The model (2.1) can be regarded as a special case of the
model of Breiman and Friedman (1985) where the covariates are also trans-
formed. »

Some examples of h are hA(y) = (y + c¢)*, h(y) = sign(y)|y|* and A(y) =
(y* = 1)/A, A # 0, h(y) =log y, A = 0. See for instance Anscombe and Tukey
(1954), Tukey (1957), Box and Cox (1964) and Bickel and Doksum (1981). For
these examples, which we refer to as power transformations, F is often taken to
be the standard normal distribution function ®.

Another parametric family of increasing transformations is given by the Beall
(1942) transform h(y) = sinh~}(yAy)/VA =log(yAy + y1 +Xy)/ VA, A >0,
h(y) = ‘/_)7 , A = 0. Sometimes it is not clear which parametric family is ap-
propriate for a given experiment. We will primarily consider the nonparametric
case where A is continuous and increasing, but otherwise arbitrary; however, in
Sections 5 and 7, power transformations are considered.

2.2. The proportional hazard model as a transformation model. Suppose Y; 7
is a survival time with distribution F, and hazard rate r;=f,/[1 - F], i =
1,..., n. The proportional hazard model (Cox (1972, 1975)) is

r(t) = A,r(t), some r(t), whereA; = exp(Bx;).
An equivalent form of this model is the Lehmann (1953) form,

F(t) =1-[1 - Fy(t)]%, where Fy(¢) =1 — exp[—fotr(x) dx]

It follows that we can write
log{—log[l - F(Y)]} = -Bx; + ¢,

where the {¢;} are ii.d. with the extreme value distribution 1 — exp(—e®). In
other words, the proportional hazard model is a transformation model of the
form (2.1) with A(y) = log{ —log[1 — F(y)]}.

2.3. Interpretation and properties of the parameters and estimates. The
model for one response Y is

p
j=1
Box and Cox (1982), Hinkley and Runger (1984), Rubin (1984), Bickel (1984),

Carroll and Ruppert (1984) and Doksum (1984) discuss the relevance, interpreta-
tion and properties of the parameters ,,..., 8, and their estimates. Here we
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consider two cases:

(i) B; has an interpretation unrelated to the transformation h. In the propor-
tional hazard model, f; is the decrease in log hazard as x; is increased one unit
while the x,, & # j, are held fixed. Thus g; has an interpretation independent of
the transformation and A (or the hazard rate r) is treated as an unknown
nuisance parameter. (Note, however, that the relative decrease in log hazard
depends on . Often relative decrease is important; for instance, a smoker will
pay more attention if told that quitting will result in a 10% reduction of the log
hazard than if told that the log hazard will drop by 0.04.)

(i) B; has an interpretation related to h. Assume that the expected value of e,
exists. Then, in the power transformation model, and in the general model (2.2),
B; is the increase in the mean of h(Y) as x; is increased one unit with x,, k # j,
held fixed. Thus we call B; the slope parameter for the jth covariate on the scale
h. Since the 1nterpretat10n of B; depends on A, it is necessary to report an
estimate A of h as well as an estlmate ,B of B;. Hinkley and Runger (1984) argue
that the analysis should proceed on the scale fz with A regarded as fixed. In this
approach, estimates are reported on the estimated scale h(Y) and no allowance
is made for the randomness of A since £ is rendered fixed and nonrandom by a
conditioning argument. This approach makes sense when there is a unique,
natural transformation A that will produce a linear relationship, and when this
transformation becomes apparent after contemplating 4 and the mechanisms
producing the data. One good example is x = weight of an automobile, y = miles
per gallon. Here A(y) = —1/y emerges as the natural transformation (e.g.,
Hocking (1976)).

Next consider the case where no such natural s emerges, and A is an estimate
of the transformation A that produces a linear relationship. An example occurs
in meteorology where the third root and fourth root of precipitation appear to be
about equally popular transformations (see Woodley et al. (1977), fourth root,
and Miller et al. (1979), third root). Thus it is natural to ask, if the correct scale
is A(y) = y'/4, but we report the estimate on the wrong scale A(y) = y'/3, what
errors are committed?

Returning to the general case, note that if we use the conditional approach
where A is fixed and we regard {fz( y)} as our “data,” A(y) satisfies

(2.3) ~ AY) = fzh_l(a + ixjﬁj + o¢|.

Thus, B; is not a slope parameter on the scale A and on this scale, B; does not
have a simple interpretation. Moreover, in this conditional approach, the func-
tion Ah~! relating B; to A(y) is unknown. See also Rubin (1984).

If we want to keep the slope interpretation, we would say that g, is a slope
parameter on the linear model scale 4, and since A is unknown, we would, in
addition to giving an estimate ,B of B, also give an estimate A of h. Now an
allowance needs to be made for A being estimated and random. One of the
problems with this approach is that B; is a slope parameter on the unknown
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scale A, but it does have the advantage that it is compatible with testing,
confidence intervals derived from tests and prediction (see Doksum (1984)).

However, it would be preferable to have it both ways; that is, to report ,B on
the estimated scale / and keep the slope parameter mterpretatlon We heunstl-
cally derive conditions under which this is possible in an approximate sense.
These conditions limit the range of the parameters as explained in Sections 4
and 7.

Suppose we operate with the wrong reported scale A,(y) = y™ when the true
scale is A(y) = y. Let § = (A,/A) — 1; then the slope for the jth covariate on
the reported scale is

d
B, B,0) = ——Ehy(y) = (8 + DE(a + Tx,B, + 02) ;.

