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SAMPLE SIZE SAVINGS FOR CURTAILED ONE-SAMPLE
NONPARAMETRIC TESTS FOR LOCATION SHIFT

By Nira HERRMANN! AND TED H. SZATROWSKI?

Drexel University and Rutgers University

Asymptotic moments of normed sample size savings are derived for
one-sided curtailed nonparametric tests for symmetry for testing location
shift hypotheses under the null hypothesis and contiguous alternatives. The
contiguous alternative results are derived using Feller’s (1943) central limit
theorem result for large deviations and techniques used in Albers, Bickel and
van Zwet (1976).

1. Introduction. The first step from the traditional fixed sample size test
towards sequential or random sample size tests is curtailed sampling. In the
curtailed procedures under consideration in this paper, sampling is stopped as
soon as it is clear that the decision for the fixed sample size test has become
irrevocable. Thus curtailed sampling gives us a testing procedure with the same
power function as that of the fixed sample size test, while guaranteeing that the
random sample size is less than or equal to the fixed sample size in all cases.

Curtailed binomial or sign tests have been frequently investigated in the area
of quality control. Alling (1966), Phatak and Bhatt (1967), Craig (1968), Cohen
(1970), and Shah and Phatak (1972, 1974) all do calculations of average sample
size when curtailed sampling is used. Garner (1958) discussed curtailed sampling
‘when a continuous variable is used for testing lot acceptance. Anderson and
Friedman (1960) and Samuel (1970) compare the expected savings using curtailed
sampling procedures versus sequential probability ratio tests. Herrmann and
Szatrowski (1982, 1985) derive and evaluate the small sample properties of
asymptotic formulas for the expected sample size savings for curtailed binomial
tests. Eisenberg and Ghosh (1980, 1981) derive expressions for the asymptotic
efficiency of curtailed tests under fixed and contiguous alternative hypotheses.
The curtailed version of the t-test and Hotelling’s T2 have been described by
Brown, Cohen and Strawderman (1979) and savings in sample size were investi-
gated by Herrmann and Szatrowski (1980). Wong and Wong (1982) define and
examine the behavior of a curtailed procedure for the location parameter of the
Weibull distribution.

Halperin and Ware (1974), Verter (1979) and DeMets and Halperin (1982)
study curtailed sampling for a two-sample problem with applications to clinical
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SAMPLE SAVINGS FOR CURTAILED TESTS 297

trials. The Halperin and Ware (1974) asymptotic result is of a different order
than the result obtained here due to their assumption that the sequential
observations were obtained in nondecreasing order. Pocock (1977) and O’Brien
and Fleming (1979) investigate group sequential approaches to clinical trials.
Lan, Simon and Halperin (1982) report on results for stochastically curtailed
tests, and Pasternack (1984) discusses curtailed tests involving the probability of
a reversal of a decision based on incomplete sequential data. DeMets and Lan
(1984) review many of these applications to sequential trials.

In this paper, we characterize the random savings in sample size. We begin
with a formal description of the problem.

2. The problem. Let X,,..., X, be an independent, identically distributed
sequence of random variables, observed sequentially, from a continuous distribu-
tion function with density f(x — ), where f(x) is symmetric about zero and @ is

the location shift parameter. Let a; ,, i = 1,..., n, be a set of nonnegative and
nondecreasing scores in i, @; , < -+ <@, ,. Let Z; = |X,| and let Z;, be the
ith order statistic formed from Z,, ..., Z,. The usual nonparametric statistic for

location based on this sample of size n is given by S, = Xia; ,W,, where W, = 1if
the observed X value corresponding to Z;, is positive; W, =0 otherwise. We
assume (e.g., Hajek and Sidak (1967), Pur1 and Sen (1971)) that the scores a; ,
can be imbedded in a nondecreasing score function oJ: [0,1) — [0, 00), where J is
square integrable, [JJ(¢)dt > 0, and hmn_,wa[,m]+1 =dJw),0<u<1(-]is
the greatest integer function). Also [J(@[un1+1, —'J(w)?du = o(1) and both
|J(u)] < KA — u)®~/? and |dJ(u)/du| < K1 — u)*"%? for some K and
0 < & < 3. Often, a; , = J(i/(n + 1)).

For the one-sided hypothesis test for location shift, testing H,: § = 0 versus
H,: 8 > 0 with significance level a, we reject the null hypothesis if S, > &,(a);
otherwise, we accept the null hypothesis. We will assume that the significance
level a has been chosen so that there exists a k,(a) with the property that
a = Pr{S, > k,(a)|0 = 0} so as to avoid randomized tests, since results for
randomized tests can easily be obtained from our nonrandomized test results.
It is well known (e.g., Hajek and Sidak (1967), Chapter 5) that the statistic
S, is asymptotically normally distributed with mean Xa; ,/2 and variance
Y(a; ,)%/4 ~ nfgJ*(t) dt/4 under the null hypothesis of symmetry Thus, for
la:rge n, we can use this result to find an approximate value for k,(a) given by

” 2k, (a) = 2{E(S,16 = 0) + 2,_,{Var(5,|6 = 0)}'"*}

)1/2

= Zal n + 21— a(z{al n}

where z, _, is the upper (1 — a)th percentile of the standard normal distribution.

