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k-STATISTICS AND DISPERSION EFFECTS IN REGRESSION

BY PETER McCCULLAGH' AND DARYL PREGIBON
University of Chicago and AT & T Bell Laboratories

By the term k-statistic or polykay, we mean an unbiased estimate of a
cumulant or product of cumulants [Fisher (1929) and Tukey (1950, 1956)]. In
this paper, two sets of unbiased estimates are given for the case where the
mean response, E(Y), depends linearly on known covariates x. The k’s are
symmetric functions of the least-squares residuals and have previously been
discussed by Anscombe (1961; 1981, Appendix 2). The I’s are optimal in the
sense of having minimum variance under the ideal assumption of normality
[Pukelsheim (1980)]. The emphasis here on computability leads to the alge-
braic inversion of direct product matrices of order n® X n® and n* X n*, a
computation that is rarely feasible numerically, even on the fastest com-
puters. This algebra leads to simple straightforward formulae for all statistics
up to degree four. Conditions are given under which the k’s are nearly or
asymptotically optimal in the sense of being asymptotically equivalent to the
corresponding I’s. A small-scale simulation study provides a comparison
between these statistics for finite n. An application to detecting heterogene-
ity of variance, avoiding the assumption of normality, is given. A new test
statistic for detecting systematic dispersion effects is introduced and com-
pared to existing ones. Two examples illustrate the methodology.

1. Introduction. In the usual linear model, the observations Y?,..., Y" are
assumed to satisfy

E(Y') = x:p",

where X = {x}} is an n X p matrix of known constants, B is a p-dimensional
vector of unknown parameters and the summation convention is applied to any
index repeated once as a subscript and once as a superscript. In addition, it is
commonly assumed that, for i = 1,..., n, the errors Y’ — x!B" are independently
distributed with cumulants k.8, k8%% «,%*, and so on. In this paper,
unbiased estimates are presented for the cumulants «,, k3, k4, ...,as well as the
product, k2. The optimal estimates, Iy, I3, I, l5,, ..., are the homogeneous poly-
nomial functions of the residuals that have minimum variance in the ideal case
where the observations are normally distributed and independent. The simpler
estimates, k,, k3, k4, k4, that are symmetric homogeneous polynomial functions
of the residuals, have been used by Anscombe (1961), who noted, with surprise,
that the symmetric functions are not optimal in general.

Pukelsheim (1980) gives a formula for I, there denoted by 039, but his
expression involves the generalized inverse of a n3 X n® matrix. Since n is
typically fairly large, this formula is of little use for computation. Indeed, no
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numerical examples involving the computation of /; are given in Pukelsheim’s
paper. In this paper, we use the tensor notation of McCullagh (1984) to compute
the necessary generalized inverses algebraically. The formulae are simplified to
such an extent that routine computation is feasible. In fact, the l-statistics are
not much more difficult to compute than the k-statistics. )

Conditions are given under which the simpler k-statistics are optimal in the
sense of having minimum variance under the ideal conditions. In fact, &, = [,
for all X and all n. More generally, and perhaps more usefully, it is shown that
for large n, and under suitably mild limiting conditions on X, that

nl/z(ks - la) = Op(1)7

n'2(ky = 1) = Op(n71%),.
and

nl/z(kzz —ly) = Op(n_3/2)’

Moreover, if the constant vector lies in the column space of X, as would
commonly be the case in applications, the first approximation above becomes

nl/2(k3 - la) = Op(n_l).

Note here that n'/?(k; — ;) is typically O,(1) for large n, and similarly for the
other k’s and [I’s so that the differences on the left of the above equations
involve random variables that are O,(1). Thus the differences, apart from the
first, are at least half an order of magnitude smaller than the random variables
themselves. In other words, for large n the simpler symmetric functions of the
residuals are nearly optimal.

This asymptotic result is important for two reasons. First, one would not
normally consider estimating the higher-order cumulants unless the sample size
was at least 50 and preferably more than 100. Second, the above analysis
indicates that it is only when the constant vector is not included in the model
that there is likely to be any appreciable difference between the k-statistics and
the optimal [-statistics. In other words, there is reason to believe that the
difference between the k-statistics and the l-statistics is likely to be negligible for
all samples large enough to make estimation of the cumulants interesting and
useful. This suspicion can be confirmed by simulation.