J

Thus if [f is reported as the estimate of the slope B; in A units, the Vn scaled
error is D, = Vn [,8 Bi(a, B, 0)]. Setting § = a/ \/17 a Taylor expansion gives

a+ Z x, B, + oe
k=1

by .

Dnzx/ﬁ(,éj—ﬁj)+a[1+Elog

where R, tends in probability to zero as n — 0. See also Bickel (1984).

From this expression, we see that plausible conditions that ensure
D, = Vn(L; — B) are B;=o0(l), Lj_,x;B, = 0(1) and &= 0O(n""?). In
later sections we will see that Vn (,B B;) has a nondegenerate limiting
normal distribution and that A(y) = h( y) + O (n~"?). Thus, heuristically,
D,=Vn (,lf B;). These conditions are compatlble with the conditions of Sec-
tlon 4,

3. The maximum partial likelihood estimates (MPLE) and the likeli-
hood sampler. Cox’s partial likelihood idea can be applied to the transforma-
tion model (2.1) with A increasing but otherwise unknown, and F continuous.
See Kalbfleisch (1978) and Pettitt (1982, 1983). The partial likelihood for B is
equivalent to the likelihood of the rank vector R = (R,,..., R,), where R; =
Rank(Y;) = Rank(A(Y;)). Let r = (r,..., 1,,) be the vector of ranks obtamed in
an expenment The MPLE is the vector B that maximizes

Ly(B) =P(R=r).

The case where F is known will be considered first. Later, the case F
unknown will be considered, as well as the problem of estimating A.

Note that in addition to the unknown & case, Ly(B) is a natural basis for
statistical inference in regression or ANOVA experiments where only the ranks
of the responses are available.

Next we consider identifiability conditions. Since the ranks are invariant
under shift, L, (B) cannot be used to estimate an intercept parameter and we set
a = 0. Moreover, because of this shift invariance, we can and will reparametrize
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tohave X ,x,; = 0, j = 1,..., p. Similarly, if we divide by ¢ in each term of the
model (2.1), we find that the ranks remain unchanged while the parameters
change from (B,,..., B, 0) to (B,/9,...,B,/0,1). Thus we reparametrize to
have ¢ = 1. For simplicity of notation, we assume this reparametrization has
already been incorporated into the model (2.1).

Next note that if p = 1, x;; = i, and if the support of F is finite, it is possible
to choose the B’s so that the ranks are equal to (1,2,..., n), and, for a range of
B’s, we do not have identifiability. We avoid such problems by using a condition
that implies that the support of F is the whole real line. Finally, let X =
(x{,...,x,)" be the design matrix; we will make the familiar assumption that X
has rank p. Here, then, is a summary of assumptions and notation:

h(Yt) =Bxi+£i, i= 1,...,‘n,

3.1 Z
3-1) > x,;=0, Xhasrank p,
i=1

where A is increasing on the real line and

F is absolutely continuous with' a density f that satisfies

(3-2) f(x) >0, x € R.

For convenience, we introduce the standardized partial likelihood
Ly(B) = Lp(B)/L#(0) = n!L(B).

ProrosITION 3.1 (Hoeffding, 1951). If (3.1) and (3.2) hold, then
n (V("') — Bxi)

3.3 L =FE —_— ),
( ) F(B) z=1_[1 f(V(r'))
where VO < ... < V(™ gre the order statistics in a sample of size n from F.

Typically, there is no explicit solution to the integral in (3.3). In this case, we
can use a resampling scheme to approximate Lz(B): On the computer, generate
M independent ordered samples V¥ < --- < V™, k=1,..., M, where each
ordered sample is the order statistics of a sample of size n from F. Now we
approximate Ly (B) by IA,F’ u(B), where

1§ n 1V - Bx,)
(B4)  Le(B) = 37 X 1u(B) and £u(8) = [T =y

PROPOSITION 3.2. If (3.1) and (3.2) hold, then Ly ,(B) converges almost
surely to Lp(B) as M — 0.

ProoOF. By the strong law of large numbers, it is enough to show that f,(B)
has finite expected value. This follows since E[ f,(B)] = Lz(B). O
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Now the procedure is to maximize I:F, m(B) for M = 100, 200, ... and to stop

when the change in the resulting estimates ﬁM, M = 100, 200,... from one M to
the next is within prescribed precision.

Note that at each sampling stage k the preceding resampling scheme intro-
duces variables V™), ..., V{™) that have the same order as the original data
Y,,...,Y,. Thus it preserves order, but introduces new random order statistics at
each stage k. This is in contrast to Efron’s (1979) resampling scheme, the
bootstrap, which at each sampling stage uses the original order statistics but in a
different (random) order. We call the scheme based on (3.4) the likelihood
sampler. A different approximation to L (B) has been considered by Pettitt
(1982, 1983).

ExAMPLE 3.1. Suppose, as in Box and Cox (1964), that F' = ®, the standard
normal distribution. Then the partial likelihood is

L¢(B)——E{exp[2uz‘” %Z }}

i=1

where ZM < ... < Z™ are the order statistics of a sample of size n from ® and
= Bx,=XP_,Bx,;,. We illustrate the likelihood sampler on the steam data of
Draper and Smith ((1981), page 9) in Table 1.