A curtailed version of this test can be constructed with the identical power
function and a random sample size less than or equal to the fixed sample size n.
We define S, , = Il'a; ,W, ,,, where W, ,, are the W, scores based on the order
statistics of the absolute values of X,i= ., m. Thus S, » is a test statistic
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with the W'’s based on the first m observations but using the scores for a sample
of size n. Note that for any outcome, S, , is nondecreasing in m.

The one-sided curtailed test procedure for testing H: 8 = 0 versus H,: 6§ > 0
stops at the earliest stage m of the experiment when either S, , > k,(«) (reject
the null hypothesis) or S,, , + X7 ,a; , < k,(a) (accept the null hypothesis). If
neither condition occurs at stage m, sampling is continued. Note that this
procedure terminates on or before n observations have been collected. Let N®
be the random stopping time when the curtailed procedure is used and we reject
the null hypothesis, with N® = n if we accept the null hypothesis. Let N“ be
the random stopping time when the curtailed procedure is used and we accept
the null hypothesis with N4 = n if we reject the null hypothesis. We note that
at least one of N¥ or N4 (and possibly both) are equal to n for each experiment
and that N% and N“ are defined for every outcome. °

Our focus in this paper will be on characterizing the asymptotic distributions
of normed versions of the sample size savings (n — N¥) and (n — N4). We will
investigate results for the one-sided hypothesis with H,: 6 > 0 since we can
transform the one-sided hypothesis testing problem with H,: 6 <0 into a
one-sided hypothesis test with H,: 8 > 0 by using —X,,..., —X, as the ob-
served sample. Because of the definition of N® and N4, the rth moment of the
total sample size savings can be expressed as E{(n — N®)"|0} + E{(n — N4)"|6},
for r = 1,2,..., without weighting.

3. Savings under contiguous alternatives. In this section results are
presented that characterize the distribution of normed versions of the random
variables n — NE and n — N4 under values of § that are close to the null value
(0 is characterized in (3.1) and (3.2)). The moments of normed versions of these
random savings are given in Theorems 3.1 and 3.2. In Section 4, we define the
specific norming constants and limit constants in (3.3) and (3.4) for bounded
score functions J and for several unbounded score functions, including the
van der Waerden scores. Using these results, we show in Section 5 that the
normed sample size savings have an asymptotic truncated normal distribution
for many of the nonparametric tests under consideration, including the Wilcoxon
and the van der Waerden tests. A brief sketch of the proofs for these results is
given in this section with details deferred to the Appendix.

Let {6} be a sequence of parameter values converging to zero with the
properties

(3.1) 8,= O(n=12),

(3.2) - 1-B,=Pr{S,>k,(a)lf,} >1-8, O0<B<L1.
Define

(3:3) By n = {Bn(@) = E(S,_ . 16,)} /(Var(S,_ . ,16,))""”,

(3-4) Cmyn = bmyn — { ( 3 a,-,,,)/(Var(s,,_m,,,w,,))l/z}.

n—m+1
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We will assume that there exists a norming sequence A(n) — o0, h(n) = O(n'/?)
or o(n'/?), with the property that, for 1 <5 < 1, and b and c positive,

lim (2,_p + o nmn,)/t0 = b,
(3.5) TN el

lim (B2 = by, pmy,n) = 21-p;

n—oo
(3.6) nlingo (21-p + Cronenp, n)/th= —c,
lim (thl + C[tnhm)],n) = T2

n— oo
where this convergence is uniform for all sequences {t,} satisfying A '(n) <
t, < Kn* for some constant K and 0 < ¢ < § with liminf¢, > 0.

It may be helpful to think of A(n) = n'/%, =1 and r = 1 in a first reading
of Theorems 3.1 and 3.2, where we characterize the asymptotic moments
of (n — NB)/h(n) and (n — N4)/h(n). Note that with these values,
E{((n — N®)/h(n))"|0,} becomes n'/?E{((n — N®)/n)|6,}, which is a normed
version of the average fraction sample size savings achieved by stopping early
and rejecting the null hypothesis.

THEOREM 3.1. For the curtailed one-sided hypothesis test described in Sec-
tion 2, assuming (3.1), (3.2) and (3.5), for r a positive integer,
(37)  lm E{((n - N®)/h(n))16,} = [ re"'@(2,_p — bt") dt.
n— oo 0
Proor. A brief outline of the proof is given here. Details are deferred to the

Appendix. Let n? be the smallest sample size at which the curtailed test could
stop and reject the null hypothesis, i.e., the integer value of m satisfying

m—1 m
(38) Z ai,n < kn(a) < Zai,n‘
1 1
Then E{((n — n®)/h(n))"|6,} becomes
n—1
(3.9) h"(n) Y (n—m) Pr{NR=m|6,}.