In the case of weighted regression as discussed in Section 5, the differences
n'’*(kg — l3) and n'/*(k, — 1,) are both O,(1) for large n. It follows that the &’s
are then not asymptotically optimal and the [l-statistics are preferred. The
difference between these statistics for finite » and for nonnormal samples is
illustrated in Section 7 by means of a small-scale simulation experiment.

The latter part of the paper is devoted to using k-statistics in the analysis of
dispersion effects in regression. This is an important application since classical
tests for heterogeneity rely heavily on normality and k-statistics provide a
means of accommodating excess skewness and kurtosis. This is done both
directly and through a correction factor applied to classical tests. Two examples
are introduced to illustrate the methodology. In both examples the numerical
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differences between the k’s and the optimal I’s are negligible so that either
statistic could be used to adjust for nonnormality.

2. Second-order k-statistics. We consider only homogeneous polynomial
functions of the least-squares residuals, which are given in matrix notation by

(1) . R=(I-XX"X)"'X7)Y.
For our purposes, it is more convenient to use index notation in the form

R = plY/,
where {pj»}, the residual projection matrix, has rank » < n. If X has full rank
then » = n — p. More generally, if rank(X) < p, then a suitable generalized
inverse can be used in (1) and » > n — p.

The covariance matrix of the residuals is
cov(R:, R’) = pipjcov(Y*, Y?)
= K050f0% = KypP.

Note that p"/ is numerically identical to p!, and the two arrays have the same
matrix form but, as tensors under the permutation group, it is extremely helpful
to maintain the distinction when using index notation. Note here that the
permutation group is considered to be applied simultaneously to the rows of X
and Y. All derived statistics are required to be invariant under this operation.

The obvious and simplest estimate of k, is based on the sum of squares of the
residuals ignoring cross products. Thus,

(2) k2 = V_lsiniRj = V_1S2
has expectation »~'8; 0" ’k, = «,, and variance
=288, (k3 (0" o)t + ph il k) + K ypb iRt

where

o8t = plolofel, 87 = 3. plolofel.

r

Simplification gives

var(k,) = 2"%/” + “4E(Pi'i)2/”2,
which reduces to 2«2/» under the ideal assumption of normality.

To derive the unbiased quadratic function of the residuals having minimum
variance under the ideal assumptions, we apply the method of least squares to
the vector having n? components R‘R’. Most components are duplicated, but
this duplication is of no consequence. Now, R'R’ has expectation k,p"’/ in the
general case and covariance matrix

cov(R'R/, R*R") = ki(p" k07! + pip/*)

= w2yt kl
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under the ideal conditions. The Moore—Penrose generalized inverse of w®>* is

easily seen to be
wlj,kl (pl kpj, + pl lpj k)/4

where p; ;, the Moore-Penrose inverse of o/, is numencally identical to p*/ and
pj Thus the weighted least-squares estimate of «, is

(3) l, = (wa, klp ) Pl’jwij, szle,

and this is easily seen to be the same as k,. More generally, it may be shown
that if the design is quadratically balanced, so that p“‘= »/n, then k, has
minimum variance among positive quadratic forms for all parent distributions
for which k, < oo [Atiqullah (1962)].

Note that the choice of generalized inverse is not critical and it is in fact
slightly simpler if we take w;; ;, to be

(siksjl + 8;1 jk)/ 4 oreven §,9,/2.

This may seem an extremely roundabout way of demonstrating a well-known
general result, namely that unbiased estimates based on the sufficient statistic
have minimum variance. However, the method that we have used extends easily
to the higher-order /-statistics as we now show.

3. Third-order k-statistics. The simplest estimate of k,, based on the
residuals and generalizing Fisher (1929) is

(4) ky= ”?,_laiijiRij =t Z(Ri)3 =;S,,

where v, = ¥, (p; j)?’ is assumed to be nonzero. Typically, but not invariably, »,
is a little smaller than » and the condition that »; be nonzero need not be a cause
for concern in most circumstances. For a counterexample, however, see Anscombe
(1961, Section 4.2).