Table 2 shows how, for fixed M, ,BM and Lq, M(,BM) change with the normal
random deviates used in the likelihood sampler and it shows how they change
with M. The standard error of £ is approximately 1 / \/27,2 = 0.012. For compari-
son, note that the corresponding normal model estimate is £ .s/6 = —0.090.

TABLE 1

Steamdata t is the atmospheric temperature in degrees Fahrenheit, x; = t; — t,
and y is pounds of steam used per month.

t; 353 297 308 588 614 713 744 767 707 575 464
¥ 1098 11.13 12,51 840 927 873 636 850 7.82 914 824

r, 20 22 25 7 14 10 1 9 4 13 6

t; 289 281 391 468 485 593 700 700 745 721 581 446 334 28.6
y 1219 11.88 9.57 1094 9.58 1009 811 6.83 888 7.68 847 8.86 10.36 11.08
r, 24 23 15 19 16 17 5 2 12 3 8 11 18 21

TABLE 2
The likelihood sampler for the steam data.

M 100 100 100 200 200 200 400 400 400
Bos —0060 —0.061 —0.059 0.064 —0062 —0061 —0.064 —0063 —0.064
1074L(f,) 382 646 310 004 769 579 841 680 848
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We return to the general case and consider the problem of obtaining relation-
ships between the likelihood and partial likelihood. The likelihood for B in model
(3.1) assuming that A is known, expressed in terms of Z; = h(Y)), is

jF,h(B) = i=l—n.[1f(zi - Bx;).
For convenience, we introduce the standardized likelihood
Zr, »(B) = jF, h(B)/jF, #(0).
PropoOSITION 3.3. For the model (3.1), if (3.2) holds, then

EPo(gF,h(B)IR = r) = LF(B),
where P, represents the distribution when B = 0.

ProoF. This follows from Proposition 3.1 since on [R =r], V;= V() and
since the ranks and order statistics of A(Y,), ..., h(Y,) are independent under P,.
O

In other words, the (standardized) partial likelihood Ly(B) is the projection
of the (standardized) likelihood % ,(B) onto the space of rank statistics. We
readily obtain

COROLLARY 3.1. Under (3.1) and (3.2), Ep(Zy 1(B)) = Ep(Ly(B)).

In the two-sample case, it is possible to obtain limits as well as asymptotic
normality results for L;(B) as we now show.

REMARK 3.1. Consider the transformed two-sample shift model where
hMNY)~F(-—-80),i=1,...,n; KY) ~ F(-), i = n; + 1,..., n. By shifting the
h(Y;) by a constant amount, model (3.1) will be satisfied with 8 = 6. Let
Qr(B) = (1/n)log Ly(B); then, using Hajek (1974), we can conclude that if F is
absolutely continuous and log f,(1)/Z,(u)] is integrable and has bounded varia-
tion on every closed subinterval of (0, 1), then, with probability one,

Jim Qp(B) = A [ fo(u)log fy(u) du + (1 = \) [ Zo(u)log Zo(u) d,
where -

_ d . _ d _1
fo(u) = EIZF(Ho (u) - 0)’ 8o(u) = Z“F(Ho (u)),
’ n
H)(t)=AF(t—0)+ (1 —A)F(t) and A= 71
See also Berk and Savage (1968) for a similar result.

REMARK 3.2. Consider the proportional hazard two-sample model where
Y,~G. i=1,...,n; Y,~ Gy, i=n, +1,..., n. This model is equivalent to
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the transformation model A(Y,))~ B +¢;, i=1,...,n; YY) ~¢, i=n,+
1,..., n, where h(y) = log(—log Gy()), B = €’ and ¢; has distribution F(t)
1- exp(—e‘). Let Fy(t) = Gi(¢),

n(Fy, Gy, 0) = log(40) — 2 — /log(Fg(x) + 0Gy(x))(dFy(x) + dGo(x))

and
02('F0, GO’ 0)

= 2(0 = 2 [ _ [6o()1 = Gul )/ W) W()] dFy(x) dFy( )

+ [ IR = B)/ W W] d6(x) d6 )],

W=F, + 0G,.

From Sethuraman (1970) and Lai (1975), it follows that, with @ as in Remark
3.1. ‘/_(QF(,B) — w(Ey, Gy, 0)) =4 N(©O, 6%(Fy, Gy, 0)) where —, denotes con-
vergence in distribution. This result can be used to establish the asymptotic
normality of § and B. See also Begun (1981).

4. A local approximation to the partial likelihood.

4.1. A local parameter set. 1f E(e;) exists, we can without loss of generality
think of p; = X2_,x;8; as the mean of A(Y;). Moreover, in our parametrization,
E=n"'Lu, = 0. We "will assume that B € Q,, where

(41) .- (B 20t < K%, max o 0]

i=1
In (4.1), K? is a constant not dependent on n, while B and p; may depend on n
although this is suppressed in the notation. If we let P, denote the probability
distribution of A(Y}),..., A(Y,), it follows from HaJek and Sidak that for
BeQ,, P is contiguous to P, provided f has finite and positive Fisher
information.