We can convert these sums into sums of cumulative probabilities to yield an
expression asymptotically equal to (3.9):

n—n"
(3.10) h~"(n) Y, rm"'Pr{N® <n-m|6,}.

m=1
We note that the ratio of (3.9) and (3.10) converges to one unless (3.9) goes to
zero, in which case (8.10) also goes to zero. Observe that we are summing from
the largest to the smallest probabilities. The substitution {N® <n — m} =
{Sp—m, n = k,(a)} into (3.10) yields

n-—nR

(3.11) h™"(n) Y rm"'Pr{S,_, .=k, (a)d,}.

m=1
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We then normalize S,_,, , to obtain
R

(3.12) E{((n - N®)/h(n))6,} = 27"(n) 'Y (S  mn = Dy ol0,},

m=1

where

S mon= (S, S, nl6s)}/(Var(S, . ,16,))"

and b, , is given in (3. 3)
Smce b, , = o0, we need a large deviation central limit theorem for signed
rank tests under contiguous alternatives to proceed further. The needed result is
obtained using a central limit theorem of Feller (1943) and the techniques of
Albers, Bickel and van Zwet (1976). (See Appendix A.) This large deviation result
is applied to the first m, (largest) terms of the sum, where m,, is chosen so that

m,/h(n) = oo, and the remaining terms are negligible. We then obtain

(3.13) h(n) Xm0 (~ b, ),

m=1
which has the property that the absolute difference between (3.12) and (3.13) is
o(1). (See Appendix A.) Furthermore, this sum differs from the integral (3.14) by
o(1):

(3.14) h="(n) /1 ""rmr10(~b,, ,) dm

where we use asymptotic expansions (e.g., Lemmas 4.1 and 4.2) to define b, ,, for
noninteger values of m. (See Appendix B.) We then make the change of variable
m = h(n)t to obtain

(3.15) fo “r 10 (= bipm, ) [(B7H(n) < t < (m,/h(n)) dt,

where I(-) is the indicator function. Taking the limit as n — oo, using the
dominated convergence theorem to take the limit under the integral sign and
using assumption (3.5) yields the desired result. (See Appendix C.) O

THEOREM 3.2. For the curtailed one-sided hypothesis test described in Sec-
tion 2, assuming (3.1), (3.2), (3.5) and (3.6), for r a positive integer,

(3.16) n].EI:OE{((n - nA)/h(n))rwn} = Lwrt’_ld)(—zl_ﬁ — ct") dt.

PROOF. A brief outline of the proof is given here. The details are very similar
to the proof of Theorem 3.1 and are thus omitted. Let n4 be the smallest sample
" size for which the curtailed test could stop and accept the null hypothesis, i.e.,
the integer value of m satisfying

i=m+1
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Then E{((n — N*)/h(n))"|0,} becomes

(3.17) h~"(n) nil (n — m)"Pr{N* = m|g,}.

m=n“

The remaining details of the proof are similar to those of the proof of Theorem
3 1 using the substitution {N4 <m} = (S, ,+Xr,,a;,<k,(a)} and with
—b” replaced by “c” in (3.13)-(3.15). O :

4. Evaluation of h(n) and the constants in (3.5) and (3.6).

THEOREM 4.1. For bounded score functions, ie., J(1 — ) = lim ,,,J(u) < oo,
(3.5) and (3.6) are satisfied when h(n) = n*/2, n = 1, and b and c are given by

-1/2

(4.1) b=c=dJ(1 —)([01J2(u)du)

Before proving Theorem 4.1, we state two lemmas that give us the asymptotic
mean and variance of S, and S,_,, , under contiguous alternatives. A well-known
result (e.g., Hajek and Sidak (1967), Chapter 6) when f is the symmetric density
function from Section 2 is given in:

LEMMA 4.1. Under conditions (3.1) and (3.2), S, is asymptotically normally
distributed with

(4.2) 2E(S,|0,) = n jo "J(u) du + nb, jo T(w) I *(u, f)du,
(4.3) 4Var(S,)6,) = n fo "J2(u) du,
where

J*(u, f) = (FH(u+1)/2)/f(F'((x+1)/2), 0<u<l,

and F is the cumulative distribution function of f, assuming f’'(x) exists for
x> 0.

LEMMA 4.2. Under conditions (3.1) and (3.2), S[n(l —opm 0<8<1, is
asymptotically normally distributed with mean and variance given by

2E(Staa-on,nlfa) = n(L = 8) [ I( = 5)u) du
(4.4) +n(1 - s)ﬂnLIJ((l —s)u)Jd*(u, f)du

= 2p,(5, 6,),
1
(4’5) 4var(s[n(1—s)],n|0n) = n(l - s)_/(; Jz((]' - s)u) du = 40;3(5, an)
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Proor. Lemma 4.2 follows from the results of Lemma 4.1 by noting that
Sira-sy,» is based on a sample size of [n(1 — s)] and that only the first
[n(1 — s)] of the n scores are used. O

The proof of Theorem 4.1 will provide us with insight into how to choose h(n)
for unbounded score functions and how to achieve better small sample estimates
using b, and c, rather than b or c.

PRrOOF OF THEOREM 4.1. Using the asymptotic normality of S, and (3.2), we
find

(4.6) kn(@) = E(S,16,) — 2,_(Var(S,16,))"”,
which, when substituted into (3.3), yields )

— b, ,=2z_g4 [Var(S,6,),/Var(S,_,, ,16,)]""
) n=21_p,[Var(S,16,) /Var(S,_, ,l6,)]

- [E(Snlan) - E(Sn-—m,nlan)]/[var(sn—m,nlan)]1/2‘

The proof is in three parts. First, we show that the first term on the
right-hand side (RHS) of (4.7) converges to z,_,. Then we show that the second
term behaves asymptotically like bt,. Finally, to establish the form of the
constant ¢, we show the second term on the RHS of (3.4) behaves asymptotically
like —2b¢,,.