In the simple case where X =1, the Y’s comprise a simple random sample
and k; reduces to Fisher’s (1929) statistic. However, if X is degenerate so that
the Y’s comprise a simple random sample of zero mean, %, is the sum of cubes of
the raw data and is therefore different from Fisher’s statistic. In the degenerate
case, both statistics are unbiased for k; and both are symmetnc functions.
Evidently, in the latter case, symmetry does not guarantee uniqueness. Anscombe
(1981, page 266) has shown in this case that it is preferable to use the sum of
cubes about the sample mean than the sum of cubes of the raw data. Both of
these are inferior to the estimate described below.

To compute the optimal estimate, we first consider the expectation of the
triple product R'R/R*, which is

kaphpdof 87 = kaph k.
Under the ideal conditions, the covariance of R‘R/R* and R'R™R™ is k3wi/* imn
where

wijk,lmn — pi,lpj,mpk,n[6] + pi,jbk,lpm,n[g]
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and the figures in square brackets denote summation over distinct partitions of
the indices and induce the necessary symmetry. See McCullagh (1984) for more
extensive uses of this notation. For an alternative notation involving Kronecker
products, Hadamard products and other devices, see Pukelsheim (1980).

The simplest generalized inverse of w is

8il8jm8kn/6 - 8ij8k18mn/{2(y + 4)},
and the Moore—Penrose inverse is
Wi, imn = Pi, 10, mPk, n[61/36 = p; P, 1Pm, n[91/{18(» + 4)}.

These claims are easily verified directly by matrix multiplication. It follows that
- kPl’m’nwijk,zmn =3/6 — ZPi’lbj’jF’i, j/{z(” +4))
y

and

i sk,

P ik, imn B RTR™ = S;/6 — ngpﬁRi/{2(v + 4)}.

Thus, the homogeneous cubic function of the residuals that is unbiased for kg
and has minimum variance under the ideal conditions is

5) ; S, — 3S,Y0iR/(v + 4)
5wy 3o/, /(v +4)
It follows that if, and only if, the vector with elements p"® lies in the column

space of X, then /; = k,.
Under normality, we have that

var(l,) = 6"3/{”3 - 32&’?”"’?;‘,,‘/(” + 4)},

whereas
var(k;) = "3(6”3 + QZPi'iI’j’jPi,,’)/”g-
In the present context, the positions of the indices in the above formulae are

immaterial, but in the context of weighted regression discussed in Section 5, the
position of the indices becomes relevant.

4. Fourth-order k-statistics. Following Tukey (1950, 1956), we denote the
estimates of k, and k2 by %, and k,,, respectively. The optimal estimates are
denoted by I, and l,,. The simplest estimates, based on symmetric homogeneous
polynomial functions of degree four in the residuals are

(6) k,= {v(v + 2)S, — 3V2QS22}/A,
(7) ko = {”4'322 - V22S4}/A7
where

S4 = Z(Ri)4, Vy = Z(pi,j)4’ Voo = Z(pi,i)27

A=v(v— ), + (v, — v3).
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It is necessary here to assume that A is nonzero and this condition is typically
satisfied if » > 2. Note that » = 1 implies A = 0, as we might expect. In other
words, there is no unbiased estimate of k, or of k2 based on the residuals alone,
unless the residual degrees of freedom are at least 2. Contrast Pukelsheim (1980,
Lemma 2.2), where «, is assumed known.

To compute the optimal estimates, we first consider the expectation of the
product R‘R’/R*R’, which is

kot Ik kZpb o[ 3],
Under the ideal conditions, the covariance of R'R/R*R' and RYR/R¥*R" is
kawkL VIR where
WiRL VIRY gt ), 7 ol KoL 1 [24] + i s phs R ph U [72].