We can think of the restrictions on the p;’s in (4.1) as imposing conditions on
the design matrix X, on the parameter B or on both. Moreover, remembering
that we arrived at model (3.1) by dividing through by o in model (2.1), we see
that in the context of model (2.1), (4.1) becomes o~ 2X(Bx;) < K? and
o ~'max|Bx;| = 0. Thus, (4.1) could be interpreted as o — oo at the rate de-
termined by (4.1). This is the opposite of the ¢ — 0 case studied by Bickel and
Doksum (1981). The ¢ — oo case is also the case where transformation models
are most useful since transformations can be reliably estimated. See Bickel and
Doksum (1981) and Box and Cox (1982). For the purpose of obtaining approxima-
tions to bias and MSE and using Monte Carlo procedures to check for which
parameter values these approximations are accurate for finite n, it is better to
think of (4.1) as imposing restrictions on B.
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Since, for B € 2, Py is contiguous to P,, we think of @, as a local (near 0)
parameter set. It has been used successfully to obtain theoretical results and
useful approximations for power functions. The results of this section in conjunc-
tion with the Monte Carlo results of Section 7 show that asymptotic results
obtained for B € @, lead to useful approximations to bias and MSE for mod-
erate n and certain ranges of B’s. Borrowing from the testing literature and
considering the Monte Carlo results of this paper, we find that an approximate
ball park rule is that the @2, approximations are good for parameter values where
the power of the level 0.05 likelihood ratio test of Hy: B, = --- = B, based on
h(Y)) (assuming A known) has asymptotic power at most 0.95. In particular
when p =1, we can write u; = Bx; and find that the asymptotic variances
computed for Q, are very close to the Monte Carlo variances for B in
[-3.6/(Zx})?, 36/(Ex2)1/2]

We will see that @, is the set where B can be estimated as well as if & were
known, i.e., where is adaptive. Thus £, is a domain of adaptability for .

4.2. The Hdjek-Siddk likelihood approximation. Let f be absolutely con-
tinuous with derivative f /. Define

_ i)
¢F(D)_ f(v) ’ R’

ap(k) = E(¢x(V®), Ek=1,...,n.

We will assume
(42) 0<I(f) = [~ (o) f(v)do < co.

Next we consider a rank based approximation to the likelihood introduced by
Hajek and Sidak ((1967), Chapter 7) to establish the asymptotic sufficiency of
ranks. They show, using Le Cam’s (1960) contiguity lemmas, that an approxima-
tion to the likelihood .‘?F, #(B) is given by

B(B) = (nz)*exp{spw) - %I(f)é(ﬂxi)z},

where Sp(B) = LI (Bx;)aps(R)).
Let pp(B) = Pr(B)/Pr(0) = n!pp(B); then:

THEOREM 4.1 (Hajek and Sidak). For the model (3.1), if (4.2) is satisfied,
then there exists a sequence {c,} depending on the Y’s only through the ranks
such that (i) plim,, _, ¢, = 1, (ii) c .SFF 20 pg(B) is a denszty on R™ and
(iii) im sup Ep,|%y 4(B) — c,pr(B)l =

n-ow geQ.

Since L () is the closest possible (in the Ly( F)) sense) rank approximation to
Zr 1(B), and Theorem 4.1 shows that py(B) is a local rank approximation to
Zr 1(B), then we regard pp(B) as a local rank approximation to Lz(B).
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Let C = [X'X] !X’ and a = ap = (ap(ry),..., ap(r,)); then pp(B) is maxi-
mized by

B=Bp=Ca/I(f).

Next it will be shown that one can use the rank statistic theory of Hajek
(1962) and Hijek and Sidak (1967) to analyze transformed data in an efficient
and adaptive fashion.

We introduce B = (X’X) ! and assume

(4.3) max {x/Bx;} >0 asn— .
1<i<n

PROPOSITION 4.1. If the conditions (4.2) and (4.3) are satisfied, then for
BeQ, (B— B) has asymptotically the p variate normal distribution
N(©,B/I(f)).

ProOF. Let (c;;) denote C’; then we can write Bj=Xrcia(Ry), Jj=

1,..., p. By the Cramér-Wold device, it is enough to show that every linear
combination Y.2_,d;f; is asymptotically normal. Let ¢/ = X2_,d;c;;; then,

p p n n p n
Z djﬁj = E dj E cjia(Ri) = Z a(Ri) Z djcj; = Z c/a(R;).
j=1 Jj=1 i=1 i=1 Jj=1 i=1

Since B is positive definite, we can write B = B/?2B'/2, where B'/? is a positive
definite square symmetric matrix. Ford = (d,, ..., d,) and b; = jth row of B we
can write

JTJ

p p
c/= Y dic;= ) dbx,=d'Bx,= d’B/’B"’x,.
Jj=1 Jj=1

It follows from the Cauchy—Schwarz inequality that
(¢!)? < (@’B¥2BV2d)(x;B/?B"?x,) = (d’Bd)(xBx;).
Moreover,

Y (ef)? = 2 (@'Bx,)’ = z (dBx,)(x{Bd)

i=1
= d’B( y x,.x;)Bd = d’B(X’X)Bd = d’Bd,
i=1
maxi{c{}2
2(c!)*

It follows from Hajek and Sidak ((1967), page 216) that Xr_d jﬁj is asymptoti-
cally normal. O

< max{x;Bx;} >0 asn—>
12

Note that under the conditions of Proposition 4.1, B is asymptotically optimal
and adaptive in the sense of having the same asymptotic distribution as the
maximum likelihood estimate B, with A assumed known.
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ExAMPLE 4.1 (Normal errors). When F = ®, the approximate partial likeli-
hood estimate is B = Ca with a4(k) equal to the normal scores E(Z®),
k=1,...,n. This is the same as the normal theory MLE based on A(Y)), h
known, except A(Y;) is replaced by ay4(r;). In fact, B is the normal scores
estimate proposed by Fisher and Yates (1938) for experiments where only the
ranks of the Y’s are available. Now for B € Q,, B is asymptotically normal with
mean B and covariance matrix [X’X] L In other words, all the asymptotic
optimality properties that the least squares estimate enjoy in the normal linear
model, B has in the model (3.1) with F = &,