Using the asymptotic variance from (4.5), we see that the ratio of the
variances in the first term of the RHS of (4.7) becomes

(4.8) j(;lJ2(u) du/{(l - tnh(n)/n)j:Jz((l — t,h(n)/n)u) du},

which converges to one since ¢,h(n) = o(n).
We next focus on the second term, first considering the normed numerator

(4'9) n_1/2 [E(Snlan) - E(sn(l—t,,h(n)/n), nlan)] ’

with the n~1/2 factor arising from the denominator, which is O(n'/?). To satisfy
(3.5), we must find an h(n) so that (4.9) divided by £ converges to a constant,
say b*. We can rewrite (4.9) using (4.4) to obtain

(4.10) n=?[1a(0,6,) — pa(t,h(n)/n,6,)],

in the notation of Lemma 4.2. For bounded score functions, we can expand
B,(8,6,) for small s in a Taylor series yielding

Using this result, (4.10) becomes asymptotically equal to
(4.12) —n V2 3p,(5,6,)/98)lsmo(tuh(n)/n).

Since p, = O(n), we choose h(n) = n*/? and find the limit as n —» o of (4.12)
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without the factor ¢, to be

(413) — lim n—l(a"‘n(s’ an)/as)|s=0 = _n_l(a”"n(s’o)/as)ls-o,
n—oo
since 6, — 0. Using (4.4), the RHS of (4.13) becomes
(4.14) ( [T du+ [“ud(u) du) /2,
0 0

which, by using integration by parts, can be shown to equal J(1 —)/2.
The denominator of the second term in (4.7) converges to ( o %(u) du)'/2/2
using (4.5), the substitutions m = A(n)t, and

4n’_l\lar(s[n(l—th(n)/n)],nlan) = (1 - th(n)/n)_‘/:‘]z((l - th(n)/n)u) du
- f1J2(u)du,
0

and recalling that a factor of n~/2 was taken from the denominator in the
evaluation of the numerator.
To evaluate (3.6), we note that with m = [sn],
. ,
1
(4.15) Y aa~nf J(u)du=2(p,0,0) - p,(s,0)).
[n(1-s)]+1 1-s
Replacing s with ¢,h(n)/n and using the Taylor series expansion in (4.11) with
8, = 0 yields
n
n~'/? )y @i,n~ —2(p,(5,0)/35)ls- o, h(n) /n*?)
(4.16) [n(1—t,h(n)/n)]+1

~2(J(1 -)/2)t,.
The desired result is obtained by combining (4.16) with the asymptotic results
obtained for &, ,); , into (3.4) and then into (3.6). Note that with m = h(n)t,
and for values of m for which A~'(n) < ¢, < Kn® for some positive K and
0 <& < 1 asin (8.5) and (3.6), we have m/n < Kn**'/2/n = o(1) in the above,
so that Lemma 4.2 is valid for large n when s satisfies 0 < Kn*"/2<s< 1. O

To apply the asymptotic results to small samples, it is useful to note the form
of the terms in (3.5) and (3.6) for large n. For a specific sample size of n, we
prefer to use 1 — B, rather than 1 — B. In addition, we can improve the small
sample approxim.tion by deriving, from the proof of Theorem 4.1, values for b,
and c, that satisfy b, ~ b and ¢, ~ ¢ for both bounded and unbounded score
functions and which we will use in place of b and c. Further simplifications are
possible for bounded score functions. These results are noted in Lemma 4.3. We
can also deduce from the proof a sufficient condition for calculating A(n) for
unbounded score functions. This result is given in Lemma 4.4.

LEMMA 4.3. For small sample size n applications of Theorem 3.1 and
Theorem 3.2, use of b, and c, instead of b and c, respectively, may improve the
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approximations, where

n = t_n{E(Snlan) - E(S[n(l—th(n)/n)], nwn)}

(4.17) 19
I

X {Var( Stna—thny/ny, n|0n)

_ - ~1/2
(418) Cp= — bn +t 17{ E ai, n} {Var(s[n(l—th(n)/n)], nwn)} ’
[th(n)]+1

and it is expected that b, and c,, do not depend upon t > 0. If J(1 — ) < oo with
h(n) = n*/? and v = 1, then b, and c, as previously given simplify to

(4.19) b, = —n"%(p.(s,6,)/98)l5-0/04(0,6,),

(4.20) c, = —n"2{2(p,(5,0)/98 )40 = (In(5,6,)/35)ls=0} /0,(0, 6,),
where ., and o, are defined in Lemma 4.2.

Proor. (4.17) and (4.18) follow after noting the form of the limit in (3.5),
(3.6) and (4.7). (4.19) and (4.20) follow similarly using (4.13) and (4.16) also. O

LEMMA 4.4. For contiguous alternatives, it is sufficient for (3.5) and (3.6) to
choose h(n) and 7 so that

(4.21) ni/2 jl ' " J(u)du~ b*",  b*>0,3<q<1.
- n)/n

ProOF. We note the form of (4.10) in the proof of Theorem 4.1 and that
8, — 0 so that the limit needs to be evaluated for the term

(4.22) n=2(p,(0,0) — p,(th(n)/n,0)),
which, using (4.4), yields (4.21). O

We conclude this section with the results of straightforward applications of
Lemma 4.4 to two examples of unbounded score functions.