By matrix multiplication, it is easily verified that the Moore—Penrose gener-
alized inverse is

Wijnt,irj'krrr = Pi,irPj, jrPr, k' PL L [24]/576
=P, jPir, j*Pr, ' PL Y [72]/{288(» + 6)}
+Pi,ij,1Pi',j'Pk',1'[9]/{72(" +3)(»+6)}.
From the scalar products
bkt ijkl, i'j’k’l'Rilele/Rl,
and
o>t ![3] Wijrt, i'j’k'l’Rile,Rk,Rll’

which arise in computing the weighted least-squares estimate, it is easily seen
that I, and [,, must be linear functions of )

8, — 65,2 pi(B)’/(» + 6)
and S}. The three quartics involved have the following expectations:
E(S;) = vyry + Bvgpk3,
E(S22) = vyt + v(v + 2)k2,
E(Szzpé(Ri)z) = piey + vyp(v + 2)k3,
where p = Lplp/(p>/)% If we write

6(v + 2)
A=A- -;:6—{'41- — v}
it follows that the optimal estimates are given by
(8) A, = Ak, — 6v(v + 2)Se/(v + 6),

9 Adyy = Akgy + 6v2,5,0/(v + 6),
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where
e= Lol(R) ~ vysks,
6= ZP’;(Ri)2 = wrky/vy.
In the quadratically balanced case, for which the residuals have equal vari-
ances, we have
Pi,i = V/N=vy/v.
It follows then that e = 0, »u = »2, and hence that § =0, A, = A, I, = k, and
lyy = ko
Note also that if » = 1, then A; = A = 0, so that /, and [,, exist only if » > 2.
Under normality, we have that

. 24v(v + 2)(v + 6)
Zyp(v +2)(v + 6) + 3v3(v — 2) — 6ur(v + 2)’

var(l,) =«

whereas

var(k,) = K324v(v +2){A + 3A(2v +2)(op — v3)) .

5. Weighted regression. We suppose now that the ith observation Y is
the average of m; independent and identically distributed, but unrecorded
random variables ‘

Yi=(Zi+ - +Z.)/m,.
It is assumed that
E(Z}) = =i,
implying that Y satisfies the same linear model as the Z’s. By assumption, the
Y’s are independently distributed with cumulants m;k,, m; %ks, m; %,,...,
where «, is the rth cumulant of Z. To estimate these cumulants based on the

observations (Y?, m;), minor changes are required in the expressions given in the

previous sections.
Let W = diag{m,,..., m,} and V = W~ 50 that cov(Y) = «,V. The residual
vector is

R = (I - X(X"WX) 'X"W)Y,
in matrix notation, or
R = Y,
in index notation, so that pj is no longer symmetrical. The covariance matrix of
the residuals is
ko(V — X(XTWX) 'X7)
or kyp"/ = Kkypi/m; using indices. The Moore—Penrose inverse is

k; (W -~ WX(XTWX) 'XTW)
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or k;'p; ; using indices. Thus o>/ = pi/m; while p, ; = m;p, no summation
intended.
If we define

Sr = Zm i(Ri)r
i
for the weighted rth power sum of the residuals and

v, = Z;mimj( Pi’j)ry
i

Voo = Zmi(Pi’i)z’
13

it follows that », = » and that Equations (2)—(9) give the required unbiased
estimates of the cumulants. Note that the positions of the indices in (5), (8) and
(9) are now important.

6. Large sample approximation. We consider now the formal limit in the
equally weighted case where the number of observations becomes large and the
number of parameters in the model remains fixed. In other words, »n is assumed
to be large and hence » is large. Under the usual assumptions regarding the
limiting behavior of X, namely that the eigenvalues of n~'X7X have positive
limits as n — oo, we may write

pi,i=1—a/n
and
pi, ;= ai;/M, L#J,
where a; and a;; are O(1) for large n.
In the case of the third cumulant, it follows from (5) that »; = » + O(1) and
ks — 3k,R + O (nt
(10) - Lo SR O )
1-3%p; ;/v*>+ 0(n"?)

where R = n~'LR’. Hence,

However, if the constant vector lies in the column space of X, then R=0anda
similar analysis then gives

n'/2(kg —Ilg) = 0,(n7").
For statistics of degree four, we have
A = 0(n3), A,—A=0(1) and &= 0,(1).
Hence, from (8) and (9) we find
ly=k,+ 0, (n")
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and
l22 = k22 + Op(n—2).

These give the required asymptotic results as stated in Section 1.