EXAMPLE 4.2. In the proportional hazard model, F(x) = 1 — exp(—e®), the
approximate partial likelihood estimate is B = Ca where ap(k) = a(k) =
E?L N+1-#l/Js B =1,..., n, are the familiar exponential or Savage scores. For
BeQ, B is asymptotically normal N(B,(X’X)"!) and it is asymptotically
optimal in the proportional hazard model with unknown baseline hazard func-
tion.

Suppose that the true model has error distribution F;, but, we (incorrectly)
use the estimate B = B, corresponding to the error distribution F # F,. The
asymptotic bias is then b(F, F,)B where

1 _ _
b(F,Fy) = 1 = | ['oe(F " Hw)on(Fy () du/I( 1)
Using the same arguments that led to Proposition 4.1, we find

PROPOSITION 4.2. Under conditions (4.2) and (4.3), for B Q,, [B—B —
b(F, F,)B] has asymptotically the N(0,B/I( f)) distribution.

It follows from Proposition 4.2 that the MSE of [fj can be approximated as
MsE(§) = | £ ]/11) + bF, BB
i=1

ExXAMPLE 4.3. Suppose we use the normal scores estimate of Example 4.1
when in fact the true distribution is the standardized logistic Fy(¢) = 1/[1 +
exp(—7t/V3:)] with variance one; then F=®, I(f) =1, and 1 — b(F, F) =
7/ V3 [¢® “Yu)2u — 1) du = \/r/3. Thus, in transformed simple linear regres-
sion, MSE(B)) = (Zx2) ™ +(1 — \/n/3 )232. The approximate squared bias is of
the same order as the approximate variance for g € Q,,. Since (1 — \/7/3 )2 =
0.00054, the variance will dominate the squared bias for small to moderate
sample sizes and |B| < 1.

REMARK 4.1. Pettitt (1982, 1983) considers an approximation to Lz(B)
obtained by using a Taylor expansion about 8 = 0. The resulting estimates are
different from B, but asymptotically they are equivalent to f and enjoy all the
properties of B stated in this section.
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REMARK 4.2. The results of this section would remain valid if we replaced
ap(k) = E¢p(V®) by ¢p(V®). See Bell and Doksum (1964). Similarly, we
could have used ¢z(F ~(k/(n + 1)) instead of a(k) (Chernoff and Savage

(1958); Hajek and Sidak (1967)).

5. Adaptive estimation for unknown F. We first construct adaptive
estimates for the case where A is known and F is unknown; then, in the power
transformation case, we extend the results to obtain adaptive estimates for
symmetric F. For the case where 4 is known, the adaptive estimates of Dionne
(1981), Bickel (1982), Koul and Susarla (1983) and Ritov (1984) apply. Here we
construct other adaptive estimates that can be extended to the case of an
unknown power transformation. We start by estimating the score function

bo(u) = ¢p(F ~H(w)).

DEFINITION 5.1. An estimate ¢ of ¢ is consistent if f(gl;(u) — ¢o(w))? du
converges in probability to zero as n - oo when g = 0.

Hajek and Sidak (1967), page 260) give the following consistent estimate of
¢ Let {8,) be a sequence of numbers such that §, - 0, n'/%5? - . Put
r,=n¥%.% s, =n"%% and t;=[j,/(s, + 1)], 1 <j <s,, where [ ] is the

greatest integer function. Now for j = 1,..., s,, define
2r,s, t ti
<I’n(u) = [‘D tj (tj+1)]’ —rf =usx Jn ’

=0, otherwise,

where D(t) = [R(Y#7™)) — p(YCE-™)] 7L,

Our adaptive (& known, F' unknown) estimate of B is of the form B* = Ca*,
where (a*)’ = (a*(r)),..., a*(r, WY a*(k) = ¢n(k/(n + 1)) and [ is an esti-
mate of I(f). Let I be the estimate of I(f) defined by I = focp,zl(u) du.

Using the arguments of Hajek and Sidak ((1967), pages 259-266), we find:

PROPOSITION 5.1. Under assumption (4.2), ¢, is a consistent estimate of ¢,
and I is a consistent estimate of I(f) when B = 0.

PROPOSITION 5.2. Assume conditions (4.2) and (4.3). Suppose that é and I
are two estimates of ¢, and I that are consistent when B = 0 and suppose that é
is independent of the rank vector (R,,..., R,) when B = 0; then for B € Q,,
B* — B is asymptotically normal N(0, B /I( f )).

PRrRoOF. First use the Cramér-Slutsky theorem to conclude that the asymp-
totic distribution will be unchanged if in B*, [ is replaced by I( f ). Next use the
arguments of Hajek and Sidak ((1967), Sectlon 7, 1.6).