LEMMA 4.5. Let h(n) = (n/log n)% Then, for the van der Waerden score
function J(u) = @ Y(u + 1)/2), 0 < u <1, evaluation of (4.21) yields n =1
and b* =1,

LEMMA 4.6. Let h(n) = n?%/@*D_Then, for the family of score functions
Ju)=@0—u)’12,0<8<1,0<u<1, evaluation of (4.21) yields n =8 + 1
and b* = 2/(28 + 1).

5. Asymptotic convergence to truncated normal when n=1. When
n = 1, it is easy to show that (n — N®)/h(n) and (n — N4)/h(n) converge to
truncated normal distributions using Theorems 3.1 and 3.2 once we have estab-
lished some properties of the truncated normal distribution.
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DEFINITION. Let N *(g, 02, ¢) be a random variable from a normal distribu-
tion, with mean p and variance o2, which has been truncated from above at c,
the mass above ¢ being placed at c. Let N(p, 02 c¢) be similarly defined as
truncated below at c.

Note that if we know g, ¢ and the percentile at which ¢ occurs, we know o2
and have completely specified the truncated normal distribution. It is easy to
verify the following relationships involving linear transformations of truncated
normal distributions.

LEMMA 5.1.

N*(ap + b,a%2,'ac +b) fora>0,

aN*(p,0%,c) + b=
(u ) { ap + b,a%? ac+b) fora<0;

N )
N.(ap + b,a%?% ac+b) fora>0,

N I 27 + b=
a *(F' o C) {N*(all« + b’a202,ac + b) fora <0.

Let L(X) denote the distribution function of the random variable X.

THEOREM 5.1. Under the assumptions of Theorems 3.1 and 3.2, when n = 1,

(5.1) nl'gx:oL((n — N®)/h(n)) = L(N.(b7%,_4, 572,0)),
(5.2) nlgr:o L((n— N4)/h(n)) = L(N*(—c‘lzl_ﬁ, 0'2,0)).

PROOF. If we make the change of variables u = 2,_, — bt, (3.7) becomes
(5.3) lim E{((n— N%)/h(n))16,} = 07" [ (2 — u) T (u) du.

From (5.1) and Lemma 5.1, we see that the limit of the rth moment is of the
form

(54)  E{bz,_5— N*(0,1,2,5))"} = E{N.(67%2,_4,57%,0) )},
thus establishing (5.1). (5.2) follows similarly. O
APPENDIX A

Justification of (3.13) using large deviation results. To justify going
from (3.12) to (3.13), we show that (3.12) minus (3.13) is o(1), i.e.,

h"(n)n_Z:I = (PH{S n> bn n) — ®(=Bp 1)) = 0(1).
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We do this by showing (A.1) in Section A.2 and (A.2) in Section A.3:

gy P E (S By l2)

= bm,n(var(sn—m,n|z)1/2} - (I)(_bm,h)] = 0(1);

n—nn
R(n) ¥ o Pr{SE 0 2 by a)

—m,n =
m=1

A2
( ) _Pr{sn—m,n - E(Sn—m:"lz)

> by, (Var(8,_p, 12))""}] = 0(1).

We divide £77"" into L + Z;:ﬂ and choose m,, so that b,, ,=7v, > cata
rate slow enough that we can apply a large deviation central limit theorem result
to the m < m,, terms, and fast enough that the second sum is easily shown to be
0(1). The large deviation result that we apply to the terms in the first sum is
derived in Section A.l. It is used to give us a bound for the differences in
probabilities that, for carefully chosen y, ~ n° and some ¢ > 0, allows us to
complete the proof.

A.l. A large deviation result. We begin by deriving the necessary large
deviation results. We start with a large deviation result of Feller (1943) for
independent random variables (given in Theorem A.1 for completeness). We note
that the W’s defined in Section 2 (S, = Za; ,W;) are not (in general) indepen-
dent. However, the W’s are conditionally independent given Z = Z, =
(Z,,...,Z,). Thus, our first large deviation result in Theorem A.2 involves
applying Feller’s (1943) theorem to (S, — E(S,|Z))/(Var(S,|Z))"/%.

THEOREM A.1 (Feller (1943), page 363). Let {Y,}, k=1,2,..., be indepen-
dent random variables with E(Y,) =0 and Var(Y,) =o; < . Let S, =
Y, + - +Y, and o}? =02 + - -+ +02. Finally, let F,(v,) = Pr(S, < v,} be the
distribution function of S,,.

Suppose that |Y,| < \,0* fork=1,...,n. If 0 <\,y, <1/12, then |¢,| <9
and 1 — F(v,0%) = exp(—¥2Q,(1,)/2[{1 — ®(v,)} + ¥, A .exp(—v,;/2)], where
Q,.(V,) = X214, , v, with |q, | < (12X,)"/7 and ®(-) is the cumulative distribu-
tion function of the standard normal.

In particular, for a uniformly bounded sequence {Y,}, we have o}* ~ O(n).
Then \, = O(n"'/2) and, for v, = o(n*/%), Q(y,) = 0 and Ay, = o(n™'/?);
thus 1 — F(v,0.%) ~ 1 — ®(y,).

Before stating and proving our first large deviation result, we state several
assumptions.

AsSUMPTION A.l. There exists a 8”, 0 < 8” < 1, satisfying [4 %J*(u)du
> 0.
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AssuMPTION A.2. For 0 < 8§’ <8” <1 and a sequence of alternatives {6,},
¢, is positive for all but a finite number of n, with ¢, = supe* satisfying
0<e*<jand

Pr{e* < [f(Y, - 6,)/(f(Y,—6,) +f(-Y,—6,)] <1-¢*6,} >1-&,

where Y, is a random variable with density f(y — 6,).