A similar analysis may be used in the (unequally) weighted case provided that
n~'XTWX has positive limiting eigenvalues and that Y(m; — m)?/n tends to a
nonzero limit as n becomes large. However, when the weights are unequal, the
average residual R in (10) is no longer zero unless the constant vector lies in the
column space of WX and there is no reason to expect this in general. This leads
to the conclusion that, when the weights are unequal, n'/%(k; — I3) = O,(1) for
large n. In the case of the fourth-order statistics, we find A, — A = O(n?) and
¢ = O(n'/?), leading to the conclusion that

n*(ky—1,) = 0,(1),

nY%(kgy — ly) = Op(n_1/2)‘

7. Simulation results. We report results from a small-scale simulation
experiment to calibrate the theory of the preceding sections. The results demon-
strate the improvement of l-statistics over k-statistics not only in the Gaussian
case (for which the I’s are optimal) but also for sampling from a gamma
distribution.

We use the car insurance claims example of McCullagh and Nelder (1983,
page 158) as a basis for the simulation. This example consists of average
insurance claims in a 4 X 4 X 8 design. Each average is based on widely different
numbers of individual claims ranging from 1 to 434. There are 5 empty cells in
the table leaving n = 123 observations. We chose this example since it is of
sufficient size to contemplate estimating high-order cumulants and since it
provided us an opportunity to check the algebra in Section 5, the case of
weighted regression.

Let m; denote the number of observations that each average claim was based
upon. For each of 1000 normal samples

{y,-~ N(O, m{l):i= 1,...,123}
and for each of 1000 gamma samples
{y,~ G(m;)/m;:i=1,...,123},

we computed third- and fourth-order k- and Il-statistics after fitting the weighted
regression model defined by the example. For computational efficiency, quanti-
ties involving only the projection matrix { p}} were computed only once, outside
the simulation, e.g., the »’s, A’s, and p. Table 1 summarizes the results of the
experiment.

For both normal and gamma samples, we find good agreement between
empirical, and where available, theoretical quantities. Estimates appear to be
unbiased and the minimum variance property of the I’s, under normality, is
clearly demonstrated. A gratifying finding is that the /’s are moderately (20-30%)
more efficient than the &’s even for gamma errors.
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TABLE 1
Results from limited simulation experiment based on the car insurance claims example

Normal samples Gamma samples
Mean Variance Mean Variance
Theoretical Empirical Theoretical Empirical Theoretical Empirical Empirical
value value value value value value value
k, 1. 0.998 0.0183 0.0172 1 0.998 0.0248
kg 0. 0.042 0911 0.962 2. 2.00 9.87
ky 0. -0.173 11.0 10.5 6. 6.03 975.
koo 1. 0.994 — 0.0687 1 0.996 0.0997
I 1. 0.998 0.0183 0.0172 1. 0.998 0.0248
Iy 0. 0.0229 0.481 0.465 2." 2.00 8.07
l 0. —0.0208 3.40 3.12 6. 5.98 733.
1oy 1. 0.994 — 0.0686 1. 0.996 0.101

Since this is a weighted regression problem, we expect to find differences
between the k’s and I’s, through not in their means, and the simulation
quantifies the extent of such differences. Although paired ¢-tests show no
significant differences at the standard 5% level, certain anomalies do appear
when the paired differences in k-statistics are plotted against the optimal I’s.
(See Figure 1.) For gamma samples, the obvious feature displayed in the plots is
that k; and k, are consistently larger than /; and /, for large values of the
latter. Since both are unbiased, the implication is that, for small values of /; and
l,, the k’s are smaller on average than the I’s. This phenomenon is readily
apparent when the plots are redrawn over a more limited range of the x-axis (not
shown). For normal samples, near-random scatter is displayed for third-order
k-statistics though there is a suggestion that for large |/;|, the corresponding |%,|
are somewhat larger. For fourth-order k-statistics, the pattern of dependence
between k, and [, is similar to that in the gamma samples where for small |/,|,
there is strong negative association between &, — [, and [,, and for large /,, the
corresponding &, are consistently larger.

8. Applications: tests for systematic dispersion effects. Classical tests
for heterogeneity of variance are known to be sensitive to nonnormality.
Bartlett’s test, for example, is sensitive to excess kurtosis [Box (1953)]. In this
section, we develop a test that is designed to detect systematic trends in variance
of an easily understood type. The results developed in the preceding sections are
used to take account of excess skewness and kurtosis as measured by k3 and &,
so that reliance on the normal distribution can be avoided. Bickel (1978)
discusses an alternative approach to robust tests for heterogeneity.