Since ¢>n and [ satisfy the conditions of Proposition 5.2, we have constructed
an estimate B* that is asymptotically optimal when 4 is known, F is unknown.
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Now consider the case where both 2 and F are unknown and F is symmetric.
We then need to estimate ¢o(u) = ¢z(F ~'(x)) on the basis of Yi,...,Y, for
B = 0. If we used Hajek and Sidak’s estimate ¢, with A(y) = y, we would end up
with an estimate of

’ G—l u
#3(1) = 96(G (1)) = —“”;((5—(())7)

where G is the distribution of Y. Since G(y) = P(Y < y) = P(h(Y) < h(y)) =
F(h(y)),

[r(G~H(w))] "

.

o) = ot - o=

Thus, since we have an estimate of ¢y(u), we need estimates of A’(G ~'(u)) and
J(u) = k(G ~Y(w))/[h'(G ~H(u)]*
Consider the power transformation

A
-1
(5.1) B(y) = T,  A#0,h(y)=logy A =0,

In this case A'(y) = y* 7, h"(y)/[W(¥)]? = (A — 1)y ~* and natural estimates
of (G ~Yu)) and J(u) are

(5.2) [G,,‘l(u)]x_1 and J(u) = (A - 1)[G,;(w)] _5‘, % <u<l1l- %,

where G, is the empirical distribution of the Y’s, G, () = inf{x: G,(x) > u}
and A is a consistent estimate of \. When F is symmetric, one convenient
estimate is the one defined by Hinkley (1975): Fix 0 < p < 3, let Y(i) denote the
ith ordered Y and consider the equation

HYM [ ]) + YN[ - p)D)] = ¥,

where Y is the median of the Y’s. This equation has either only one solution
A = 0, or two solutions one of which is A = 0. In the first case, set A = 0, and in
the second case set A equal to the solution different from zero. Now A converges
in probability to A (Hinkley (1975)).

Let i = [nu], and let U(i) = G(Y(i)), i = 1,..., n, be uniform order statistics;
then, when B = 0,

G, "(u) = Y(i) = G7H(U(3))

(5.3) i

-0 () sy (00 - (‘1‘1))

where

U(i) -

i
< .
n+1

o
n+1
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Now we let ¢Y denote the estimate of ¢, obtained by applying the
Hajek-Sidak estimate ¢, with A(y) =y, and we let J be as previously defined
and set

~ N _ - _ —5\
$o() = $y(w)[G, ()] + (A - 1)[G,(w)]
Then since ¢Y is consistent, it follows from (5.3) and the uniform convergence of

the uniform empirical process that ¢0 is consistent. Moreover, note that ¢0 is a
function only of the order statistics and therefore is independent of ranks when

B=0.
Let

a**(k) = ¢y(k/(n + 1)), I** = [§3(u) du,
(@**) = (a**(r), ..., a**(r,))(I**) ™

and B** = Ca**; then:

THEOREM 5.1. If F and G satisfy assumption (4.2), if F is symmetric about
0, if h is given by (5.1) and if condition (4.3) is satisfied, then for B € Q,,, B** is
multivariate asymptotically normal N(B,B/I( f)).

6. Estimation of a general transformation h. We write

p
h(Y)=p;+e, p= X8,
j=1
and let G, denote the distribution of Y; and F the distribution of ¢;. Note that
G(y) = P(Y <) = P(MY) < i(y)) = F(h(y) — ;). Thus, we can write
h(y) = F 'Gy(y) + p;. In our parametnzatlon X .p; = 0; thus,

(6.1) h(y) = ; Z F~'Gy(y).

i=1

We assume that the p’s are not all zero.

6.1. Fixed parameters. ANOVA models. We consider the nonlocal case with
B; and p; fixed as sample size increases. The distribution F is assumed to be
known. From (6.1) we see that if we can estimate the G,, then we can estimate A.
This can be done in analysis of variance models with several observations per
cell. These models can be written as

h(y}k)=0j+£jk’ k=1’ L] _]7.] 1 Ry

where 6, and n; are the mean and sample size in cell j, respectively. The
usefulness of such models has been discussed by Box and Cox (1964) and Cox
(1984). Now define A, = n;/n, let G; denote the distribution of Y, and let (ﬁ~
be the empirical distribution function in cell j. Assume that
(6.2) lim A;, =X, exists and satisfies0 <A; <1, j=1,..., p.

n— oo

Now we can write h(y) = L#_;A;,F ~'G;(y) and our estimate of h(y) is defined
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by
A(y) = L XuF 7'GH().
j=1

Let [a, b] be any set contained in the support of each G;, j = 1,..., p, and let
¢, = F7'G,(a), d; = F ~'G;(b). We can now establish weak process convergence
on the space D[a, b] of functlons on [a, b] that are right continuous and have
left-hand limits.

PROPOSITION 6.1. Suppose that F has a continuous derivative f bounded
away from 0 and oo on each [c;,d;], j=1,..., p, suppose that each G; is

continuous on [a, b] and suppose that (6.2) holds Then the process Vn [ A(- ) -
h(-)] converges weakly on D[a, b] to the Gaussian process

L w6, ))/ 16 (),
where W,..., V[{D are incze;)endent Brownian bridges on [0,1].
ProOF. Write u, = G(¥), u = G,(y) and
D(3) = VR [F-16,(y) - F1(G(5)] = ) =P )

u,—u
By the arguments in Doksum ((1974), pages 272-273) D;, converges weakly to
W(G,)/ |A;fF ~'G,. The result follows. O

Vn(u, — u).

Note that F ~!G (¥) = h( y) - u thus, A(y) is approximately normal with
mean Ah(y) and variance n~'E2_ N G y)[1 — G/ 2(My) — u)).