THEOREM A.2. Given the statistic S, with conditions on the scores described
in Section 2, Assumptions A.1 and A2, and 0 < y,A, < 1/12, then

Pr(S, - E(S,|2) > y,Var(8,1Z)"6,)
(A3) = (1 - w)exp(~17Qu(1,)/2)
X[{1 = @(v,)} + ¥ A exp(—v2/2)] + 0,8,

[n(1-8")]
)\n P2 an,n{sn(l - en) Z aiz, n}
1
~1/2

= d(n/(n+ D){e,(1 = en [ @) )

where
-1/2

(A.4)

Wal <9, Quv,) = X a7, with|g, | <(12X,)"/7,
(A.5) r=1

OSwnSexp(—2n(8’—8”)2) and 0<¢,<1.

ProOF. Let g,(y) = /(y —0,) and define P,= g,(Z)/(g.Z) + &(~Z,))
for j = 1,..., n. Using Okamoto (1958) (e.g., Albers, Bickel and van Zwet (1976),
page 118) yields

Pr{e, < P,<1 — ¢, for at least (1 — 8" )n indices j}
(A6)
>1- exp(—2n(8’ —8") )
Let A, be the event in { } in (A.6). We next condition on Z. Define p; =
8.(z; )/(gn(z )+ 8.(—2;) and Y, = a,;, (W, — pk) where Y, is given in Feller’s
theorem. Then E(Yk|Z) =0, Var(Y,|Z) = a; ,prq, and Var(CY,Z) =
Ya; ,Prq; We continue conditioning now on both Z and the event A, togeta
bound on the variance

n(1-8")

Var(ZYk|Z, An) >e(l—¢,) X af,~g(1- sn)nfl‘sﬂJ2(u) du.
1 0

Note that by conditioning on A, we are sure that the variance term is going
to infinity. Thus, conditioning on Z and A,, we can apply Feller’s theorem using
(A.4) and (A.5). From (A.6), we note that w, = Pr{A} < exp(—2n(8’ — §”)?)is
very small, so that when A/, occurs we only need to use the fact that the large
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deviation probability is bounded by one. Unconditioning on A, yields (A.6) for
some0<§¢,<1.0

Note that Assumption A.1 protects one from having all scores identically zero
when looking at the first (1 — 8”")n of the scores a; ,. Assumption (A.2) is given
in more generality than is necessary. It includes 6§, = 0, i.e., a fixed alternative, as
well as 6, — 0, where liminf ¢, = ¢ > 0 is bounded away from zero, the two cases
in which we are most interested. From the proof of Theorem A.2, we note that
we can allow {6,} with the property that liminfe, = 0 and ¢, > 0 for all but a
finite number of n.

We are most interested in the contiguous alternative cases where liminf ¢, =
e¢>0 and, as we shall see, A,yS = o0(1) for given s > 0. We choose A, ~
{e,(1 — &,)} "2J(n/(n + 1))n~Y2 When J(1 — ) < o, this allows us to choose
Y, ~nf 0<e<(2s)"’ In other cases, we must take into account the
rate at which J(n/(n + 1)) - . Recall from Section 2 that we restricted
|J(uw) < KA —u)’" 72, 0<8<1. For Ju)=1—-u)’®"% 0<8<1, we
have J(n/(n + 1)) ~ n*/27%, which suggests using A, ~ Kn~® and 7y, ~ nf,
0 < & < §/s. In the case with J(1 — ) < oo, this approach yields § = 3.

A2. Proof of (A1). Divide £7~" in (A1) into = + X"} and choose
m, — oo to satisfy ,, , =Y, > © and m,/n = o(1). Then the first sum (from
1 to m,) in (A.1) in absolute value is less than or equal to

h7"(n)rm,  max  [Pr(S,_m » —~ E(S,_m,aiZ)
(A.7) m=1,...,m,
> by, o(Vax(S,_,nl2)) "} = (= by, ).
Note for m e {1,...,m,}, b, ,€[—K,¥,], where K is a generic positive

constant. The condition m,/n = o(1) allows us to apply Theorem A.2, which
uses S, rather than S to bound the term in absolute values in (A.7) by

I[exp( - br%z, nQn( bm,n)/2) - 1] [1 - (I)(bm,n)] I
+|exp(— b2 ,@n(bn, »)/2) ¥\ exp( - B2 ,./2) |
+ wnexp( - blgl, nQn( bm, n)/2)

X [(1 = ®(by, ) + [Walhexp( =82, ,/2)] + s,

If we choose A, and v, so that 0 < Ay, < 1/13 (1/13 rather than 1/12 is used
to bound 12A,y, below 1 in (A.9)), so that by Theorem A.2, |¢,| <9 and
195,,] < (12A,)"/7, then

00 00
lQn(bm,n)l = Z IQn, v”bm,nly < (1/7) Z (12)\n|bm,n|)y
v=1

v=1

(A.8)