8.1. Methodology. Suppose that having fitted the linear model E(Y) = XB
by least squares, we wish to test for systematic trends in variance. We proceed
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FI1G. 1. Scatter plots of the difference in k-statistics versus the optimal I’s for the simulation study in
Section 7. The top panels display k,,, — L,, versus l,,, m = 3,4, for the ggmma samples. The bottom
panels display the same for the normal samples. The horizontal line superimposed on each plot has
zero intercept.

by computing specified linear combinations of squared residuals and comparing
these with the observed value of .

Let di = (Y' — x}f7)? denote the ith squared residual. We base our test on
the g linear combinations Z7d, where Z is a given n X ¢ matrix. Since the
distribution of Z’d depends on the unknown cumulants «,, k3, ..., and not on B,
our proposal is to base our inferences on the conditional distribution of Z'd given
the observed value of k,. The conditional distribution is approximately free of
the unknown parameters. In principle, we should also condition on k; and k,
but this additional conditioning seems not to affect the conclusions to the order
of approximation used here.

Let A be the n X n symmetric matrix with elements

a;= 2(pi,j)2,€g + pbidiii,,
Then the covariance matrix of &, and Z7d is

17A1/»2 17AZ/»
Z7A1/v  Z7AZ |
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while the unconditional mean of Z’d is
E(Z7d) = k,Z%,

where we have written p for the vector with elements p*% To the extent that the
central limit theorem holds for large n, it follows that

E(Z™d|k,) = k,Z%,

cov(Z™d|k,) = ZTA(I — P)Z,

where P = 1(17A1)"117A is a projection matrix and I — P projects onto the
orthogonal complement of 1. If the columns of Z sum to zero as henceforth
assumed, we have that (I — P)Z = Z, and hence cov(Zd|k,) = ZTAZ.

The conditional covariance matrix of Z7d can be ‘estimated from the data
using the formulae derived in the previous sections. To be precise, an unbiased
estimate of the approximate conditional covariance matrix is cov(ZTd|k,) =
ZTAZ, where A denotes the n X n symmetric matrix with elements

A PR 2 P
é,; = 2(pl»1) ko + VIR,

If ¢ =1, one sided significance levels' may be computed by referring the
standardized statistic,

T, = Z7(d — kyp)/(Z7AZ)"?,

to standard normal percentiles. More generally, if ¢ > 1, we may compute the
quadratic form

(11) T2 = (d - kyp) Z(ZAZ) 'Z7(d — kyp),

whose null distribution is approximately xfl provided only that » is sufficiently
large. Large values are taken as evidence of a systematic trend in variance.

An alternative model-based approach is to assume normality and to rely on
standard asymptotic theory based on log-likelihood derivatives. Cook and
Weisberg (1983) entertain the model Y ~ N(y!, 6%') independently for each i
where :

p=Xp, logé=72Zy.

Since o2 is unknown, it may be assumed without loss of generality that the
columns of Z sum to zero. It follows that the log-likelihood derivative with
respect to y at B = B, y = 0 is proportional to Z7d, in part, justifying our use of
this statistic in the previous calculations. To test the hypothesis H,:y = 0,
standard likelihood-based arguments lead to the scalar score statistic

(12) T2 = d"Z(Z7Z) " '2"d/(26*),

where in practice, 6* is typically estimated by the maximum likelihood estimate
6%, rather than by k2. The unbiased estimate k,, is not a component of the
sufficient statistic under H,.

Under normality, the asymptotic null distribution of T;? is x2 independently
of all unknown parameters and hence the statistic may be used to test H,.
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Without the normality assumption, however, the asymptotic distribution of T2
is {1 + x,/(2c3)}x2, so that large values of the statistic could be interpreted as
due to excess kurtosis rather than to systematic trends in variance. For that
reason, it seems preferable to use the statistic 7, or T2, which have built-in
corrections for kurtosis. Note that to a first order of approximation, we have

Tz2 = (1 + k4/(2k22))T12,

suggesting a simple multiplicative adjustment. For comparative purposes, denote
by T2, the approximation to T2 obtained by applying the adjustment factor
c=Q+ky/(2ky)) " to T5.