6.2. Local parameter set. We return to the general transformed linear model
with A unknown, F known and B € @,. Now we define

h(y) = F7'G,(y),
where G,(y) = n7'#[Y; < y] = n7#[A(Y)) < h(y)] = F(h(y), p) and
E(t,p)=n"TI[e; <t — ;]
Let [a’, b’] be a set contained in the support of each G, for i = 1,...,n and
let [c/, d/]=[F ~'Gy(a’), F {(G«d"))].

ProPOSITION 6.2. Suppose that F has a uniformly continuous and bounded
density f that is bounded away from 0 on each [c!,d}], i=1,...,n, and
suppose that each G, is continuous; then, yn[h(-) — h(- )] converges weakly on
D[a’, b’] to the Gausszan process W(F(h()))/f(h(+)), where W is a Brownian

bridge.

Proor. Let v, = G, (y), v = Fh(y) and write

Di(y) = [A(3) - h(3)] = =) ZF7H0)

v, —

vn (v, — v).
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Let F,(t) = F,(t,0) be the empirical d.f. of ¢,,..., ¢,; then,
Vn (v, = v) = Vn[F,(h(y), ) — Fh(y)]
= Vn[F(h(y)) — F(h(y))] + Vn[F,(h(y),p) — F(h(¥))].

The first term converges to W(F(h(y))). The second term has expected value
n~Y2%,p,. and variance (1/n)X;p;,(1 — p;,), where

Pin=|F(R(y) = p;) = F(h())].
By a Taylor expansion, p;, = f(h(y,))r; with |h(y) — (3| < |p,]- It follows
from this that the second term converges uniformly in probability to zero.

Finally, note that [F ~(v,) — F "%v)]/(v, — v) converges appropriately to
1/f(h(y)) as in the proof of Proposition 6.1. O

7. Monte Carlo results.

7.1. Transformed linear regression. Consider the transformed regression
model with p =1, n =15, x; = (i — 8)/7, and F = N(0,1). Even though n is
small, the Monte Carlo results will be checked against the asymptotic results for
Q,. According to these asymptotic results and the ball park rule of Section 4.4,
the mean squared error (MSE) of the MPLE B and the normal scores estimate 8
should be approximately 1/Yx? = 49/280 =0.175 for B [—3.6/(Xx})"?,
3.6/(Xx2)/2] = [—1.5,1.5]. Table 3 where § is computed using the likelihood
sampler with M = 100 and where the number of Monte Carlo runs is 500,
indicates that in this case the Q, asymptotic is roughly in effect even for n = 15.
Note that we have included the optimal (UMVU) estimate assuming 4 is known;
it is denoted by LS(4) since in this case, it is also the least squares estimate. The
Monte Carlo standard errors of the MSE’s are given in parentheses below the
MSE’s.

The MSE’s of 8 and f are rather large for 8 > 2.8. In order to check whether
this is a weakness of these estimates or a more universal trait of estimates when
h is unknown, we also considered the performance of the asymptotically optimal
(for all 8) MLE (Box-Cox estimate) ﬁBc for the power transformation model

sign(y)|y* — 1
hk(y)=—>\—, A#0,A(y)=logy, A=0.

TaABLE 3
Monte Carlo results for regression with n =15, p = 1, x;; = (i — 8)/7, F = N(0,1), M = 100,
and 500 Monte Carlo trials. ¢ = 280/49. For each B, Monte Carlo Bias(LS(h)) = 0.000,
cMSE(LS(h)) = 0.95 (standard error = 0.070).

B 0 0.35 0.70 14 2.1 2.8 35 7.0
Bias(f) —0006 0007 0016 —0.076 —0423 -0931 —1.533 —4.871
Bias(8) —0.005 —0051 —0117 -0423 —0917 -1513 —2156 —5.556
¢MSE # 1.23 1.30 1.14 0.85 1.41 5.19 13.633  135.74
(std. error)  (0.088) (0.088) (0.096) (0.061) (0.067) (0.997) (0.149)  (0.440)
¢MSE g 0.86 0.85 0.68 1.27 490 13.11 2659  176.44

(std. error)  (0.054) (0.057) (0.060) (0.062) (0.066) (0.066) (0.068)  (0.0060)
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TABLE 4
Monte Carlo results for the power transformation model (7.1). n=15, x;= (i —1)/7, 6, =1,
A=1/2, B =0,/0, F= N@,1) and 500 Monte Carlo trials. c = 280/49. Bias(LS(h)) = —0.006,
cMSE(LS(R)) = 0.94 (standard error = 0.063).

cMSE(Bgc)  c¢MSE(B) ¢MSE(B)
¢ B Bias(Bgc) Bias(B) Bias(B) (std.error) (std.error) (std. error)
1 0.7 —0.007 0016  —0.117 1.79 114 0.68
(0.169) (0.080) (0.051)
1 7 0.056 —4.87 —5.56 39.18 135.74 176.44
(3.33) (0.440) (0.060)
01 7 0.119 —4.87 —5.56 133.39 135.74 176.44
(12.446) (0.440) (0.060)

We consider the model (see Table 4)

(7.1)

with n =15, x;,=(i—-1)/7,0, =1, A = 3 and F = N(0,1).