(A.9)
= (1/7)12),,1b,,, ol /(1 = 12X,]B,, ) < KXy,

for m € {1,..., m,}. Furthermore,
(A.10) 107, @n(br, 2 )| < KA lby, 4> < KAy
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We shall choose v, = o so that A,y2 = o(1). Thus, the last two terms of (A.8)
are bounded by K exp{ —2n(8’ — §”")*}, and the second term in (A.11) is bounded
by KA ,. The second factor of the first term is bounded by one. The first factor of
the first term is bounded by Kv2A,,. Since v, = oo, the first two terms of (A.8)
substituted into (A.7) are bounded by

(A.11) K(m,/h(n)) ¥\,

Using b,, , =7, and (3.5) yields —v, = z,_g — b(m,/h(n))", which can be
simplified, recalling that ;< 5 < 1, to yield

(A.12) (mo/h(n)) = (Yo + 21_5)/5)"" ~ Kv}/" < Ky

Thus, (A.11) is bounded by KvyZ2"*3)\,, which is o(1) for y,=n% 0<e<
8/(2r + 3), and r a positive integer since A, ~ Kn%,0 < § < 1, as noted at the
end of Section A.l1. The last two terms of (A.8) substituted into (A.7) are
bounded by K2 *%xp{—2n(8’ — §”)?%}, which is o(1) for our choice of 7,.

The sum from m, + 1 to n — n® in (A.1) is bounded by Kh~"(n)n"®(—7v,)
since the probability terms are nonincreasing as m increases, there are fewer
than n terms in the summation, and m <n. For y,=n%, n"®(—n®) ~
n'¢(nt)/n* = o(1).0

A3. Proof of (A2). As in the proof of (A.1), divide E{“”R in (A.2) into
e+ Z,’;;ﬁf and choose m, — oo to satisfy b,, , =7, = o and m,/n = o(1).
The second sum from m, + 1 to n — n® can be shown to be o(1) using the
techniques at the end of the proof of (A.1) in Section A.2 We concentrate only on
the first sum.

We shall write Pr{S* < x} in terms of the conditional means and variances
given Z. We then restrict our attention to the case Z € A, since Pr{Z € A}} is
negligible for our purposes. After giving some asymptotic expansions of the
conditional means and variances for 8, satisfying (3.1) and (3.2), we show that
the differences in probabilities in (A.2) for m € {(1,..., m,} are negligible using
Theorem A.2. We then use these results to show X*» in (A.2) is o(1).

We can rewrite Pr{S* < x} in terms of the conditional mean and variance
given Z as

Pr{S, — E(S,) < x(Var(S,))"*}

(A.13)
= Pr(S, - E(S,12) < (A,(1 + Ag) + x(1 + A,))(Var(5,12))"*},
where
A, = (E(S,) - E(S,1Z))/(E(Vax(S,|12)))",
1+ A, = (Var(S,)/Var(5,12))""”,
and

1+ 4, = {(E(Var(S,12))) /Vax(S,12)} /.
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We first investigate the size of the difference

_ < 1/2
(414) Pr(S, - E(S,) < x(Var(S,))"*}

~Pr(S, - E(8,iZ) < x(Vax(8,i2))"},
assuming Z € A, (A, defined in the proof of Theorem A.2). To do this, we
need to characterize A;, A, and A; in (A.13). Given Z, we expand p, =
f(z,— 0)/(f(z; — ) + f(—z; — 8)) in a Taylor series in §, about 0 with g(x) =
f'(x)/f(x) to get
(A.15) pi=1/2 - (6,/2)g(z) — (67/2)[0] + - .
We use (A.15) to obtain the following asymptotic expansions for 6, satisfying
(3.1) and (3.2):
(A-16) E(Snlz) = Zai,npi = %Zai,n - (0n/2)zai,ng(zi) toey,
(A‘17) E(Sn) = E[E(Snlz)] = ézai,n - (071/2)Zat,nE(g(Zt)) + ooy,

=1Xal, - (62/4) Xal .&%(Z) + -+,

(A19) E[Var(S,2)] = {¥af, - (67/4)Lal E(g%(Z)) + ---,

(A20) Var[E(S,12)] = (62/4)E[La; (8(Z) ~ E(8(2))]" + --- .
We also use the well-known expression
(A.21) Var(S,) = E[Var(S,|Z)] + Var[ E(S,|Z)].
We first look at A, in (A.13). By Chebyshev’s inequality,
(A.22) Pr{|A,| > d)} < Var[E(S,1Z)]/(d?E(Var(S,|2))), d>0,

which, for Z € A, is asymptotically less than or equal to K6?/d? using (A.19)
and (A.20). Since 62 ~ K/n, we can choose d = n7%,0 < § < 1, to get

(A.23) Pr{|A)| 2 n7%Z e A,}) <K/n'%.

We note that for Z€A,, 1+A,=1+K0? and 1+ A; =1+ K62, using
(A.18)-(A.21). Thus,for Z€ A,, A, ~ K/n and A; ~ K/n. The term x + A, +
xA, + AjA; in (A.13), for Z € A, and when |A;| < 2% 0 < § < 1 (which occurs
asymptotically with probability greater than 1 — Kn2®-!), is of the form:
X+ A+ xA,AA; =x + A, with A = O(n~?) for x/n'~% = o(1), where we note
that x may be x, = o (i.e,, x, ~ Kn® for some small positive &) in some of our
applications of these results.

We next investigate the difference in (A.14) for Z € A, and |A,| < n™°. The
difference when we have Z € A, or Z € A, and |A,| > n™? (to be shown to have
negligible probability) will be less than one in absolute value times a negligible
probability.