Another alternative procedure leading essentially to the same conclusions is
based on the Wald test. This requires maximizing the normal-theory log likeli-
hood to estimate the parameters (B, v), and their asymptotic covariance matrix
under H,,,

K, (XTX) 7! 0
0 2272) 7|

This is correct under normality but not otherwise. More generally, the asymp-
totic covariance matrix of (B, ¥) is given by

K, (XTX) 7! ky/ko(XTX) 'XTZ(ZTZ) !
ks/ko(Z72) "ZTX(XTX) " (2 +ky2)2T2) " |

which reduces to the diagonal form under normality. From these calculations, it
appears that the Wald test based on 4, namely $7Z7Z4 /2, also needs to be
adjusted by the factor ¢ to account for nonnormality.

It is worth pointing out at this stage that standard asymptotic theory leading
to the xfl approximation for (12) requires, in addition to normality, that
p = dim(B) be fixed as n = 0. By contrast, the approximation to (11) is valid if,
say, p = n/2 and the only requirement is that » = n — p = co. This difference
can be important particularly in the context of fractional factorial designs where
the number of unknown regression parameters is often an appreciable fraction
of n.

8.2. Examples.

EXAMPLE 1. In their paper, Cook and Weisberg discuss an example con-
cerned with estimating tree “ volume” as a function of tree height and diameter
[Ryan et al. (1976, page 278)]. They entertain the model

Volume!/? = B, + B,Height + B,Diameter + e.

Cook and Weisberg (Table 2, page 7) provide values of the score statistic for
assessing the dependence of the error variance on diameter and height, both
separately and jointly. As an example, the hypothesis of no (log-linear) depen-
dence of variance on height results in T2 = 8.24 (using 6*). This value is not



k-STATISTICS IN REGRESSION 215

significant at the 5% level though graphical procedures proposed by these
authors display “an obvious wedge shape.”

These data are not extensive (n = 31), but we proceed to demonstrate the
formulae of the previous sections. The standardized k-statistics for these data
are

ky ky ks,
k, = 0.00686, W = —0.0814, k—% = —0.708, _Ig = 0.955.
The optimal I-statistics are quite similar and not recorded here. Based on the
above values, an adjustment factor of ¢ = 1.59 should be applied to the score
test, T2, to account for nonnormality. In this particular example, this adjust-
ment is enough to change an apparently insignificant dependence of variance on
height (T}2 = 3.24), to a significant one (T'2 = 5.15). Using (11) directly we obtain
T2 = 5.02. This value better coincides with the informal graphical procedure
than T, and seems to substantiate the claim that the dependence of variance on
height is real. Of course, other models for these data, in particular multiplicative
ones, would lead to different and possibly more easily interpretable conclusions.

boxplot of post-etch line-width data
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FiG. 2. Boxplot of the post-etch line-width data. Units are micrometers. The width of each box is
proportional to the square root of the number of replications. Experiments 5, 15, and 18 had only
five replications; all others had ten.
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ExaMPLE 2. Phadke, Kackar, Speeney and Grieco (1983) present data on
optimizing the production process of a certain integrated circuit. The experiment
was designed to estimate the main effects of 8 factors on chip yield using 10
replications in each of 18 experimental settings. Slight imbalances occurred due
to either broken or unavailable wafers during the time of the experiment, so that
only 165 observations were available. Of the three measures of chip yield studied
by these authors, we illustrate our method on the post-etch line-width data
displayed graphically in Figure 2. The plot shows marked location effects, and
possibly some dispersion effects. Experiment 16 stands out as being either highly
variable or particularly outlier-prone.