Let 6, be the MLE of 6,; then, because of the reparametrization of Section 3,
the appropriate parameter is 8 = 6,/0 and the appropriate estimate to compare
with § and 8 is B = /0. Note that 6,, ¢ and A are estimated simultaneously
with 6,, but the performance of fp. is evaluated at 6, = 1, A = } and o = 0.1
and 1. However, o in By, = 6,/0 is not estimated; it is either 0.1 or 1 as
indicated in the table. . .

We see that S has a much smaller bias that § and B, but that 8 has MSE
comparable to those of ﬁBC except when o =1, 8 =7.

Next, we consider the same model, but with n = 25, x; = (i — 13)/12. Now
B € ©, corresponds to 8 € [12(—3.6),/V1300 , 12(3.6) /v1300 | = [~ 1.2,1.2], and
according to the ball park rule, the mean squared errors of g and B should be in
the neighborhood of 144,/1300 for B in this interval. Table 5 shows the MSE’s of
B and B to be at most (2.53)(144,/1300) for B € [—1.8,1.8].

hx(y)=01+02xi+0£i, i=1,...

TABLE 5
Monte Carlo results for regression withn = 25, p = 1, x; = (i — 13)/12, F = N(0,1), M = 100 and
500 Monte Carlo trials. ¢ = 1300/144. For each B, Monte Carlo Bias(LS(h)) = 0.000,
c¢cMSE(LS(h)) = 1.064 (standard error = 0.067).

B 0 0.60 1.2 18 2.4 3.0 3.6
Bias -0.287 -0.118 -0.049 —-0276 —0.634 -1.126 —1.640
Bias —0.006 —0.072 —0.284 —0.649 -1.113 —-1.633 —2.184
c¢MSE($) 2.01 2.53 1.28 1.30 424 11.96 24.76
(std. error) 0.111) (0.111) (0.130) (0.078) (0.102) 0.177) (0.259)
c¢MSE(8) 0.97 0.95 1.10 2.13 11.26 24.09 43.03
(std. error) (0.058) (0.058) (0.065) (0.076) (0.084) (0.087) (0.085)
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TABLE 6
Two-sample Monte Carlo results, n, = ny = 20, x; = + 3, M = 100 and 1000 Monte Carlo trials
for all B except B = 2.0 and 2.4, where 200 Monte Carlo trials are used. For each B < 1.6, Monte
Carlo Bias(LS(k)) = 0.001, 10MSE(LS(k)) = 1.05 (standard error = 0.047). For B = 2.0 and 2.4,
Monte Carlo Bias(LS(h)) = 0.038, 10MSE(LS(h)) = 1.19 (standard error = 0.106).

B 0 0.1 05 0.8 1.2 1.6 2.0 24
Bias(#) 0001  —0.005 0.012 0022 -0012 —0108 —0266 —0.535
Bias(£) 0002 -0003 —0036 —0087 —0204 —0395 —0595 —0.904
10MSE(f) 114 1.20 1.26 1.27 093 0.75 111 311
(std.error)  (0.052)  (0.053)  (0.052)  (0.052)  (0.038)  (0.035)  (0.086)  (0.117)
10MSE(8) 099 1.00 0.98 098 0.86 1.83 3.68 8.24

(std. error)  (0.042)  (0.042)  (0.039)  (0.037)  (0.038)  (0.046)  (0.108)  (0.107)

7.2. The transformed two-sample model. Here we consider two samples of
size n, = 20, n, = 20, and x;, = — 3, i =1,...,20, x; = 3, i = 21,...,40. Since
Yx? = n;n,/n = 10, we check whether the @, asymptotic is in effect for g €
[ —1.14,1.14]. Table 6 considers the MPLE g of Section 3 with F = N(0,1), and
the normal scores (Fisher—Yates) estimate 8 of Section 4 (Example 4.1).

The partial likelihood (rank) estimates do remarkably well. They estimate 8
almost as well as if A was known for a wide range of B. This is as predicted by
the Q, asymptotics. , )

For comparison, we note that the asymptotic MSE (AMSE) of the MLE B
for the two-sample power transformation model with fixed B evaluated at A = 0
equals the optimal 1/10 for all B. This follows from Bickel and Doksum ((1981),
page 303). For fixed B8 this AMSE is not known for A # 0; however, in the 2,
asymptotics it is 1,/10 for all A.

Finally, in the spirit of Example 4.3, we checked the performance of the
MPLE £ based on the normal likelihood sampler and the normal scores B when
the true error distribution is logistic. The results in Table 7 show that, as
predicted by the @, asymptotics, a logistic error distribution does not diminish
the performance of these estimates.

TABLE 7
Two-sample Monte Carlo results, n, = n, = 20, x; = + 1, estimates derived from normal F, logistic
error distribution F, with variance 1, M = 100, 200 Monte Carlo trials. For each B, Monte Carlo
Bias(LS(h)) = 0.017, 10MSE(LS(h)) = 0.91 (standard error = 0.084).

B 0 0.4 0.8 1.2 1.6 2.0 2.4
Bias(8) 0.012 0.041 0.062 0.041 —-0.077 —0.284 —0.552
Bias(8) 0.013 0.016 —0.025 —0.144 —0.341 —0.605 3.31
10MSE(8) 1.02 1.10 113 0.99 0.68 1.22 3.31
(std. error)  (0.102)  (0.117) (0.106) (0.098) 0.071) (0.098) (0.134)
10MSE(f) 0.93 0.88 0.69 0.68 1.44 3.82 8.48

(std. error)  (0.089)  (0.085) (0.065) (0.068) (0.094) (0.116) (0.125)
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