(A.18)
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Let hy(x) = (1 — ®(x))hy(x) and hy(x) = KA d(x)hy(x), with hg(x) =
exp{ —x2Qn(x)/2} We first investigate the difference in probability terms for

=1,...,m, in[ ]in (A.2), rewritten as in (A 14) using the result of (A.13) for
Z €A, ‘and |A | <n % If we let h(x) = hy(x) + hy(x), we note that the
dlfference in probablhty terms in (A.14) is of the form A(x + A) — h(x), with
A — 0 as n — oo using Theorem A.2. The term involving h,(x) is bounded by
K\, for x satisfying 0 < A, x, < 1/13 and 12X x, = o(1). Thus,

|ho(x + A) — hy(x)| < K|hy(x)| < KA,,.
The term
|hy(x + A) = By(2)] < |hy(x + A) = hy(x)| = |A[|h5(x)]
for large n, where
hi(x) = —hy(x)[22Q,(x) + x"@1(x)] /2.

We bound |Q,(x)| < KA,|x| and |Q/(x)| < KA, for A,x = o(1) using tech-
niques similar to the derivation of (A.9) and (A.10). Thus, |hj(x)| < Kx2A,, for
our sequences of x’s. Using these results for the differences in probabilities in [ ]
in (A.2) for m = 1,..., m, and the techniques used in the proof of (A.1) for these
terms shows (A.2) for Z€ A, and |A,| < n~%

For the cases where Z € A/, or Z€ A,, and |A,| > n~%, we bound the dif-
ferences in probabilities in (A.2) for m = 1,..., m, by one times a negligible
probability, i.e., the probability that Z € A/ or Z € A, and |A,| > n™%. These
negligible probabilities are bounded by K exp{—2(n — m,)(8’ — §”)?} (from
(A.6)) and K(n — m,)?°~! (from (A.23)), respectively. Note that m,/n — 0, so
that the m, in these two probabihty terms can be ignored in the following
calculation. Using (m,/h(n))” < Ky2" from (A.12) for Z€ A, and m =
1,..., m,, we bound the absolute value of (A.2) by Ky2%exp{— 2n(8 r—§")?%) =
o(l) For Z€ A,, |A)| 2n7? and m=1,..., m,, we bound absolute (A.2) by
K2 n?-1, Since vy, = O( ne), with ¢ > 0 being chosen arbitrarily small, we can
choose ¢ so this last term is o(1). O

APPENDIX B

Justification of (8.14). The absolute difference between (3.13) and (3.14), by
the triangle inequality, is bounded by

(B.1) Y hr(n)rmre(=b,,) ~ ["'e(~b,,) di|
m=1 m

We wish to show that this expression is o(1). Given any & > 0, choose m* < m,
with the property that m*/h(n) — €/7/r. We divide X*» into X7+ and Em"‘+l
and consider the two parts separately.

Bounding the difference in absolute values by one for m = 1,..., m¥*, we can
bound the first sum by (m}*/h(n))’r - ¢ and thus it can be made arbitrarily
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small. The second sum is bounded by
(B'2) r(mn/h(n))r max }lq)(—bm,n) - q)(_bm+1,n)|

me{m}+1,..., m
(B.3) < r(m,/h(n))’$(0)  max by = bpi,al,
. me{mk+1,..., m,}
since the maximum unit change in ®(x) occurs at x = 0. Using (3.5), for
me& {m} + 1,...,m,}, we have for large n
1B, n = s, nl = K(m/h(n))"((1 + 1/m)" - 1) = K(m/h(n))"/m.
This last expression is bounded for any m € {m* + 1,..., m,} by

K(m,/h(n))"/m¥ ~ K(m,/h(n))"/h(n),
noting that m* ~ h(n)e/”/r. Substitution of this bound into (B.3) yields the
bound

(B4) K(m,/h(r))""h"(n) < Kv}"/h(n),

letting v, = m,/h(n). We know that for a score function J(u) as constrained in
Section 2, there exists a # > 0 so that n”/h(n) = o(1) (see, for example, Lemma
4.6). Thus (B.4) is bounded by Kv2"/n™ = o(1) for v, = n% 0 < e < 7/2r. 0

APPENDIX C

Justification of moving limit under integral sign in (3.15). Let f(¢) =
rt" ' ®(= b peny, I (A7 Y(n) < t < m,/h(n)). To apply the dominated conver-
gence theorem, it suffices to find a g(¢) > 0 with the properties that (1)
f5°8(t) dt < oo and (2) there exists an N such that, for all n > N, |f,(¢)| < g(¢),
0 < t < oo. Since there exists ¢ > 0 such that m,/h(n) = o(n*®) and we can
choose m,, so this holds for any small ¢ > 0, we choose & so 2¢ is less than the &
needed in the assumptions for (3.5) and (3.6). Note that

=bininyeg,n = Z1-p = B8 = t"{(21_p + Blacayy, ) /2" — B}

By the assumptions for (3.5), we know that for n > N(b/2) the absolute value of
the expression in { } is bounded by b/2 uniformly for all ¢ satisfying A~ %(n) <
t < Kn®. Thus —bipnye» <215~ (b= b/2)t" < 22,_g| — (b/4)t" for n>
N(b/2). If we choose g(t) = rt"~'®(2|z,_g| — (b/4)t"), then (1) is satisfied and
(2) is satisfied for all n > N(b/2). 0
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