The 18 experiments each provide an independent estimate of variability, sZ,
which can be tested for homogeneity using Bartlett’s test. This results in a value
of 81.76 on 17 df, indicating either significant heterogeneity of variance or
nonnormality. Figures 3 and 4 display probability plots to help sort out the
ambiguity. Figure 3 is a normal probability plot of the within-experiment
differences Y* — Y’ These differences are approximately iid if no dispersion
effects are present. Under this assumption, the probability plot indicates that
the data are apparently nonnormal, especially as regards the large negative
outlier. Figure 4 is a normal probability plot of the logs2’s (base 10). These

prob’y plot of within-experiment differences
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F16. 3. Normal probability plot of within-experiment differences Y — Y'. The experiment number
is used as the plotting character.
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prob’y plot of log variances

0.0

16

-0.5

1

-1.0

10
g 12
17

ordered values

-1.5

148
13
3 7

-2.0
T

| |
-2 -1 0 1 2

-2.5

normal quantiles

Fic. 4. Normal probability plot of the logarithms (base 10) of the sample variances, log s?. The
experiment number is used as the plotting character.

values are iid if no dispersion effects are present. The plot is remarkably linear,
suggesting that the sample variances are log-normal. Note, however that the
slope is approximately 0.45 whereas normal-theory would suggest a slope of
about 0.20. The graph therefore suggests that the kurtosis is about 8.0, which is
consistent with the estimates presented below.

Consider fitting individual experiment means as location effects, so that the
vector of squared residuals is d = (Y¥ — Y%)%. Let Z denote the matrix of
contrasts corresponding to the experimental factors under study. The values of
T2 and T based on Z’d are, respectively, 23.38 and 143.0 (using 6*), the former
depending on the estimated standardized cumulants:

k., = 0.06629 —ki——1741 f‘-‘-—1004 £2E—09265
2_. ’ kg/2_ . kg— SUTXy k%_o .

Due to the near balance in the experiment, the optimal I’s are identical to £’s to
four significant digits. The k-statistics can also be used to adjust T2, yielding
T'2 = 22.26. It appears that tests based heavily on the normal likelihood function
strongly support the existence of dispersion effects whereas tests based on our
method indicate otherwise.
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prob’y plot of | T1 |
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F16. 5. Half-normal probability plot of dispersion test statistics based on single degree-of-freedom
contrasts. The contrast label is used as the plotting character. The two labeled “*” correspond to
“error contrasts” that were not of interest to the experimenter. The second character of some labels
indicates the linear or quadratic component of the three-level factors. The line superimposed on the
plot has unit slope corresponding to the standard error of the standardized contrasts.

Further insight into these data is possible by considering the 17 single
degree-of-freedom contrasts Z,,...,Z,;. Each of the linear combinations Z7d
leads to a standardized statistic T}(Z). Figure 5 is a half-normal probability plot
of |Ty(i)|. Although nonlinear, the plot is not indicative of signficant effects.
Since for this example, T}%(i) = 0.1648 T;X(i) for i = 1,...,17, the half-normal
probability plot of |Ty(i)| is nearly identical to Figure 5. The important
difference between the two, however, is that the half-normal plot of T}(i) should
have approximately unit slope but that based on T,(i) has unknown slope
depending on k,. For comparative purposes, the proportionality constant sug-
gested by the adjustment factor ¢ is 0.1557.

To assess the effect of the apparent outlier on our analysis, we removed it
from the data and repeated the calculations. Qualitatively similar conclusions
were obtained even though quite large differences in detail emerged. Bartlett’s
test decreased from 81.76 to 52.95, but still significant. The value of Ty also
decreased (to 55.97) but the value of T increased (to 32.39). For the single
degree-of-freedom contrasts Z;, we obtained T2(i) = 0.5644T2(i) for i =
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1,...,17. The increase in the constant of proportionality from 0.1648 to 0.5644 is
due to the large change in the estimated standardized cumulants:

k3 k4 k22

k, = 0.04980, ;;g—/—g = —0.4509, k_g = 1.334, k_§ = 0.9784.

The proportionality constant suggested by the adjustment factor c is 0.5946. The
probability plot of dispersion effects again showed no significant factors, though
the ordering of effects changed substantially.

We conclude that there are no significant dispersion effects in these data and
that the apparent heterogeneity is due to nonnormality, and specifically, excess
kurtosis as measured by k,. Furthermore, it appears that even though the
estimated k-statistics are quite sensitive to outliers, the effect on the resulting
test statistic, T}, is substantially less. Based on a single example, however, we
hesitate to claim that T) is more resistant to outliers than tests based on the
normal likelihood function. If anything, the example reinforces the importance of
supplementing the calculation of any test statistic with graphical displays.
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